
How to Extract the Geometry and Topology
from Very Large 3D Segmentations

Bjoern Andres, Ullrich Koethe, Thorben Kroeger and Fred A. Hamprecht

HCI, IWR, University of Heidelberg
http://hci.iwr.uni-heidelberg.de, bjoern.andres@iwr.uni-heidelberg.de

Abstract. Segmentation is often an essential intermediate step in im-
age analysis. A volume segmentation characterizes the underlying vol-
ume image in terms of geometric information–segments, faces between
segments, curves in which several faces meet–as well as a topology on
these objects. Existing algorithms encode this information in designated
data structures, but require that these data structures fit entirely in
Random Access Memory (RAM). Today, 3D images with several billion
voxels are acquired, e.g. in structural neurobiology. Since these large vol-
umes can no longer be processed with existing methods, we present a
new algorithm which performs geometry and topology extraction with a
runtime linear in the number of voxels and log-linear in the number of
faces and curves. The parallelizable algorithm proceeds in a block-wise
fashion and constructs a consistent representation of the entire volume
image on the hard drive, making the structure of very large volume seg-
mentations accessible to image analysis. The parallelized “CGP” C++
source code, free command line tools and MATLAB mex files are avilable
from http://hci.iwr.uni-heidelberg.de/software.php.

1 Introduction

Segmentations of volume images partition the volume into different connected
components: segments, faces between segments, curves in which several faces
meet, as well as the points between these curves, (Fig. 1). The geometry and
topology of these components are essential in many analyses. In order to compute
features that describe this geometry and topology, a data structure is needed that
provides fast access to all components and their adjacency. Volume segmenta-
tions are usually stored simply as volume labelings, i.e. as 3-dimensional arrays
in which each entry is a label that uniquely identifies the segment to which the
voxel belongs. This form of storage does not represent geometry and topology
explicitly. Instead, faces between segments and the curves between these faces
are encoded only implicitly, as adjacent voxels whose segment labels differ. All
that can be obtained from an array in constant computation time is the segment
label at a given voxel. Neither is the set of voxels that belong to the same seg-
ment readily available, nor are the faces between adjacent segments or the curves
in which several of these faces meet. It is not stored explicitly which segments
are adjacent, separated by which faces, and in which curves adjacent faces meet.

ar
X

iv
:1

00
9.

62
15

v1
 [

cs
.C

G
]

 3
0

Se
p

20
10

http://hci.iwr.uni-heidelberg.de
mailto:bjoern.andres@iwr.uni-heidelberg.de
http://hci.iwr.uni-heidelberg.de/software.php

2 B. Andres et al.

The new algorithm presented in this article takes a volume labeling as in-
put and extracts the geometry and topology of all components in a block-wise
fashion, in a runtime that is linear in the number of voxels and log-linear in
the number of faces and curves. Blocks of the volume labeling can be processed
either sequentially, on a single computer that might have only a few hundred
megabytes of RAM, or in parallel, on several computers, which facilitates geom-
etry and topology extraction from datasets that consist of more than 109 voxels.
In both cases, a consistent representation of the entire volume segmentation is
constructed on the hard drive, in a data structure from which all connected com-
ponents and their adjacency can be obtained in constant computation time. The
new algorithm makes the geometry and topology of large volume segmentations
accessible to image analysis. Its parallelized C++ source code, free command
line tools and MATLAB mex files are provided.

This article is organized as follows: Related work is discussed in Section 2.
In Section 3, the data structure that captures the geometry and topology of a
volume segmentation is introduced. The algorithm for its construction is defined
in Section 4 and extended in Section 5 to work with limited RAM and in par-
allel. The correctness of the algorithm is proved and its complexity analyzed.
Section 6 describes the efficient storage of the data structure on the hard drive,
and Section 7 concludes the article.

0

10

20

30

40

50
0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

50

y
x

z

0

10

20

30

40

50
0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

50

y
x

z

Fig. 1. A volume segmentation consists of segments, faces between adjacent
segments (left), the curves in which several of these faces meet, as well as the
points between these curves (right).

Geometry and Topology Extraction from Very Large 3D Segmentations 3

2 Related Work

The first explicit representation of all components of an image segmentation
was proposed by Brice and Fennema [1]; it encodes segments as sets of pixels,
curves between segments as sets of inter-pixel edges, and the end points of these
curves as pixel corners. Naive attempts to represent the different components
of a segmentation all as sets of pixels on the pixel grid of the underlying image
are topologically inconsistent, as was shown in [2] and proven generally and
rigorously in [3,4]. To overcome this inconsistency, Khalimsky [5] introduced the
topological grid whose points correspond to pixels, inter-pixel edges, and pixel
corners. The concept of a 3-dimensional topological grid is depicted in Fig. 2.

Data structures that store, for each component of a segmentation, all points
on the topological grid that constitute this component were proposed and imple-
mented by [6] for image segmentations and envisioned by [7] for volume image
segmentations. However, a storage concept that is suitable for large volume seg-
mentations has so far been missing.

Along with representations of the geometry of segmentations, i.e. their com-
ponents, at least three different structures have been used to encode the neigh-
borhood system on these objects: Region Adjacency Graphs (RAGs) [2] encode
the adjacency of segments. RAGs do not capture the topology of a segmenta-
tion completely because several disconnected faces that separate the same two
segments correspond to the same edge in the RAG. Kropatsch [8] introduces
multiple edges and self-loops in the RAG which results in a multi-graph whose
dual graph represents faces as vertices and the adjacency of faces as edges. This
concept can be implemented as a data structure. However, both the graph and
its dual have to be stored and maintained which is algorithmically challenging.

Combinatorial maps were introduced in image analysis in [9] and are used as
data structures, e.g. in [6] as well as in some algorithms of the Computational
Geometry Algorithms Library (CGAL)1. The extension of combinatorial maps
to higher dimensions is involved but possible [10,11] and has facilitated the
development of the 3-dimensional topological map [12,13]. This map captures not
only the topology of a segmentation but also its embedding into the segmented
space, i.e. containment relations and orders of objects [10,7]. It is therefore more
expensive to construct and manipulate than a data structure that encodes only
the topology.

A simple structure that encodes only the topology is a finite cellular complex,
cf. [14,15] also known as a cell complex or CW-complex [16] where CW stands for
the two axioms closure-finiteness and weak topology, cf. [15]. Cellular complexes
were first used in image processing in [3,4]. Their generalization to 3D is simple
and intuitive.

The main focus of previous efforts to extract and encode the geometry and
topology of segmentations has not been on large volume segmentations but on
the efficient processing of the merging and splitting of segments. These oper-
ations are required within the context of inter-active segmentation. In [17,7],

1 www.cgal.org

www.cgal.org

4 B. Andres et al.

Fig. 2. A topological grid T is used to represent the ge-
ometry of a volume segmentation explicitly. Its elements
are called cells. A cell (t1, t2, t3) ∈ T with j odd en-
tries is called a j-cell. 3-cells, 2-cells, 1-cells, and 0-cells
respectively represent voxels (blue), faces between voxels
(green), lines between faces (red), and points between lines
(purple).

representations of the geometry and topology are constructed incrementally, us-
ing random access to already constructed parts of the data structure. In order
for these algorithms to work efficiently, the underlying data structures need to
be kept entirely in RAM. To extract the geometry and topology of a volume
segmentation of 2, 0003 voxels, 2, 0003 · 23 · 4 bytes ≈ 238 GB of RAM are re-
quired for the labeling of the topological grid, an amount that is not available on
present day desktop computers. Beyond 3, 5003 voxels, even the 1 TB of RAM of
a large server are insufficient. The method presented in this article overcomes this
limitation by means of block-wise processing. It makes geometry and topology
extraction from large volume segmentations possible.

3 From Voxels to Geometry and Topology

The starting point for geometry and topology extraction is a volume image on
a voxel grid G = {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3} whose extent in each of
the three dimensions is given by n1, n2, n3 ∈ N. Two voxels v, w ∈ G are said
to be connected if

∑3
j=1 |vj − wj | = 1. Each voxel is thus connected to 6 other

voxels unless it is at the boundary of the grid. For every voxel, the connected
voxels are called its 6-neighbors. A set of voxels U ⊆ G is called connected if
and only if any two distinct voxels v, w ∈ U are linked by a path in U , i.e. by a
sequence of voxels in U that starts with v and ends with w, in which each voxel
is connected to its predecessor.

A volume segmentation partitions the voxel grid G into connected compo-
nents called segments. A volume labeling

σ : G→ N (1)

assigns to each voxel a label that identifies the segment to which the voxel
belongs. Since each voxel belongs to a segment, the faces between segments, the
curves between these faces and the points between these curves (Fig. 1) cannot
be represented on the voxel grid. The structure that is used for this purpose is
a topological grid,

T = {1, . . . , 2n1 − 1} × {1, . . . , 2n2 − 1} × {1, . . . , 2n3 − 1} . (2)

This grid has about eight times the size of the voxel grid. Its elements are called
cells. Cells with j odd entries are called j-cells, cf. Fig. 2.

Geometry and Topology Extraction from Very Large 3D Segmentations 5

n n-cell Γ ↔

0 ∅

1

2

3 ∅

Fig. 3. Two relations are crucial to
the definition of connected compo-
nents of cells. (i) The Γ -neighborhood
of a j-cell consists of all its 6-neighbors
on the topological grid T that are
(j+1)-cells. (ii) The connectivity rela-
tion “↔” connects two cells t1, t2 ∈ T
if and only if there exists a third cell
t ∈ T such that both t1 and t2 are
Γ -neighbors of t.

Segments, faces between segments, curves between faces, and points be-
tween curves correspond to connected components of cells. Two relations are
crucial to the definition of these connected components. The first relation the
Γ -neighborhood of cells. It is depicted in the third column of Fig. 3.

Definition 1. The Γ -neighborhood is the mapping Γ : T → P(T) such that,
for each j ∈ {0, . . . , 3} and any j-cell t ∈ T , Γ (t) consists of all 6-neighbors of t
on the topological grid T that are (j + 1)-cells.

Any 2-cell, for instance, has two Γ -neighbors that correspond to two voxels.
The second important relation is the connectivity of cells; it is depicted in

the last column of Fig. 3.

Definition 2. The connectivity relation “↔” ⊆ T × T connects any two cells
t1, t2 ∈ T (denoted t1 ↔ t2) if and only if there exists a t ∈ T such that both t1
and t2 are Γ -neighbors of t.

Segments, faces, curves and points can now be defined recursively as con-
nected components of 3-cells, 2-cells, 1-cells, and 0-cells which are called j-
components. In the following definition, a distinction is made between active
and inactive cells.

Definition 3. Any 3-cell is said to be active. A set of all (active) 3-cells that
belong to the same segment is called a 3-component.

For j ∈ {2, 1, 0} and any j-cell t ∈ T , let {t1, . . . , t6−2j} = Γ (t) be its Γ -
neighbors. For each k ∈ {1, . . . , 6−2j}, let τk be the connected component of tk if
tk is active, and let τk = ∅ otherwise. Define θ(t) to be the set of connected com-
ponents that occur precisely once in (τ1, . . . , τ6−2j). These connected components
are said to be bounded by t. Moreover, t is called active if θ(t) 6= ∅.

For each j ∈ {0, 1, 2}, a j-component is a maximal set U ⊆ T with the
following properties:

6 B. Andres et al.

(i) Any t ∈ U is an active j-cell.
(ii) All t ∈ U bound the same connected components of (j+1)-cells, i.e. there

exists a set Θ such that θ(t) = Θ, for all t ∈ U .
(iii) For any t1, t2 ∈ U , there exists a path in U from t1 to t2 in which each

cell is connected via ↔ to its predecessor.

This definition captures not only the geometry but also the topology a a
volume segmentation. Given, for instance, a face between two segments (i.e. a
2-component) and any of its 2-cells, t, θ(t) identifies the two segments (3-
components) that are bounded by the face. In practice, θ(t) can be stored for
each j-component. In theory, this corresponds to a cellular complex representa-
tion that is isomorphic to the topology of the volume segmentation [3]. Cellular
complexes are defined as follows.

Definition 4. A cellular complex is a triple (C,<,dim) in which “<” is a strict
partial order in C and dim : C → N0 maps elements of C to non-negative integers
such that ∀c, c′ ∈ C : c < c′ ⇒ dim(c) < dim(c′). The elements of C are called
cells, “<” the bounding relation and dim the dimension function of the cellular
complex.

As an example, consider the cellular complex that contains as cells all points
of the topological grid T (these points have already been referred to as cells),
and as a bounding relation the transitive closure of the Γ -neighborhood, i.e. the
strict partial order that relates any t1, t2 ∈ T precisely if there exist an n ∈ N
and a sequence of n cells p : {1, . . . , n} → T such that p(1) = t1, p(n) = t2, and
∀j ∈ {2, . . . , n} : p(j) ∈ Γ (p(j − 1)). The dimension function simply maps each
cell to its order, either 0, 1, 2 or 3. This cellular complex corresponds to the
topology of the finest possible segmentation in which each voxel is a separate
segment.

A coarser cellular complex contains as cells the j-components (Def. 3). Its
bounding relation is the transitive closure of the bounding relation θ of Def. 3.
Its dimension function maps each connected component to the order of its cells.
This cellular complex captures the topology of the volume segmentation. It would
makes sense to refer to its elements again as cells. However, to avoid confusion,
the termed j-components is used throughout this article.

An important property of Def. 3 is that it is constructive and thus motivates
an algorithm for the labeling of j-components.

4 Extraction of Segmentation Geometry and Topology

The geometry of a volume segmentation is made explicit by labeling not only
the segments but also the faces between segments, the curves between faces and
the points between curves, i.e. the j-components of the segmentation, on the
topological grid T . The resulting topological label map

τ : T → N0 (3)

Geometry and Topology Extraction from Very Large 3D Segmentations 7

assigns a positive integer, representative of a j-component, to each active cell,
and zero to all inactive cells. On the computer, τ is stored as a 3-dimensional
array.

The first step towards this labeling is to copy all segment labels from the
volume labeling σ to the topological grid labeling τ by means of Algorithm
1. Subsequently, 2-components and 1-components are identified and labeled by
means of Algorithm 2 that performs a depth-first-search. The auxiliary function
once used in this algorithm takes an input sequence of integers and returns an
ordered sequence of the same length that contains those positive integers that
occur precisely once in the input sequence. Additional entries in the output se-
quence are filled with zeros. Finally, active 0-cells are identified and labeled by
means of Algorithm 3. Besides labeling the topological grid, these algorithms
construct the bounding relation θ of j-components (Def. 3) and thus a cell com-
plex representation of the topology of the segmentation.

Overall, this connected component labeling is an exact implementation of
Def. 3 and is thus known to be correct. Its runtime is linear in the number of
voxels and so is its space complexity. The memory dynamically allocated for
the stack is in addition bounded by the number of cells in the largest face. The
absolute memory requirement nevertheless renders the procedure impractical for
large volume segmentation. As shown in the introduction, the topological label
map τ of a volume segmentation that consists of 2,0003 voxels is too large to
fit in the RAM of a desktop computer. Storing τ on the hard drive and loading
blocks into RAM on demand as a sub-routine of Algorithm 2 does not solve the
problem because any caching of blocks becomes inefficient if segments and faces
extend unsystematically across large parts of the volume which is often the case,
in particular in connectomics datasets. Fortunately, the labeling itself can be
constrained to small blocks of the volume which can be chosen systematically
and processed independently, with very limited RAM and in parallel.

Algorithm 1: Labeling of 3-cells

Input: σ : G→ N (segment label map)
Output: τ : T → N (topological label map, preliminary), n ∈ N (maximum

segment label)
1 n← 0;
2 foreach r ∈ G do
3 τ(2r − 1)← σ(r);
4 if σ(r) > n then
5 n← σ(r);
6 end

7 end

8 B. Andres et al.

Algorithm 2: Labeling of 2-cells and 1-cells

Input: τ : T → N (topological label map, preliminary), c ∈ {1, 2} (cell order)
Output: τ (modified), n ∈ N (number of c-components), α ∈ Nn×(6−2c)

(neighborhood relation of c-cells)
1 n← 0;
2 Stack s← ∅;
3 foreach c-cell t ∈ T do
4 if τ(t) = 0 then
5 p← (6− 2c);
6 (t1, . . . , tp)← Γ (t);
7 (x1, . . . , xp)← (τ(t1), . . . , τ(tp));
8 (y1, . . . , yp)← once(x1, . . . , xp);
9 if y1 6= 0 then

10 n← n+ 1;
11 for j = 1 to p do
12 α(n, j)← yj ;
13 end
14 s.push(t);
15 while s 6= ∅ do
16 u← s.pop();
17 τ(u)← n;
18 foreach v ∼ u do
19 if τ(v) = 0 then
20 (v1, . . . , vp)← Γ (v);
21 (x′1, . . . , x

′
p)← (τ(v1), . . . , τ(vp));

22 (y′1, . . . , y
′
p)← once(x′1, . . . , x

′
p);

23 if (y′1, . . . , y
′
p) = (y1, . . . , yp) then

24 s.push(v);
25 end

26 end

27 end

28 end

29 end

30 end

31 end

Geometry and Topology Extraction from Very Large 3D Segmentations 9

Algorithm 3: Labeling of active 0-cells

Input: τ : T → N (topological label map, preliminary)
Output: τ (modified), n ∈ N (number of active 0-cells), α ∈ Nn×6

(neighborhood relation of 0-cells)
1 n← 0;
2 foreach 0-cell t ∈ T do
3 (t1, . . . , t6)← Γ (t);
4 (x1, . . . , x6)← (τ(t1), . . . , τ(t6));
5 (y1, . . . , y6)← once(x1, . . . , x6);
6 if y1 6= 0 then
7 n← n+ 1;
8 for j = 1 to 6 do
9 α(n, j)← yj ;

10 end
11 τ(u)← n;

12 end

13 end

5 Block-wise Processing of Large Segmentations

In order to extract the geometry and topology from large volume segmenta-
tions efficiently with limited RAM, the labeling of components is constrained to
sufficiently small blocks of the topological grid. Each block is processed inde-
pendently using the algorithms 1, 2 and 3. The independent results are stored
on the hard drive and subsequently combined into a consistent labeling of the
entire topological grid. More precisely, the procedure works as follows.

Step 1 (connected component labeling). The topological grid is subdivided
into blocks such that each block begins and ends in each direction with a layer
that contains 3-cells. Moreover, adjacent blocks are chosen to overlap each other
by one cell in each direction as is depicted in Fig. 4. In consequence, each 1-
cell and each 2-cell within a region of overlap belongs to two different blocks,
cf. Fig. 4b. Each block is then labeled independently using the algorithms 1, 2,
and 3, and the respective labelings are stored on the hard drive. In consequence,
the labeling of connected components starts in each block with the label 1.

Step 2 (label disambiguation). The processed blocks are put in an arbitrary
but fixed order. If the j-th block in this order contains m2 2-components, the
offset m2 is stored along with block j + 1 where it is added on demand to all
non-zero 2-cell labels, similarly for 1-cells and 0-cells, arriving at maximal labels
M0,M1,M2 of 0-, 1-, and 2-cells, respectively, for the entire volume.

Step 3 (label reconciliation). Whenever connected components of cells extend
across block boundaries, their labels in the respective blocks (with offsets added)
need to be reconciled. Two disjoint set data structures equipped with the oper-
ations union and find [18] are used for this purpose, one for 1-cells and one for
2-cells, the former with M1, the latter with M2 initially distinct sets, each set
containing one label. First, union(l1, l2) is called for the pair (l1, l2) of distinct

10 B. Andres et al.

a) b)

Fig. 4. The topological grid is subdivided into blocks, leaving an overlap of one
cell in each direction (a). Cells inside regions of overlap (b) are assigned two
different labels during the independent processing of the blocks. These labels
are subsequently reconciled.

labels assigned to any active 1-cells and 2-cells within a region of overlap. Sec-
ond, each label l is replaced by the representative find(l) of the union to which
it belongs.

Step 4 (curve merging). As is elucidated in the correctness analysis of this
algorithm in Section 5.1, 1-components can still be falsely split and 0-cells falsely
labeled as active at this stage. Thus, in a last step, each 0-cell t0 and any pair
(t1, t

′
1) of 1-components bounded by t0 is considered. The labels of t1 and t′1 are

reconciled if t1 and t′1 bound the same connected components of 2-cells. If at
least one reconciliation has taken place, the activity of t0 is re-computed.

5.1 Correctness of the Algorithm

In order to prove that the block-wise processing is correct, the segment label map
σ as well as the decomposition of the topological grid into blocks are assumed
to be arbitrary but fixed. The labeling τ ′ output by the block-wise method is
compared to the labeling τ obtained from the application of Algorithms 1, 2 and
3 to the entire segment label map. While the latter is known to be correct, the
former is correct if the two labelings are isomorphic:

Definition 5. Two labelings τ, τ ′ : T → N of the topological grid T are isomor-
phic w.r.t. a subset U ⊆ T if and only if the following conditions hold:

∀u ∈ U : τ(u) = 0⇔ τ ′(u) = 0 , (4)

∀u, v ∈ U : τ(u) = τ(v)⇔ τ ′(u) = τ ′(v) . (5)

Geometry and Topology Extraction from Very Large 3D Segmentations 11

If τ and τ ′ are isomorphic w.r.t. the entire domain T , they are simply called
isomorphic.

Proposition 1. τ and τ ′ are isomorphic w.r.t. all 3-cells of T .

Proof. 3-cell labels are copied from the segment label map σ to τ and τ ′, re-
spectively by both algorithms. The labelings τ and τ ′ are therefore identical and
thus isomorphic w.r.t. all 3-cells of T .

Proposition 2. τ and τ ′ are isomorphic w.r.t. all 2-cells of T .

Proof. During block-wise processing, the decision whether or not a 2-cell obtains
a non-zero label depends exclusively on the labeling of 3-cells w.r.t. which τ and
τ ′ are identical. Thus, (4) holds for all 2-cells of T .

Let u, v ∈ T be any 2-cells. If τ(u) 6= τ(v), u and v bound different pairs of
segments and hence obtain different labels during block-wise processing. Such
labels are not reconciled. Thus, τ ′(u) 6= τ ′(v).

If τ(u) = τ(v), there exists a path of 2-cells between u and v on which all
cells separate the same pair of segments. If this path is contained in one single
block, all its 2-cells obtain the same label during the independent processing of
that block. If the path crosses the boundaries of blocks, the labels along the path
are reconciled. Thus, τ ′(u) = τ ′(v).

Hence, (5) hold for all pairs of 2-cells. In conclusion, τ and τ ′ are isomorphic
w.r.t. all 2-cells of T .

Proposition 3. For each block U ⊆ T , any 1-cell t1 ∈ U , and any 2-cell t2 ∈
Γ (t1), the label assigned to t2 is unique among the labels assigned to all 2-cells
in Γ (t1) before label reconciliation if and only if it is unique afterwards.

Proof. (⇒) Suppose t2 had a unique label among the elements of Γ (t1) before
label reconciliation and the same label as another t′2 ∈ Γ (t1) afterwards, i.e. in τ ′.
Then, t2 and t′2 separated the same pair of segments because τ ′ is isomorphic to
the correct labeling τ w.r.t the 2-cells. Moreover, we know by definition that t2 ↔
t′2, so t2 and t′2 would have obtained the same label before label reconciliation.
A contradiction. (⇐) Trivial.

Proposition 4. For all 1-cells t1 ∈ T holds τ(t1) = 0⇔ τ ′(t1) = 0.

Proof. During the independent processing of each block, any 1-cell t1 ∈ T ob-
tains a non-zero label if and only if at least one 2-cell label is unique among
the labels assigned to all 2-cells of Γ (t1). In this step, the 2-cell labels before
label reconciliation are considered. However, by Prop. 3, this is no different than
considering the 2-cell labels of τ ′. Moreover, τ ′ and τ are isomorphic w.r.t. all
2-cell and thus, 1-cells obtain a non-zero label in τ ′ precisely if they are labeled
non-zero in τ , i.e. τ(t1) = 0⇔ τ ′(t1) = 0.

Proposition 5. For all 1-cells u, v ∈ T holds τ(u) = τ(v)⇐ τ ′(u) = τ ′(v).

12 B. Andres et al.

Proof. If τ ′(u) = 0, the conjecture holds by virtue of Prop. 4. If τ ′(u) 6= 0,
it follows that τ ′(v) 6= 0 (by assertion) as well as τ(u) 6= 0 and τ(v) 6= 0 (by
Prop. 4). Moreover, τ ′(u) = τ ′(v) requires by construction of τ ′ that u and v are
connected by a path of 1-cells all of which bound the same connected components
of 2-cells (in τ ′). As τ and τ ′ are isomorphic w.r.t. the 2-cells and as 1-cells are
labeled correctly in τ , it follows that τ(u) = τ(v).

Proposition 6. For all 0-cells t ∈ T holds τ(t) 6= 0⇒ τ ′(t) 6= 0.

Proof. If τ(t) 6= 0, at least one 1-cell label is non-zero and unique among the
labels assigned to all 1-cells in Γ (t), i.e.

∃u ∈ Γ (t) : τ(u) 6= 0 ∧ ∀v ∈ Γ (t) \ {u} : τ(u) 6= τ(v) .

For any such u follows by Prop. 4 and 5

τ ′(u) 6= 0 ∧ ∀v ∈ Γ (t) \ {u} : τ ′(u) 6= τ ′(v)

and thus, by construction of τ ′, the conjecture.

In order to prove that τ and τ ′ are isomorphic, it remains to be shown that
the inverse implications of Prop. 5 and 6 also hold. Unlike the above propositions
which hold by construction of τ ′ in Steps 1–3 of the block algorithm, the two
missing implications are enforced explicitly, by Step 4.

As the following example shows, 1-components can indeed be falsely split
and 0-cells falsely labeled active if Step 4 is omitted. In Fig. 5a, a segment label
map on a grid of 3 × 3 × 2 voxels is shown. Six segments are identified by the
integers 1 through 6. The correct corresponding topological label map is depicted
in Fig. 5b, and the connected components are plotted in Fig. 6a and 6b. The
1-cell labels in Fig. 5b are colored in accordance with the graphical visualization
in Fig. 6b.

Assume that the segment label map in Fig. 5a is processed block-wise, with
blocks of 2 × 2 × 2 voxels. Note that this block-size includes an overlap of one
voxel in each direction. The bold font in Fig. 5a indicates one of these blocks.
The topological label map that is constructed when this block is processed in-
dependently is depicted in Fig. 5c. While the 1-cells labeled 1 and 2 are merged
into one connected component during label reconciliation after all blocks have
been processed, the 1-cells labeled 3 and 4 are merged only in Step 4 of the
algorithm. If Step 4 were omitted, the incorrect labeling shown in Fig. 6c would
be computed.

Theorem 1. τ and τ ′ are isomorphic.

Proof. In addition to the implications proven above, Step 4 of the block-wise
processing enforces:

(1) For all 1-cells u, v ∈ T holds τ(u) = τ(v)⇐ τ ′(u) = τ ′(v).
(2) For all 0-cells t ∈ T holds τ(t) 6= 0⇐ τ ′(t) 6= 0.

By virtue of this theorem, the block-wise processing is correct.

Geometry and Topology Extraction from Very Large 3D Segmentations 13

a)
z = 1

1 1 1
1 2 1
1 1 3

z = 2

4 4 4
4 5 4
4 4 6

b)
z = 1

1 0 1 0 1
0 0 1 0 0
1 1 2 1 1
0 0 1 0 2
1 0 1 2 3

z = 2

3 0 3 0 3
0 0 1 0 0
3 1 4 1 3
0 0 1 0 2
3 0 3 2 5

z = 3

4 0 4 0 4
0 0 6 0 0
4 6 5 6 4
0 0 6 0 7
4 0 4 7 6

c)
z = 1

2 1 1
1 0 2
1 2 3

z = 2

3 2 5
1 1 4
4 3 6

z = 3

5 7 4
7 0 8
4 8 6

Fig. 5. a) A segment label map
on a grid of 3 × 3 × 2 vox-
els. b) The correct correspond-
ing topological label map. Col-
ors are in accordance with the
1-cells shown in Fig. 6b. c) The
topological label map of the
block depicted in bold font in
(a). 1-cells are colored in accor-
dance with Fig. 6c. The 1-cells
labeled 1 and 2 are merged dur-
ing label reconciliation while
the 1-cells labeled 3 and 4 are
merged in Step 4 of the block-
wise processing.

a) b) c)

0
1

2
3 0

0.5
1

1.5
2

2.5
3 0

0.5

1

1.5

2

0
1

2
3 0

1
2

30

0.5

1

1.5

2

0
1

2
3 0

1
2

30

0.5

1

1.5

2

Fig. 6. Connected components of 2-cells (a) and 1-cells (b) defined by the topo-
logical label map in Fig. 5b. c) 1-cells and the 0-cell from a block-wise labeling
where Step 4 of the algorithm is omitted.

5.2 Complexity

The runtime overhead introduced by the merging of labels is O((N + M1 +
M2) log(M1 + M2)) where N is the number of cells within regions of overlap.
Time O(N log(M1 + M2)) is used for the O(N) calls of union, whereas time
O((M1 + M2) log(M1 + M2)) is required for the M1 + M2 find -operations. In
practice, this overhead is negligible compared to the runtime of the connected
component labeling.

5.3 Parallelization

The algorithm can be used in two different settings: Blocks can be processed
consecutively in order to extract the geometry of a large volume segmentation
in limited RAM. Perhaps more interestingly, blocks can be processed in parallel,

14 B. Andres et al.

possibly on several machines, with virtually no process synchronization or inter-
process communication.

Indeed, if it were not for parallelization, the block-wise connected component
labeling could have been implemented simpler, starting with only the 2-cells,
followed by the disambiguation and reconciliation of their labels across all blocks
even before any 1-cell or 0-cell is labeled. This would render Step 4 of the block-
wise processing unneccessary. However, the program would have to wait until
the 2-cells of all blocks have been labeled before it could label the first 1-cell.
In contrast, the proposed algorithm starts labeling the 1-cells within a block
as soon as the labeling of 2-cells within that block is finished, regardless of the
progress on other blocks.

6 Redundant Storage for Constant Time Access

The algorithm proposed in the last section labels segments, faces between seg-
ments, the curves between faces and the points between curves on the toplogical
grid. The output is a topological label map that provides constant time access to
the label at any topological coordinate. It allows to determine in constant time
whether there is a face, curve, or point at a given location and if so, to determine
its label. This is important, e.g. for the visualization of 2-dimensional slices of a
segmentation that show not only segments but also faces, curves, and points. The
algorithm makes explicit the bounding relations between the geometric objects.

However, not only the labels of individual cells and the adjacency of geomet-
ric objects are important but also the set of all cells that belong to the same
component. For image analysis, it can for instance be useful to compute the
mean gray value over a face between two segments. Yet, a list of all 2-cells of
the face cannot be obtained in constant time from the topological grid labeling.
Thus, a redundant representation of geometry is constructed that contains for
each j-component a list of all its j-cells.

This redundant representation as well as the topological grid labeling are
stored on the hard drive using the Hierarchical Data Format (HDF5). HDF5
was originally developed by the National Center for Supercomputing Applica-
tions (NCSA) and is now maintained by the non-profit HDF5-Group2. It is
widely used, especially in the life sciences [19]. An HDF5 file contains two prin-
cipal types of objects, groups and datasets. Datasets represent the actual storage
containers and are multi-dimensional arrays of a unique type, while groups rep-
resent an organizational concept analogous to a directory that enables the user
to hierarchically structure the data within the file. Furthermore, attributes may
be assigned to any dataset or group and contain meta information pertaining to
the data stored within these objects.

Two HDF5 files are used here. The first file is associated with the labeling
algorithm of Section 5. Its structure is depicted in Fig. 7a. For each block and its
index j in the order of blocks, a sub-group named j is created in the group blocks.

2 www.hdf5group.org

www.hdf5group.org

Geometry and Topology Extraction from Very Large 3D Segmentations 15

The sub-group j contains the dataset topological-grid, a 3-dimensional array that
stores the topological label map of the block. Furthermore, it contains datasets
for the neighborhood relations of connected components as well as the label off-
sets of the block which are computed during label disambiguation. During label
reconciliation, the datasets relabeling-k and neighborhood-k are created in the
main file to store the labeling and the neighborhood relations of k-components
of the entire topological grid.

a) b)

t d Name
D 1 segmentation-shape
D 1 block-shape
G blocks
G 〈b〉
D 3 topological-grid
D 1 max-labels
D 1 label-offsets
D 2 neighborhood-0
D 2 neighborhood-1
D 2 neighborhood-2
D 1 max-labels
D 1 relabeling-1
D 1 relabeling-2
D 2 neighborhood-0
D 2 neighborhood-1
D 2 neighborhood-2

t d Name
A 1 number-of-bins
D 1 segmentation-shape
D 1 max-labels
D 2 0-cells
G 1-components
G bin-〈b〉
D 2 〈q〉-〈p〉
G 2-components
G bin-〈b〉
D 2 〈q〉-〈p〉
G 3-components
G bin-〈b〉
D 2 〈q〉-〈p〉
D 1 parts-counters-1
D 1 parts-counters-2
D 1 parts-counters-3

Fig. 7. Two HDF5 files
store the information ex-
tracted during block-wise
processing. Along with
each data item, its type
t (a group G, a dataset
D, or an attribute A) and
dimension d are shown.
a) The 1st file provides
constant-time access to
the label of any cell as well
as to the neighborhoods
of connected components
of cells. b) The 2nd file
provides constant-time
access to the coordinate
lists of entire segments,
faces and curves.

Using this file, constant time access to the label of a given cell works as
follows. After identifying a block k to which the j-cell of interest belongs, the
label l is read off from the dataset topological-grid of that block. Except for 3-
cells and inactive cells, the offset m associated with cell order j and block k is
loaded and the dataset relabeling-j accessed at location l + m for the globally
consistent label of the cell. In practice, all data except the topological label map
can be kept in RAM.

The second HDF5 file stores one coordinate list for each 1-, 2-, and 3-
component as well as the coordinates of all active 0-cells. Initially, the most
straight forward group hierarchy was chosen for this file: Three groups associ-
ated with segments, faces, and curves, each containing one extendible dataset
for each component. In addition, the coordinates of all 0-cells were stored in one
2-dimensional array. This group hierarchy turned out to be problematic when
more than 106 datasets were created per group, using version 1.8.4 of the HDF5
library. To overcome this problem, the more complex group hierarchy shown in
Fig. 7b is used instead. In each of the groups 1-components, 2-components, and
3-components, a fixed number of sub-groups is created into which datasets con-

16 B. Andres et al.

taining coordinates lists are distributed. Also for performance reasons, the use
of extendible datasets was dropped, which means that due to the block-wise na-
ture of the algorithm, one complete j-component may be associated with several
datasets representing its fragments from different blocks. The HDF5 file contains
the datasets parts-counters-j for the number of datasets a single j-connected is
split into.

6.1 Alternatives

A more obvious way to store the coordinate lists is to create one binary file for
each list. The use of many files offers the advantage that the coordinate lists
may easily be extended by appending to files, an important asset for block-wise
processing. However, bearing in mind that a segmentation of 2,0003 voxels easily
contains in excess of 106 connected components, the vast amount of files places
a heavy burden on the file system, making simple operations such as copying
the data extremely time consuming. In contrast, HDF5 was designed to organize
large numbers of binary datasets.

A good alternative to HDF5 is a relational database. Experiments with a
PostgreSQL database showed promising performance. This approach was never-
theless abandoned in favor of HDF5 because the necessity to install and configure
a database might deter potential users from trying out the software.

7 Conclusion

In this article, a new algorithm for geometry and topology extraction from large
volume segmentations is proposed. In contrast to previous methods, this algo-
rithms processes volume segmentations in a block-wise fashion. This facilitates
geometry and topology extraction from large volume segmentations with limited
RAM and in parallel. The geometry is stored in HDF5 files that provide constant
time access to the labels of segments, faces between segments, curves between
faces and points between curves at any location as well as to lists of coordinates
that constitute these objects. This representation makes a geometric analysis of
large volume segmentations practical.

References

1. Brice, C.R., Fennema, C.L.: Scene analysis using regions. Artificial Intelligence 1
(1970) 205–226

2. Pavlidis, T.: Structural Pattern Recognition. Volume 1 of Electrophysics. Springer
(1977)

3. Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision,
Graphics, and Image Processing 46 (1989) 141–161

4. Kovalevsky, V.A.: Digital geometry based on the topology of abstract cell com-
plexes. In: Proceedings of the DGCI 1993. (1993) 259–284

5. Khalimsky, E., Kopperman, R., Meyer, P.: Computer graphics and connected
topologies on finite ordered sets. Topology and its Applications 36 (1990) 1–17

Geometry and Topology Extraction from Very Large 3D Segmentations 17

6. Meine, H., Kthe, U.: The GeoMap: A unified representation for topology and
geometry. In Brun, L., Vento, M., eds.: Graph-Based Representations in Pattern
Recognition. LNCS 3434, Springer (2005) 132–141

7. Damiand, G.: Topological model for 3D image representation: Definition and in-
cremental extraction algorithm. Computer Vision and Image Understanding 109
(2008) 260–289

8. Kropatsch, W.G.: Building irregulars pyramids by dual graph contraction. Pro-
ceedings of the IEEE Conference on Vision, Image and Signal Processing 142
(1995) 366–374

9. Braquelaire, J.P., Guitton, P.: 2 1/2d scene update by insertion of contour. Com-
puters and Graphics 15 (1991) 41–48

10. Lienhardt, P.: Subdivisions of n-dimensional spaces and n-dimensional generalized
maps. In: Proceedings of the 5th annual symposium on computational geometry,
New York, NY, USA, ACM (1989) 228–236

11. Lienhardt, P.: Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer Aided Design 23 (1991) 59–82

12. Bertrand, Y., Damiand, G., Fiorio, C.: Topological encoding of 3D segmented
images. In Borgefors, G., Nystrm, I., Sanniti di Baja, G., eds.: Proceedings of the
DGCI 2000. LNCS 1953, Springer (2000) 311–324

13. Damiand, G., Resch, P.: Split and merge algorithms defined on topological maps
for 3D image segmentation. Graphical Models 65 (2003) 149–167

14. Munkres, J.R.: Elements of Algebraic Topology. Perseus Books (1995)

15. Hatcher, A.: Algebraic topology. Cambridge University Press (2002)

16. Klette, R.: Cell complexes through time. In Latecki, L.J., Mount, D.M., Wu, A.Y.,
eds.: Vision Geometry IX. Volume 4117., Society of Photo-Optical Instrumentation
Engineers (SPIE) (2000) 134–145

17. Meine, H., Kthe, U., Stiehl, H.: Fast and accurate interactive image segmentation
in the geomap framework. In Tolxdorff, T., Braun, J., Handels, H., Horsch, A.,
Meinzer, H.P., eds.: Proc. Bildverarbeitung fr die Medizin, Springer (2004) 60–64

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: 21. Data structures for
disjoint sets. In: Introduction to Algorithms. 3rd edn. MIT Press (2009) 498–524

19. Dougherty, M.T., Folk, M.J., Zadok, E., Bernstein, H.J., Bernstein, F.C., Eliceiri,
K.W., Benger, W., Best, C.: Unifying biological image formats with hdf5. Commun.
ACM 52 (2009) 42–47

A Compiling and Installing the Software

The CGP software is provided as C++ source code with a CMake 2.6 build sys-
tem for the command line tools cgpx and cgpr as well as for MATLAB mex files.
CGP depends on the HDF5 Library (version 1.8.4 or higher3 and can option-
ally make use of the Message Passing Interface4 (MPI), and the Visualization
Toolkit5 vtk, . An example segmentation of 50×50×50 voxels is included, along
with the according outputs of cgpx and cgpr. The following paragraphs describe
how CGP can be compiled on a system that has HDF5 installed.

3 http://www.hdfgroup.org/HDF5
4 http://www.mcs.anl.gov/research/projects/mpi
5 http://vtk.org

http://www.hdfgroup.org/HDF5
http://www.mcs.anl.gov/research/projects/mpi
http://vtk.org

18 B. Andres et al.

A.1 Linux/UNIX and GNU C++

Unpack the source archive and create a build directory. Execute CMake in this
directory, providing the path to the source as the last parameter:

unzip cgp.zip

mkdir build-cgp && cd build-cgp

CMake ../cgp

make

If HDF5, MATLAB, or vtk are installed in a non-standard way, CMake will not
find them automatically. In this case, paths to include files and libraries need to
be set manually in the above call, e.g. for HDF5:

CMake -DHDF5_INCLUDE_DIR=$HOME/inc \

-DHDF5_LIBRARY=$HOME/lib/libhdf5.so \

../cgp

A.2 Microsoft Windows and VisualStudio

Unpack the source archive, create a build directory, and use the CMake GUI to
configure. If CMake does not find HDF5, MATLAB, or vtk although they are
installed, set the include paths and library paths for these packages manually.
CMake will generate a VisualStudio solution file. Open this file, build the target
ALL BUILD in release mode, and install the binaries by building the target
INSTALL.

B Using the Software

B.1 From the Command Line

The command line tools cgpx and cgpr compute a representation of the geometry
and topology of a volume segmentation. The segmentation needs to be stored
as a 3-dimensional array of 32-bit unsigned integers in one dataset in the root
group of an HDF5 file. The command line tools are then used as follows:

cgpx 〈input file〉 〈dataset〉 〈b1〉 〈b2〉 〈b3〉 〈output file〉
cgpr 〈input file〉 〈output file〉.
The first tool constructs a labeled topological grid in a block-wise fashion

using the block shape b1 × b2 × b3. The second tool writes a list of topological
coordinates for each geometric object. Suppose, as an example, that a segmen-
tation of 2,0003 voxels is stored as a 3-dimensional array in the dataset seg of
the HDF5 file segmentation.h5. On a desktop computer equipped with 2 GB
of RAM, a block-size of 2003 voxels is reasonable, so a representation of the
geometry and topology of the segmentation can be obtained like this:

cgpx segmentation.h5 seg 200 200 200 grid.h5

cgpr grid.h5 objects.h5

Geometry and Topology Extraction from Very Large 3D Segmentations 19

In order to process several blocks in parallel, invoke the command line tool cgpx
via mpiexec, e.g.

mpiexec -n 2 cgpx segmentation.h5 seg

200 200 200 grid.h5

B.2 From MATLAB

In MATLAB, segmentations are conveniently stored as 3-dimensional arrays
whose entries are 32-bit unsigned integers that correspond to segment labels. In
order to extract the geometry and topology from a segmentation, the array has
to be written to an HDF5 file by means of the function cgp save. The following
call of cgp save writes the array S as the dataset seg into the HDF5 file seg.h5 :

cgp_save(’seg.h5’, ’/seg’, S);

Geometry and topology extraction can now be performed either from the com-
mand line, using the tools cgpx and cgpr as described in Section B.1, or directly
from MATLAB, using the according mex-functions:

cgpx(’seg.h5’, ’seg’, uint32([b1 b2 b3]),

’grid.h5’);

cgpr(’grid.h5’, ’objects.h5’);

where b1× b2× b3 specifies the block shape.
A number of functions named with the prefix cgp can be used to selectively

load data from the geometry file. In the following example, one curve and its
adjacent faces are plotted.

desc = cgp_open(’objects.h5’);

curve_id = 100;

hold on;

tcl = cgp_load_object(desc, 1, curve_id);

cgp_plot_1cells(tcl);

neighbors = desc.neighborhoods{2}(curve_id,:);

for j = 1:length(neighbors)

if neighbors(j) == 0

break;

end

tcl = cgp_load_object(desc,2,neighbors(j));

tri = cgp_triangulate(tcl);

cgp_plot_triangulation(tri, rand(1,3),0.7);

end

hold off;

cgp_close(desc);

A 0-cell and its adjacent curves are plotted as follows:

desc = cgp_open(’objects.h5’);

point_id = 100;

hold on;

tcl = cgp_load_object(desc, 0, point_id);

20 B. Andres et al.

cgp_plot_0cells(tcl);

neighbors = desc.neighborhoods{1}(point_id,:);

for j = 1:length(neighbors)

if neighbors(j) == 0

break;

end

tcl = cgp_load_object(desc,1,neighbors(j));

cgp_plot_1cells(tcl, rand(1,3));

end

hold off;

cgp_close(desc);

B.3 From C++

The C++ API for parallelized geometry and topology extraction is defined in
the header files cgp hdf5.hxx, CgpxMaster.hxx, and CgpxWorker.hxx. The con-
struction of the topological grid is invoked by classes

template<class T, class C> class CgpxMaster;

template<class T, class C> class CgpxWorker;

that implement a master-worker-scheme using MPI. The type T is used for labels
of geometric objects; unsigned integers of at least 32 bits should be used. The
type C is used for coordinates to navigate in arrays. 16-bit integers are sufficient
if the segmentation is smaller than 32769 voxels in each dimension.

The coordinate lists of all geometric objects can be constructed from the
topological grid by means of the function

template<class T, class C>

void geometry3blockwise(

const hid_t&, // input HDF5 file

const hid_t& // output HDF5 file

);

The source files of the command line tools,

src/cmd/cgpx.cxx

src/cmd/cgpr.cxx

show the interested reader how the classes and function are used.

	How to Extract the Geometry and Topology from Very Large 3D Segmentations
	Bjoern Andres, Ullrich Koethe, Thorben Kroeger and Fred A. Hamprecht

