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ABSTRACT
We present an approach that directly uses curvature cues
in a discriminative way to perform object recognition. We
show that integrating curvature information substantially
improves detection results over descriptors that solely rely
upon histograms of orientated gradients (HoG). The pro-
posed approach is generic in that it can be easily integrated
into state-of-the-art object detection systems. Results on two
challenging datasets are presented: ETHZ Shape Dataset
and INRIA horses Dataset, improving state-of the-art results
using HoG by 7.6% and 12.3% in average precision (AP),
respectively. In particular, we achieve higher recall at lower
false positive rates.

1. INTRODUCTION
Visual object detection in cluttered scenes is one of the key
problems of computer vision. Localizing all instances of
an object category is highly challenging due to the large
intra-class variability. Finding a common model for all the
widely diverse class instances thus poses a major difficulty.
To yield robust, powerful object representations, the vision
community has now broadly adopted the theme of gradient
histograms: Almost, all present approaches, ranging from
semi-local descriptors such as SIFT [1] to holistic object
representations [2, 3, 4], are based on histograms of local
gradient orientation. In effect, this results in a straight line
approximation of object boundaries since local regions are
described by a histogram over a discrete set of edge orien-
tations that they contain. In this framework, a smooth curve
cannot be distinguished from one with sharp bends or from a
set of differently oriented lines in arbitrary configuration as
can be seen in Fig. 1. Moreover, natural objects are actually
not existing in a blocks-world domain [5] and have not been
designed with a ruler on a drawing table. Instead they do
exhibit characteristically curved boundaries, e.g., consider
the differences between apples and pears. Thus, we extend
the widely used object representation based on gradient ori-
entation histograms by incorporating a robust description of
curvature. Furthermore, the importance of curvature for vi-
sual search tasks in human perception has been confirmed
in different studies within the perception community. In his
review [6], Wolfe follows the consensus that there appears to
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Fig. 1. (a) Original images, (b) Histograms of oriented gradients, (c)
Histograms of Curvature. A smooth curve cannot be distinguished
from one with corners or from a set of differently oriented lines in
an arbitrary configuration based only on histograms of oriented gra-
dients.
be about eight to ten basic features that play an important role
for visual search tasks: color, orientation, motion, size, cur-
vature, depth, vernier offset, gloss and, perhaps, intersection
and spatial position/phase. Features like color and orienta-
tion, have reached maturity also within the computer vision
community leading to powerful detectors (e.g [2, 7, 8]), while
others like curvature have not received the same level of at-
tention in the current work on object detection.
In this paper, we describe an object detection system that effi-
ciently represents an object shape using both, orientation and
curvature features. Our experiments on the two well known
datasets, ETHZ Shape Dataset and INRIA horses Dataset,
show that our combined descriptor improves performance
significantly over state-of-the-art IKSVM ([7]) detector that
solely uses histograms of oriented gradients (HoG). These
results clearly confirm what our experience tells us: we live
in a curved world and we need curvature to describe objects.

2. PREVIOUS WORK
In the perception community exists an extensive body of work
on the importance of curvature stimuli for visual search tasks
[6]. Moreover, the estimation of curvature in images has been
studied in depth and several methods have been proposed.
They can be classified in three groups according to which
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Fig. 2. Examples of local curvature approximation used by our
descriptor on the ETHZ Shape Dataset.

definition of curvature they are using: tangent direction, os-
culating circle and derivation [9]. Recently, [10] proposed an
efficient, new approach to approximate discrete curvature at a
given point p by means of the accumulation of euclidean dis-
tances from different secant lines to the point p. This method
proved to be more stable compared to the curvature-space
method [11], where a boundary is represented as a paramet-
ric function of arc length, and inflection points are detected as
stable zero-crossing points over convolution of the shape with
Gaussian filters at different σ levels. Many methods using
curvature information for finding interest points (e.g. high-
curvature points) have been proposed in the literature, most
recently in [12] and [13]. However, the direct use of curva-
ture information for building object descriptors has seen com-
parably little progress. The early approach of [11] works for
object recognition under the assumption of closed boundaries.
In medical imaging curvature statistics are utilized to capture
local changes away from the mean curvature on spherical 3D
constructions of tumors to discriminate different types of can-
cer [14]. However, this approach is not suited for general
object recognition, since the approach describes global cur-
vature distribution on spherical objects, but does not capture
the local distribution of curvature, that is needed to describe
the general shape of an arbitrary object.
In contrast to this, modern descriptors like k-AS [15] explic-
itly decide not to take curvature into account and rather con-
sider the segments as completely straight segments so as to
capture only the relevant information of the geometric con-
figuration they form. Moreover, most detection systems like
[2] or more recent extensions of this approach [7, 16, 8] solely
encode orientation of gradients in form of histograms.
Our approach directly encodes curvature and uses this shape
cue together with orientation of gradients to perform object
detection. The used curvature representation is able to capture
the shape information of complex objects, by directly using
curvature to build up local and global histograms of curva-
ture, without making any assumptions about their shape. This
work shows that (i) curvature information can be integrated
effortlessly into all state-of-th-art object representations that
are based on gradient histograms. Moreover, (ii) the repre-
sentation has low computational cost and, most importantly,
(iii) it provides complementary object information that signif-
icantly enriches the widely used orientation histograms.

3. ROBUST REPRESENTATION OF CURVATURE
In this section we describe a method to perform object detec-
tion based on curvature information from shapes and use this
information directly as a discriminative feature together with

(a) (b) (c) (d)

Fig. 3. Detection results using standard HoG (implementation of
[7]) (first two columns) and results using HoGC (last two columns).
First detection is shown in red and false positives in dashed black.
These examples illustrate a general finding in this database that com-
pared to the widely used HoG, our proposed representation yields a
better localization of the maxima compared to ground-truth and gen-
eration of less false-positives.

histograms of oriented gradients (HoG) [2]. We abbreviate
the joint descriptor with HoGC.
A very fast and stable way to approximate the curvature for
planar boundaries is to use the chord-to-point distance accu-
mulation (or distance accumulation) [10]. LetB be a set ofN
consecutive boundary points, B := {p0, p1, p2, · · · , pN−1}.
The set of points is obtained by following the edge contours
of objects in clockwise direction. Each pair of points pi and
pi+l define a line Li, where i + l is taken modulo N . Li de-
pends on the parameter l whose adjustment is explained later
in this section. For each point pk the perpendicular distance
Dik from the line Li is computed using the euclidean dis-
tance. The distance accumulation for a point pk and a chord
length l is the sum

hl(k) =

k∑
i=k−l

Dik. (1)

[10] showed that equation (1) is more stable, regardless of
different values of l, than in Gaussian smoothing curvature
calculation methods, which give dislocation, broadening and
flattening of the features ([19]). Furthermore, it was shown
that the chord-to-point distance accumulation asymptotically
approximates (up to a constant) the true curvature of the
boundary.
Given an image, we first extract edges using the Berkeley
edge detector [20]. Connected components on the binarized
edge map yield a set of segments Bj . On these segments we
calculate the distance accumulation given in equation (1). To
be robust against the choice of l we choose a bank of values
{l1, · · · , ln} ranging between 5 and 40 pixels and take for
every point pi on segment Bj the median

cj(pi) := median
{
hls(i)

l3s

∣∣∣∣ s = 1, · · · ,n
}

(2)

as boundary feature. In Fig. 2 we show some examples of the
curvature on natural images.
The idea behind the HoG descriptor of Dalal and Triggs [2]
is that local statistics about intensity and orientation of gradi-
ents can encode the appearance and shape of objects. Curva-
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Average Precision Recall @ 0.3/0.4/(1) FPPI
Curv. HoG HoGC Curv. HoG IKSVM [7] Voting [17] DSM [18] HoGC

ETHZ
Shape

Applelogos 72.3 86.7 92.5 86.3/91.2 90.0/90.0 90.0/90.0 90.6±6.2/- 95.0/95.0 100/100
Bottles 72.0 79.0 88.4 92.8/96.4 96.3/96.3 96.4/96.4 94.8±3.6/- 100/100 96.4/96.4
Giraffes 31.0 56.0 60.1 43.0/43.0 72.3/78.7 79.1/83.3 79.8±1.8/- 87.2/89.6 74.4/85.1
Mugs 34.1 71.2 82.2 54.8/54.8 87.1/87.1 83.9/83.9 83.2±5.5/- 93.6/93.6 90.3/93.5
Swans 50.2 59.4 66.9 76.4/76.4 82.3/82.3 88.2/88.2 86.8±8.9/- 100/100 94.1/94.1
Average 52.1 70.4 78.0 70.6/72.3 85.6/86.8 87.5/88.4 87.1±2.8/- 95.2/95.6 91.0/93.8

INRIA horses 52.2 71.3 83.6 53.2/56.5/72.8 81.5/82.6/91.3 -/-/86.0 -/-/- -/-/- 90.2/90.2/94.5
Table 1. We compare the performance of the HoGC against the state-of-the-art detector IKSVM [7] for the ETHZ Shape Dataset and the
INRIA horses dataset. We follow the standard setup of HoG and search over location and scale, but not over aspect ratios. Thus explains the
performance gap between our HoG and IKSVM [7] on ETHZ. [18] deviate from HoG by adding a computationally costly part-based model .

ture information of shapes can be encoded in a similar way.
We divide the image into connected cells and for each cell
we build a 1D histogram of curvature information. For this,
we discretized the values cj(pi) from Eq.(2). Each pixel then
casts a vote proportional to the gradient magnitude. Follow-
ing a “soft binning” approach, it also contributes to the his-
tograms in the four cells around it using bilinear interpolation.
In practice, to calculate both, the histograms of oriented gra-
dients and histograms of curvature, the image is divided into
grids of increasing resolutions for 4 levels, and histograms
from each level are weighted according to w = 2l−1, where
l = 1 is the coarsest scale and the histograms are concate-
nated together to form a feature vector that encodes local and
global curvature statistics of the image. The range of values
from Eq.(2) is subdivided into 10 equally sized bins.
Learning the model
Because of the histogram-nature of the feature vectors, we use
a SVM with histogram intersection kernel ([4]) as classifier.
[21] proposed an approximation method for Intersection Ker-
nel SVM, which essentially reduces the runtime of the clas-
sifier to that of a linear SVM. We train our model with an
initial, randomly picked subset of negative examples and then
collect negative examples that are incorrectly classified by the
initial model. A new model is trained using the new negative
examples and the support vectors from the old model. We re-
peat this procedure three times. To detect an object instance
the classifier is run in sliding window mode over different lo-
cation and scale. Note, that using this setting, curvature has
not to be scale invariant to be used as a descriptor since the
curvature computation is performed for different sizes of the
sliding window, i.e. curvature is computed on different scales
during detection.

4. EXPERIMENTAL RESULTS
Objective of our experiments is to show that the direct use
of curvature as a feature yields orthogonal shape informa-
tion that helps to improve object detection results. Quanti-
tatively this means that the use of our combined object de-
scriptor should yield a higher average precision and a lower
false positive rate for the same recall over the HoG descriptor
using the same implementation.
We report our results on two challenging datasets: the ETHZ
Shape Dataset and INRIA horses. The ETHZ Shape Dataset
contains 255 images belonging to five different classes. We

follow the standard experimental protocol for creating train-
ing and test sets. The INRIA horses dataset consists of 170
images containing one or more side-viewed horses and 170
images without horses. 50 horse images and 50 negative im-
ages are used for training and the remaining 120 horse im-
ages plus 120 negative images are used for testing. In our
experiments we are following the standard PASCAL setting
for counting true positives and false positives among the pre-
dicted bounding boxes. In table 1 we compare the perfor-
mance of our approach with several state-of-the-art detector
systems [7, 17, 18] at 0.3, 0.4 and (for INRIA horses) 1 FPPI.
Our HoG baseline implementation uses HoG and IKSVM,
like the currently best reported results of a HoG based de-
tection system on ETHZ [7]. Note, that [7] searched over
different aspect ratios for some categories in the ETHZ Shape
Dataset (e.g. Giraffes and Mugs). This explains the differ-
ences in the baseline results (HoG vs. IKSVM). Our final
detector HoGC clearly improves performance over the base-
line HoG detection system on both datasets. Furthermore,
our approach outperforms the voting approach suggested in
[17]. In addition we compared our detection system with the
descriptive shape model (DSM) suggested in [18]. This ap-
proach performs slightly better than our HoGC descriptor on
the ETHZ Shape dataset since it adds also a deformable part
model to the holistic approach. As reported in [22] the aver-
age performance improves about 8% on PASCAL VOC 2007
when adding part-based HoG descriptors. However, we de-
cided, for a fair comparison with HoG implementations, to
use the standard setting without parts. Furthermore, detection
takes several minutes per image using the descriptive shape
model, whereas using HoGC is one order of magnitude faster.
Figures 4 and 5 compare our approach with the state-of-the-
art HoG detector. We remark that [7] did not include FPPI or
precision-recall curves for his IKSVM + HoG detector for the
ETHZ Shape Dataset. By incorporating curvature informa-
tion, our combined HoGC representation outperforms HoG
results in all categories of the ETHZ Shape Dataset and on
INRIA horses. We achieve an average gain of 7.6% in AP
on the ETHZ Shape Dataset and of 12.3% on INRIA horses.
For the ETHZ Shape Dataset we get in average 5.4% higher
detection rate at 0.3 FPPI and at 0.4 FPPI an improvement of
7%. On INRIA horses we improved the recall by 8.7% at 0.3
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Fig. 4. Precision Recall Curves for ETHZ Shape Dataset and IN-
RIA horses comparing curvature only (red), HoG (green) and HoGC
(blue).

Fig. 5. Detection performance against FPPI for the ETHZ Shape
Dataset and INRIA horses comparing curvature only (red), HoG
(green) and HoGC (blue).

FPPI, 7.6% at 0.4 FPPI and 3.2% at 1 FPPI. For the sake of
completeness we also included detection results of our system
solely using curvature information. However, the suggested
curvature feature was never intended to be used in solitude
and for that reason does not contain redundant information
to the HoG descriptor, like the orientation of curvature. That
explains the drop in performance when using curvature with-
out HoG while the combination of both significantly improves
state-of-the-art HoG object detection methods. These results
approve our initial hypothesis that curvature is a complimen-
tary feature to HoG.

5. CONCLUSION
The main contribution of this work is to provide quantita-
tive evidence that curvature information of objects can be dis-
criminatively used in a robust and reliably manner for object
recognition. Our results show that the use of curvature infor-
mation yields orthogonal information to the state-of-the-art
theme of histograms of oriented gradients for visual search
tasks. Combining both leads to better accuracy and perfor-
mance on standard datasets and significantly improves state-
of-the-art detection system solely based on HoG. The pro-
posed curvature-based object representation is generic, effi-
cient to compute, and it can be effortlessly integrated into
all current object models that utilize histograms of gradients.
Thus a wide applicability is automatically granted.
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