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Abstract

The aim of this paper is to compare four different methods for binary classification with
an underlying Gaussian process with respect to theoretical consistency and practical per-
formance. Two of the inference schemes, namely classical indicator kriging and simplicial
indicator kriging, are analytically tractable and fast. However, these methods rely on sim-
plifying assumptions which are inappropriate for categorical class labels. A consistent and
previously described model extension involves a doubly stochastic process. There, the un-
known posterior class probability f(-) is considered a realization of a spatially correlated
Gaussian process that has been squashed to the unit interval, and a label at position x
is considered an independent Bernoulli realization with success parameter f(x). Unfortu-
nately, inference for this model is not known to be analytically tractable. In this paper, we
propose two new computational schemes for the inference in this doubly stochastic model,
namely the “Aitchison Maximum Posterior” and the “Doubly Stochastic Gaussian Quadra-
ture”. Both methods are analytical up to a final step where optimization or integration
must be carried out numerically. For the comparison of practical performance, the methods
are applied to storm forecasts for the Spanish coast based on wave heights in the Mediter-
ranean Sea. While the error rate of the doubly stochastic models is slightly lower, their
computational cost is much higher.



1 Introduction

Environmental issues sometimes require binary classification: for example, the question whether
to raise a dam (Hsu et al., 2010) or to issue a dengue fever warning (Yu et al., 2010) is a yes-
or-no decision. Using supervised learning, such questions can be approached using historical
precedents collected in a training set of exemplars with categorical labels. When it is fair to
assume a relatively simple dependence of the response on the features, methods such as linear
discriminant analysis or logistic regression are popular. In more complex settings, more flexible
nonparametric methods are required. A successful nonparametric method originally proposed for
regression is simple kriging (also called Gaussian process regression) which has found widespread
use in geostatistics (Chiles and Delfiner, 1999), machine learning (Williams and Rasmussen, 1996)
and signal processing (Wiener, 1949). The popularity of the method is due to its flexibility,
mathematical tractability, its natural Bayesian interpretation and success in a wide range of
applications (Gibbs, 1997; Rasmussen, 1996; Lim et al., 2002). In simple kriging, the outputs
observed at points in feature space are assumed to arise from the realization of a Gaussian process
with or without Gaussian noise; an approximation or interpolation (given the observed data and
assumptions on the mean and covariance structure of the Gaussian process) is then obtained
from the best linear unbiased estimator.

Unfortunately, inference is more complicated in classification, i.e. when the label at each
point in feature space comes from a finite set. Whereas a Gaussian prior can be combined
with a Gaussian likelihood in the case of regression (resulting in a simple computational scheme
revolving around a linear system of equations), a Gaussian likelihood is obviously inappropriate
for discrete class labels (Rasmussen and Williams, 2006).

In this paper, we compare four different approximation schemes for binary Gaussian process
classification: classical indicator kriging (CIK; Journel, 1983), simplicial indicator kriging (SIK;
Tolosana-Delgado et al., 2008) and the doubly stochastic Gaussian process, in its maximum
posterior (AMP) and predictive quadrature (DSGQ) flavors. The last two are new computational
schemes for a model that has previously been studied in environmental applications (Diggle
et al., 1998) and in machine learning (Williams and Barber, 1998). This model is motivated and
presented in the following paragraphs.

Let D = {(x4,9i),i = 1,...,n} be the training set of a supervised learning problem, where
y; € {0,1} denotes the binary class label of a feature vector x; € R™. Let y € {0,1}" and
X € R™ ™ be the vector of labels and matrix of feature vectors, respectively. The goal is to
predict the posterior class probability p(y. = 1|X,y,x,) of the unknown label y. at a point x,
given the training set. In geostatistics, the feature vectors are typically the spatial coordinates
where the labels were observed, i.e. m = 2,3 or 4 (when depth, time, an external drift or a
combination thereof is taken into consideration), and y; = I(x;) is the indicator of the label of
interest at location x;. For instance, I(-) could indicate that a particular pollutant is above or
below a given legal threshold, in a typical success/failure Bernoulli framework.

After Journel (1983), the classical approach is to compute the posterior probabilities by
fitting the binary labels directly, without regard to the fact that the y; cannot be normally
distributed. This approximation is called (classical) indicator kriging and has a long record of
successful applications. However, there are two main problems with CIK: First, it quite often
delivers probabilities that are smaller than 0 or larger than 1, and second, the order relation of
probabilities is violated. The latter means, as explained in more detail in Section 2.2, that the
difference on the real line is not adequate to express distances between probabilities.

These drawbacks are tackled by SIK (Tolosana-Delgado et al., 2008). There,

1. the probability p(y = 1|x) is considered an unobservable realization f(x) of a Gaussian
process “squashed” to the open unit interval ]0, 1] as defined in the next section.



But, as will be discussed in Section 2.4, SIK still makes simplifying assumptions that may not
be satisfactory in general. In particular, f; := f(x;) can only be either p or 1 — p, p €]0,0.5],
depending on which of the two classes is observed at the training location x;, regardless of any
other observations in the vicinity. This is contrary to intuition. For example, consider one point
in feature space and its immediate neighbors, and two possible scenarios: first, that a “success”
has been observed at all these points; and secondly, that “success” has been observed only at
the central point and “failure” at all others. According to SIK, the posterior probability at the
central point would be the same in both scenarios. The model must hence be extended such that
we fully distinguish between an observed label and its estimated probability:

2. the observed labels y; are conditionally independent realizations of Bernoulli distributions
with parameters f; = p(y = 1|x;), i.e. y|fi ~ Bern(f;).

A graphical representation of this doubly (1. and 2.) stochastic model is shown in Fig. 1.

In summary, CIK and SIK are based on model approximations that may be inconsistent with
some or all characteristics of a classification setting, but that are linear in output measurements
and thus analytically tractable and fast. In contrast, the doubly stochastic model is consistent,
but predictive inference needs to be approximated.

The contribution of this paper is twofold. First, we compare these two antithetic approaches
with respect to theoretical consistency and practical performance. Second, for this comparison,
two new approximation schemes for the doubly stochastic model are presented, the Aitchison
maximum posterior (AMP) and the doubly stochastic Gaussian quadrature (DSGQ), targeting at
two slightly different concepts: the most likely value of the probability of success of the Bernoulli
process at an unsampled location (AMP), and the numerical integration (or “quadrature”) of
the predictive probability of obtaining a success (DSGQ). Both methods are analytical up to a
final step where optimization or integration must be performed numerically. This extends the
insight into the doubly stochastic model and may form the basis for future research.

Many other approximation schemes for the doubly stochastic model have been proposed be-
fore, among them Laplace’s method (Williams and Barber, 1998), the integrated nested Laplace
approximation (Rue et al., 2009), Markov chain Monte Carlo (MCMC) approximations (Neal,
1999; Diggle et al., 1998), expectation propagation (Minka, 2001), the cavity TAP approximation
(Opper and Winther, 2000) and a variational approximation (Gibbs and MacKay, 2000). An
excellent review is presented by Kuss and Rasmussen (2005). In the field of geostatistics, mod-
ifications of CIK are also abundant (Journel and Posa, 1990; Carr and Mao, 1993; Suro-Perez
and Journel, 1991; Pardo-Igizquiza and Dowd, 2005), though most of them target the estima-
tion of the conditional expectation of an underlying continuous characteristic: the exception
may be transition probabilities (Carle and Fogg, 1996) and discrete variable maximum entropy
treatments (Christakos, 1990; Bogaert, 2002), as both intrinsically model the probabilities of
observing a categorical variable in a given “place”. Carle and Fogg (1996) model the conditional
probabilities to pass from a category to another at a given lag distance and use this information to
build the (n+ 1)-dimensional contingency table of n observed and one unobserved label. Bogaert
(2002) fits a log-linear model to this table which is hence based on a multi-Poisson distribution
instead of relying on an unobservable trans-Gaussian distribution.

The next section reviews the most typically used method in the geostatistical community,
CIK, as well as an alternative based on the Aitchison geometry of the unit interval, SIK. The
underlying geometry is also presented in Section 2. Section 3 introduces two distributions on the
unit interval, compatible with this geometry, that play the role of prior and posterior distributions
of the vector of probabilities of interest. Section 4 then uses these distributions to derive the
properties of a doubly stochastic Gaussian process for probabilities. Two estimators for the
unknown probabilities that are based on these properties, AMP and DSGQ), are presented in the



Figure 1: Graphical representation of the doubly stochastic model. Observed variables are
shaded squares, circles represent unknowns. The thick lines indicate a fully connected graph.
The first stochastic layer is given by the posterior class probabilities f;,i = 1,...,n and f, that
are considered function values of a squashed Gaussian process, the second layer is given by the
observed labels that are Bernoulli distributed with parameter f;.

same section.

An experimental comparison of all methods is presented in Section 5. To that end, a given
forecast of wave heights in the Mediterranean Sea is classified in two conditions: Fastwind-storm
(called Llevant in Catalan) and any other situation (either calm or any other of the dominant
windstorms of this region) are the two possible labels. In this setting, the feature vector x € R™
consists of the values at m predefined pixels of a forecast map.

2 Classical and simplicial indicator kriging

In this section, we briefly review two approximation methods for Gaussian process classification
that do not consider a Bernoulli distribution for the observed labels, namely classical and simpli-
cial indicator kriging. We first describe simple kriging which is then applied to predict posterior
class probabilities in a classification setting.

2.1 Simple kriging

Let {(x1, f1),--.,(Xn, fn)} be n pairs of sampling points x; (feature vectors), and outputs f; =
f(x:),i=1,...,n (labels). In case of simple kriging it is assumed that f(x) is a realization of a
Gaussian process with known mean and covariance structure C(x;,x;) = Cov[f(x;), f(x,)], i.e.
the joint distribution of any subset of observed or unobserved points is a multivariate normal.
Assuming a zero mean, the estimate for the function value at an arbitrary point x, in feature
space is of the form (see e.g. Chiles and Delfiner, 1999; Rasmussen and Williams, 2006)

n

Fo= Fx) = 3 ) f(x,) (1)

i=1

i.e. the simple kriging estimator is a linear combination of the function values at the sampling

points. The coefficients \;,7 = 1,...,n, depend on the position of prediction and are obtained
maximizing the well-known normal conditional density (see e.g. Rasmussen and Williams, 2006)
2
1 1(fe —oTS7'f
p(flf, X, x,) = exp —5%
\/271' (02— oTx o) o; -0 ¥ o



where the covariances ¥;; = C(x;,%;), [o]; = 0; = C(x;,%x4) and o, = C(x.,x,). This gives
kriging weight

Xi(x.) = [E71o);
The matrix X is invertible if the covariance function is strictly positive definite and if all the
sampling points are distinct. Note that the coefficients A(x,) do not sum up to one in general, and
can even be negative. For further details on simple kriging, other kriging “flavors” or examples of
covariance functions, see e.g. (Chiles and Delfiner, 1999) and (Rasmussen and Williams, 2006).

2.2 C(Classical indicator kriging

The easiest possibility to predict posterior class probabilities at a point x, in feature space is
classical indicator kriging (CIK, Journel, 1983). There, the binary class labels y; € {0,1} are
treated as function values, i.e. f; := y;,¢ = 1,...,n, and the probability of success is directly
given by the simple kriging estimate f.. According to Chiles and Delfiner (1999), simple kriging
should be theoretically preferred over ordinary kriging when working with indicators, because
here knowledge of the variogram sill (equivalent to the variance of a Bernoulli variable, var[y] =
p(1 — p)) implies knowledge of the mean of the indicator random function (equivalent to the
mean of the same variable, E[y] = p).

However, CIK has two major drawbacks. First, although the data y; € {0,1}, it is not guar-
anteed that the interpolation f* €]0, 1], which is necessary in order to interpret it as a probability.
Second, the order relation of probabilities is violated, i.e. distances between probabilities are not
represented accurately by their difference on the real line. Consider the following example of two
pairs of probabilities: (0.001,0.01) and (0.501,0.51). In the first case, the second probability is
ten times higher, whereas in the second case, the probabilities are almost equal; but the actual
distances on the real line are 0.009 in both cases. This suggests that a change of geometry may
be adequate.

2.3 Geometry in the one-dimensional simplex S?

Consider the line segment ](0,1),(1,0)[C R?, which is equal to the one-dimensional positive
simplex S?. The simplex S? is useful to represent the probability of a certain event together
with its complementary probability because the components of an element of S? always add up
to 1. Moreover, it has a Euclidean vector space structure, called Aitchison Geometry, if it is
endowed with the following three operations (Pawlowsky-Glahn and Egozcue, 2001; Billheimer
et al., 2001). There, C(a) := (a1/(a1 + a2),a2/(a1 + az2)) divides each component of a vector by
the sum of its components to ensure the closure under addition and scalar multiplication.

(i) Vector addition: a & b := C(a1by,asbs), representing addition of information following
Bayes’ Theorem

(ii) Scalar multiplication: A ® a := C(a?,a3), A € R
(ili) Scalar product: {(a,b) := 1/cgIn(a;/az)In(b1/bs)

The constant c2 is a scaling parameter. As explained in detail in Section 3, it is intimately related
to the variance of the normal distribution on the hypercube. It follows immediately from the
above definitions that the additive neutral element of S§? is C(1,1) = (1/2,1/2) and the inverse
element of a = (a1, az) is (a2,a1). Moreover, we automatically obtain an algebraic definition of
the distance in S?:

den=loon = vasrasn= L l(w(2) m(2))

a9 b2



where subtraction is defined by addition with the inverse element. The norm of a vector (a1, as)
in this geometry is ||a|| = v/(a, a).

As in every Euclidean vector space we can choose an orthonormal basis — which, in this case,
consists of one vector only: e, = C(exp(cp),1). In the coordinate representation, each element
a € S? is uniquely represented with respect to the chosen basis:

az(a,eb>:11n< @ ) )

Co 1—aq

Conversely, the element a can be computed from its coordinate representation by scalar multi-
plication: @ = a ® e, = C(exp(coa), 1) = (a1, 1 — a1). The mapping from S? to R assigning a
coordinate to each point is an isomorphism. Furthermore, all points in S? are uniquely deter-
mined by their first component, so we can identify a point a; on the real interval |0, 1] with the
point (aj,az) = (a1,1 —a;) on S? and hence the interval |0, 1] with the simplex S?. This leads
to an isomorphism from the interval ]0,1[ to R. In the following, we use Latin letters for the
elements of S? and ]0, 1] and the corresponding Greek letters for the respective coordinates in R.

2.4 Simplicial indicator kriging

The main drawbacks of CIK, stated in Section 2.2, are tackled by SIK (Tolosana-Delgado et al.,
2008). This method is based on the realization that there is no need to establish an identity
between a probability f €]0, 1] and its representation ¢ on the real line. They are better connected
by the logit transformation: ;

— 4

Note the correspondence between Eqgs. (3) and (4). The constant 1/¢q is omitted here because
it cancels out in the final estimate f, of SIK.
The simplicial kriging estimate is obtained in four steps:

¢ =1In

1. estimate f; = p(y = 1|x;), the probabilities of success at each sample (of the training set);
many estimation methods are possible (Tolosana-Delgado et al., 2008), e.g. a Bayesian
estimate combining a Jeffreys’ prior with the observed class likelihood, which would yield
fi = 3/4 if a success is observed at x;, and f,» = 1/4 otherwise;

2. get the logistic transformation of these estimates; being a log-ratio, this implies that ex-
treme values of p =1 or p = 0 should be avoided in the preceding step;

3. apply kriging the logistic-transformed estimates b; = In( f; /1— fl) to obtain an interpolation
¢, at an unclassified sample x,;

4. undo the logistic transform, to obtain an interpolated probability f, = exp(¢)/(1 +

exp(Py))-

The rationale behind SIK is to build the linear combination in Eq. (1) using the operations on the
simplex explained in the preceding Section 2.3. Thus, SIK is an interpolation or approximation
technique for probabilities within the framework of squashed Gaussian processes, as will be
described next.

Tolosana-Delgado et al. (2008) also show that, if the estimates f; are just 1—p or p, p €]0,0.5][,
wherever a success, respectively a failure is observed, results get actually very simple. In this



simplified situation, the CIK and SIK variograms are intimately related, and the estimate from
the latter can be derived from that of the former, denoted here as f&1%, by

fo = logit™" <2 In 1%9 C(fETE - 0.5)) : (5)

Though Eq. (5) is an interesting way of “recycling” old, inconsistent CIK results into valid prob-
abilities, estimating f; by two values only (namely p and 1 —p) may still be a gross simplification.

But the main problem of SIK is its inability to “transfer information” between labeled points
in the first step, as detailed in the thought experiment specified in the introduction. SIK is
unable to deliver this result, because f(x;) is estimated separately at each point x;, even in the
presence of a nugget effect.

3 Distribution models for probabilities

In Section 3.1, we take the Euclidean vector space structure on the interval |0, 1] given in Sec-
tion 2.3, and define the normal distribution on the unit hypercube ]0, 1[™. This distribution serves
as prior distribution for three of the methods for Gaussian process classification considered in this
paper, namely SIK (presented in the previous section) and the two new methods (introduced in
Section 4). The posterior obtained after updating this prior with a binomial likelihood is derived
in Section 3.2.

3.1 The normal distribution on the unit hypercube

The transformation induced by the isomorphism presented in Section 2.3 maps the conventional
normal distribution defined on the real line to the interval 0, 1[:

Definition 1 A random variable Z is said to be normally distributed on 10,1[, denoted Z ~
Mo,1((i, 02), if its coordinate representation (3) is normally distributed on R with mean p and
variance o*. (Pawlowsky-Glahn, 2003)

It follows that the random variable Z has Lebesgue density

el o) = — e (— (u (%) _M>2/(202)> (6)

_ 2(11_ 5 \/ﬁexp ( <1n <1i2) - cou)z/ (2cga2)> z€l0,1,peR o eRT (7)

where the first factor in (6) comes from measure theory and compensates for the unfamiliar
definition (2) of the distance in S. Fig. 2 shows the probability density functions for ¢y = 1 and
varying values of p and o2.

The distribution of the latent variable at a single position in feature space lives on the interval
10, 1[. The joint distribution of several variables — which will typically be dependent — then lives
on the Cartesian product of these line segments, i.e. on the hypercube ]0, 1[™.

Definition 2 A random wvector Z is normally distributed on ]0,1[", denoted Z ~ ./\/ig 1[(u, 3),

if its coordinate representation (3) is multivariate normally distributed on R™ with mean p and
covariance matriz .



p=0 p=l

2.

Figure 2: The normal distribution in S? for different parameter values. For = 0 (left panel), we
obtain a symmetric density function around 0.5 (0.5 €]0, 1] has coordinate representation 0 € R).
The bigger the variance o2 the more probability mass is concentrated near the boundaries of the
interval. In contrast to the usual normal distribution, the density function is apparently not
symmetric for p # 0 (right panel). The expectation value of this distribution converges to 1 for
w— +00, and to 0 for y — —oo.

If we squash a Gaussian process to the unit interval according to the inverse of Eq. (3), its
finite-dimensional distributions are normally distributed in the unit hypercube.

Remark 3 Note that 02 and cq are intimately related and cy actually becomes a scaling param-
eter, or as was already mentioned, the units of the problem. This can be easily inferred from its
behavior in term (7) for the one-dimensional distribution and is particularly evident for p = 0.
In this case, o2 and co become equivalent parameters. These considerations carry over to the
multivariate case in Definition 2, where the multiplication of ¢y by a constant can be compensated
by adapting X accordingly.

Finally, note that the multivariate normal in the hypercube is not the only possible choice to
model the prior distribution of a probability random field. Another approach not pursued here
is using copulas instead (e.g., Kazianka and Pilz, 2010).

3.2 The Aitchison distribution

3.2.1 The one-dimensional case

The “Aitchison (1982) distribution” on the unit interval A(0,) is defined as an exponential
family with log-likelihood, cumulant function and density given by

Lz(2|0,) = 611n(z) +60:In(1 —2) + ¢ In(z/(1 — 2))
1
K0.0) = [ exp(-La(:l6.0) dz
lan(z|07w) = K(oﬂp) +LZ(Z|07’(/J) (8)

with location vector @ = [y, 65] and precision t. Eq. (8) integrates to a finite quantity (and is
thus a proper density) when

e cither #; + 605 > 0 and ¥ < 0,
e or both 61,05 > 0 and ¢ < 0.



This family generalizes both the logistic-normal model (obtained with the first condition when
01 + 62 = 0) and the Beta density (obtained in the second condition when 1 = 0), at the cost of
only one parameter more than those needed for the logistic-normal case.

The Aitchison distribution of the first kind naturally occurs in a Bayesian framework when
a logistic-normal prior N 1j(¢,0?) is chosen for the probability parameter p of a Binomial
distribution Bi(p, N). If our observation was y; successes and yo = N — y; failures, the posterior
for p has an Aitchison distribution with parameters ; = y; + /02, 03 = yo — /0%, and precision
™1 = =202, unmodified by the updating.

3.2.2 The n-dimensional case

Extending the Aitchison distribution to the unit hypercube ]0, 1[™ requires another set of indices
i,7=1,...,n, giving a joint log-likelihood of

n

Lz(Z‘O, \I’) = Z 91 IH(ZZ) + 0% ln(l - Zi) + Zl/ll] In ﬁ In 1— 2.
i=1 j=1 3 J

~j

9)

where 1;; = 1;; is a measure of mutual influence between the “edges” ¢ and j of the hypercube.
The validity conditions are a generalization of the one-dimensional case: the matrix ¥ = [¢);;]
must be negative (semi-) definite, and regarding 0, either % + 03 > 0 or else 0%, 605 > 0 for each
i. With respect to (;, the logistic coordinate of z; (Eq. (3)), this likelihood can be expressed as

n

n ; eCoGi ; 1
= Z 0icoC; — (05 4 05) In (1 + e + Z%‘jCiCj
i=1 j=1
The n-tuple Aitchison distribution on the unit hypercube ]0, 1[™ occurs as the posterior distri-

bution of the probability field of a Gaussian process classification problem, as the next section
shows.

4 Doubly stochastic Gaussian process

We introduce the doubly stochastic model in Section 4.1. Both methods presented in the subse-
quent sections, namely the AMP and the DSGQ), are based on these model assumptions and are
different estimators for the unknown posterior class probability p(y. = 1|X,y, X« ).

4.1 Posing the model

Let us from now on use the coordinate representation ¢; € R for f; €]0,1[ as introduced in

Section 2.3,
1 fi eCodi
;= —1 & fi=—+ 10
b= 0g<1_fi> fi = T eeon (10)

In the real coordinate space we can perform the usual Bayesian inference for regression without
any restrictions, warranted by the principle of working on coordinates (Pawlowsky-Glahn, 2003).

Recall that our goal is to predict the probability distribution of the unknown label y, at a
point x,, given the training set D. In Section 1, we have introduced the two following model
assumptions:




1. the probability p(y = 1|x) is considered an unobservable realization f(x) of a Gaussian
process squashed to the unit interval,

2. the observed labels y; are independent realizations of Bernoulli distributions with parame-
ters f; = p(y = 1x:), L. ylfi ~ Bern(f,).
This two-layer model can be successfully tackled in a Bayesian framework.
The second assumption implies that the likelihood of a sampled label vector y is

n

p(yIf) = []pw:lf) = [[ p(wil £:) = nyl )l
i=1 i=1

where f = (f1,..., fn)T. Taking logs, we obtain

(p(v19) Zyzln fi)+ (1 =y In(1 — f)

or in coordinates

eCodi 1
( (y|f Zyl In —— & 1+ eC0¢z T (1 B yl) In 1+ eCoPi

1 n .
= Zcodhyz (yi+1—-yi)ln T et > codiyi — In(1+ %)
=1
— coy ~ Y1+ ¢) = cosTy — g(9) (1)

i=1

where g(¢p) = D1 In(1 + e®0®).

According to our first prior assumption, we may consider the unobserved success probability
p(y = 1]x) to follow normal distribution on the hypercube, as given by Definition 2. This
assumption implies that we must know its mean vector and covariance matrix. If we have no
information favoring one predicted class over the other, the mean may be considered zero in
coordinate space, corresponding to a probability of 1/2 for each of the possible labels (Fig. 2),
such that the prior distribution can be written

p(E, £X,x.) = Mgapees (0,C), c:< (E(X) a'(X,QX*)). (12)

o(X,x,)7 o2

The several covariances 3(X) among sampled locations and o (X, x.) between a sampled location
and the unsampled one, are derived from a second-order stationary covariance function, giving
smoothness to the hidden random function in feature space. Note that, as a result of the
derivations later on, the covariance function enters the final prediction at x. only through the
prior. Hence, as the multiplication of ¢y by a constant can be compensated by adapting C
according to Remark 3, ¢y can be set to 1 in the prior and thus later on in Egs. (13) and (22).

4.2 Aitchison maximum posterior (AMP)
4.2.1 The posterior distribution

Let P be proportional to the precision matrix of the prior distribution in Eq. (12), i.e

_ 1 -1 _ \II(X) ¢(X,X*)
P=5¢ = (wx,x*)T v ) 1

10



where, for future reference,

w(Xax*) = E(X)_la(x?x*) ' wz (14)
S(X) =~ 3 (¥(X) — 0 (X, x (X, x)") (15)

(see e.g. Petersen and Pedersen, 2008, page 45). This allows to express the log-density as

In(p(f, f.|X. x.)) = ko + ¢" (X)¢ + 26" (X, %) b + 9707 (16)

Taking logs, Bayes theorem becomes a sum of log-prior and log-likelihood, plus an irrelevant
closing constant,

ln(p(f*7 f‘Xa Yy, X*)) = ll’l(p(ﬂ f*|X7X*)) + ln(p(Y‘fa f*a X7 ZL'*)) + K1
= In(p(f, f+1X,%.)) + In(p(y[f)) + r1
= ¢" ¥(X)p + 20" (X, x.)s + VL0 + o’y —g(p) + 2 (17)

Note that in this expression, the unknown ¢, at the unsampled location is involved only in
quadratic terms, like in Eq. (16). On the contrary, ¢ associated to sampled locations has the
quadratic terms plus terms coming from the binomial likelihood of Eq. (11). Thus, the conditional
log-likelihoods (17) are either a logistic-normal one for unsampled locations, or an Aitchison one
like Eq. (9) for sampled locations.

4.2.2 The maximum posterior estimator

One can obtain a joint estimation for (f, f.) taking that value that maximizes the posterior
density of Eq. (17), i.e. the most likely a posteriori value. To maximize this joint log-likelihood
we can take derivatives. Equating these derivatives to zero

_ dln(p(f*, f|X7 Yy, X*))

0 - = (X, %) 6+ 2026, (13)
0= TR 59 (X) + 20X, %000 +coly — D (19)

one obtains a non-linear system of equations. From its solution the value ¢, is extracted, and
then plugged into the coordinate-probability inverse relationship of Eq. (10), to obtain the sought
maximum posterior probability estimate. Note that in Eq. (19) we used

dg(¢) _ d cobyy _ o €0
do; _d¢izln(1+e .)_col-i-eCOdJi = cofi
j=1

However, the conditional independence between sampled and unsampled observations dis-
played in Fig. 1 implies that the estimation can be more efficiently obtained in two steps:

1. first, estimate the logistic coordinates ¢ of the probability field at the sampled locations as
the mode of an n-tuple of Aitchison density solving an n-dimensional system of non-linear
equations;

2. then, estimate the coordinates ¢., using Eq. (18). Because the distribution of ¢. conditional
to ¢ is a normal one, this estimation is just equivalent to regression or simple kriging.

11



This procedure first extracts all the information from the binomial observations to estimate the
success probabilities at the observed locations, and then interpolates them to the unobserved
ones. This behavior is desirable, as non-sampled locations therefore have no influence on the
success probability estimates at sampled locations. However, it remains to be proved that we
can actually ignore ¢, in Eq. (19), and that Eq. (18) is equivalent to simplicial indicator kriging.
The rest of this subsection supports these statements.

To prove the first statement, one first isolates ¢, in Eq. (18) as a function of ¢, and substitutes
it in Eq. (19), which gives

0=2%¥(X)¢p + 2¢(X, x.) (1/}2¢(X, x*)Tqb) +coly — 1)
=2 (W) - oK xJpXx)T ) ¢+ anly
Taking into account then Eq. (15) we obtain
0=-%(X)"'¢+coly — ) (20)

which is what we would obtain as Eq. (19), if we had no ¢, at all. Its solution thus maximizes
the marginal posterior distribution of the sampled locations only, as stated in the first step.

Now assume that f (and ¢) at sampled locations are known, either a priori or by solving
Eq. (20). Then, maximization of the joint likelihood (17) is done only with respect to fi.. Thus,
after taking derivatives we obtain just Eq. (18). Taking then into account the relations between
the block matrices in precision and variance described in Eq. (14), one obtains

1 dhl(p(f*, f|Xa Y, X*))

0 = 3 . =" P(X,x.) + 2o
& 0 " (-2(X) o (X, x.) - ¥2) + Y2
& 0 = ¢'(-2X)o(X.x,)) + ¢

& b = ¢T(EX)o(X,x.))

i.e. the interpolated coordinate ¢, is a linear combination of the “observed” coordinates ¢, with
weights A = X(X) " 'o(X, x.), equal to the simple kriging weights (see Section 2.1), as stated in
the second step.

4.3 Doubly Stochastic Gaussian Quadrature (DSGQ)
4.3.1 Predictive estimation

However, we are actually not interested in the posterior probability of obtaining a success at an
unsampled location, given by taking the conditional estimate p(f.|f, X,y,x,) from the obtained
maximum posterior estimate p(f., f|X,y,x.). We would rather prefer the predictive probability
p(y«|X,y, %), accounting for the fact that the estimate f, is also uncertain.

Following the definition of predictive estimation, we know that

p(alX,y, %) = / Pl £ X,y ) df,

- / Pl £)p (X, % )dfs
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which may be computed taking

600¢* Y 1 1=y eCoQﬁ*y*
Pyl fs) = <1+€co¢*> (1+300¢*> :m

and computing p(f.|X,y,x.) as the exponential of Eq. (17). However, this would require the
numerical computation of the closing constant . Instead, we can go on with the calculations
as in (Rasmussen and Williams, 2006) and (Kuss and Rasmussen, 2005), using the conditional
independence assumptions reflected by Fig. 1. This gives

- / Py 1) / p(fe 61X, v, x.)dE df,
/ p(y.11) / P(f 6 X, ) p(EX, y)df df,
L / (sal1.) / (Flf, X, x.)p(y |6, X)p(EX)dE df. (21)

Using the probability density function of the normal distribution in ]0,1[", plugging in the
coordinate representation (10) and repeatedly applying the substitution rule of integration, we
obtain explicit expressions for all terms in (21), viz.

B 1 1 (¢, — 0TS g)’
PUIEX %) = \/27 (Uf — o-TE_la) o <_2 o2 — o’ o (22)

" eCodi Yi 1 1-y: N eCodiyi
1+ ecodi 1+ eCodi H 1 4 ecodi

Pyl X) = p(ylf) = ][

i=1

R R gy
pIX) = o (347570 )

where we have used among others the derivation in (Rasmussen and Williams, 2006, chap. 2.2)
for Eq. (22). In these equations, we have used the shorter notation ¥ = 3(X), as well as
o =o0(X,x,).

The integration in (21) now is with respect to ¢ and ¢., logistic coordinates of the unobserv-
able probabilities f and f,. Inserting the terms mentioned before, we obtain

660(1)*9* n eCod)iZUi ¢T271¢ ((;5* — 0_T2*1¢)2
p(y*|X7ya X*) = C2 // 1 + eCO¢* Zlill 1 J,. eCO¢i eXp < 2 B 25% d¢ d¢*

(23)
with 52 := 02 — 67X ' and ¢y := (¢1/(27)"|X]1/27s2) L. This integral cannot be solved in
closed form.

4.3.2 Approximating the integral

In this section, we derive a computational scheme for the calculation of the predictive doubly
stochastic mode for Gaussian process classification presented before.

Since the integral in Eq. (23) cannot be solved analytically, we approximate the exact logistic
function in (10) by a stretched error function, i.e.

COPYx

1 4 ecod« ~ P ((_1)y*+1k0¢*) (24)
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where ® denotes the error function. This allows for substantial simplifications leading to the
result in equation (26). Choosing

eCoP=

T ees. — 2(ks)) = 0.5876c

ko = arg min max
k

*

we obtain a good approximation with a maximum deviation of

eCoP~
max | ————— — ®(kgb,)| < 0.01
¢ |1+ eco®- ( )
for every co (see Fig. 3). Of course, the same calculation is valid for ¢; and y;,i = 1,...,n,
instead of ¢, and ys..
1 0.01
09 0.008
08 g 0.006
07 % 0.004
06 % 0.002
05 g 0
0.4 $ -o00
03 § -0.004
02 £ 000
o1 —— exp(@)/(1+exp(q.) 0008
®(0.58760,)
-10 -5 0 5 10 70%110 5 0 5 10
9. .

Figure 3: Comparison of the original logistic function and its stretched inverse probit approxi-
mation for ¢y = 1. The left panel shows the two functions, the right panel their difference.

Working toward the final simplification, we define a multivariate generalization of the Heav-
iside function H(§).

Definition 4 Let

if Ji:(=1)¥T <0

if Vi (=1)¥%T1>0andJi € =0
if Vi (=1)%T >0

Special cases of Hy (&) in one dimension are Hy(§) = H(§) and Ho(§) = H(—¢) = 1 — H(§).
Summarized in words, the function Hy is — up to a null set with respect to the Lebesgue measure
—equal to 1 in exactly one orthant of R™ and equal to 0 elsewhere, where the orthant is specified
by the components of y.
One can verify that ®(koo,) = (H; *No,k%)(@) and ®(—koos) = (Ho *No,k%)(ﬁb*), and
0 0

hence

Hy(E) =

== O

n n

[T2 (0" koer) = ] (Hy *No,kl%) (¢4) = (Hy *No,k%l) (). (25)

i=1 i=1
Inserting the approximation in Eq. (24), Definition 4 and Eq. (25) in Eq. (23), we can continue
the main calculation so that

p(y*|X5ya X*) ’QJ"CQ/ (Hy *N07,321> (¢) exp (—;¢T21¢)

[ (BN ) 0) exp (=500 - o075 10 ) do. s
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Considering only the inner integral we have

[ (B oMo ) 00 0 (= s (0.~ atx)75 1 ) o
— [ €N 6. — e, exp (i — (7B ) do.

—V2s? [ B, () [N s (2 = 00N 10, (0)d00 .

Ny Te 1,524 (62)
0

which leads to
o Xy ~er [ [ B (@A 116~ e
< exp (—2¢Tzl¢) J €Ny g (€10 do
—e [[ By ©m,. ()
< [ Nl = Oexp (507510 ) Mo s (0 (x) 7B 1 - E)apde s,

Defining s := X 'o(x,) and v := k2/(s2k3 + 1), we obtain (up to a constant multiplier) for the
integrand of the inner integral

exp (<5 (@- O (0- 0 - 56" 0- L (To- )0 (76 &)

—exp | —2" (K1 +2 " 4+ ussT) ¢+ @7 (3¢ + vsS.) — €7 K€ — ve?
2 NI 2
=R :=m
—exp (—;((p ~R'm)"R(¢ — le)) exp (;mTle — %g%gg - ;1}53)

The second factor is independent of ¢ and the first factor is a Gaussian kernel function which
integrates to a constant with respect to ¢. Combining this constant with c3 we obtain

Xy x) ~ o [[ (€, (€ oxp (GmTRm - €Tie - St ) e
When resubstituting m and reordering, the exponent becomes
—%/;“T(kgl — kgR™E + €T kGR s, — %5* (v—v’s"R7's) &,
with I the identity matrix. This finally yields our principal result
Py x) ~ o [ (OH,. (6 exp (- 567 AE) & (26)

where ) 1 ) )
- C(RI-KRT k2R s
£:=(8&) and A= (—k%vsTR_l v—v23TR s
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The expression says that, to make a prediction under the doubly stochastic model, it suffices
to compute the mass of an (n + 1)-dimensional Gaussian distribution (centered at the origin
and with precision matrix A) in a given orthant. This is illustrated in Fig. 4. The covariance
structure of the distribution is mainly given by the covariance matrix 3 and the vector o(x,), i.e.
by the relative position of the training points and the test point z, in feature space. Moreover,
the covariance structure also depends on the parameter ky which trades off prior and observed
evidence. The orthant that is integrated over is picked by the observed training set labels (and
setting y. = 0 or y,. = 1). The normalizing constant ¢4 can be determined by calculating not only
the mass in the relevant but also in the adjacent orthant {(£,&,) € R™ ™! : Hy (§)Hy_,, (&) = 1}
and then using the sum constraint p(y. = 1|X,y,%x.) + (v« = 0|X,y,x.) = 1. In the left
panel of Fig. 4, o(x.) is relatively large and y = 0. Hence, the posterior class prediction for
class 0 is relatively large; here, p(y. = 1|X,y,xs) = 0.128. In the right panel, o(z,) = 0.
Consequently, the label of the training point does not influence the posterior prediction at x.
and hence, p(y. = 1|X,y,x.) = 0.5.

For the actual computation of the integral of the Gaussian density, one can evaluate the
multivariate error function at the origin after having adequately mirrored the normal distribution.
The multivariate error function is e.g. implemented in R and Matlab based on methods of Genz
and Bretz (2009).

A

NN
-2f

Figure 4: Computation of the posterior class probability p(y. = 1|X,y,x.) with the doubly
stochastic Gaussian quadrature according to Eq. (26). Each panel shows the contour lines of
the probability density function of an (n 4 1)-dimensional Gaussian distribution with 0 mean,
where £, € R and & € R™ (obviously, n = 1 here). The covariance structure of the distribution
mainly reflects the relative positions of the test and training points in feature space. The ratio
p(y« = 11X, y,x:)/p(y« = 0|X,y,x.) equals the ratio of integrals of the Gaussian density over
two adjacent orthants, which are determined by the labels y of the training points. Here, the
regions that are integrated over correspond toy = 0, and p(y. = 1|X,y,x.)/p(y« = 0|X,y,x:) =
0.064/0.436 and p(y. = 1|1X,y, %) /p(y. = 0|1X,y, x4) = 0.25/0.25 in the left and the right panel,
respectively. Additionally using the sum constraint p(y. = 1|X,y,xs) + p(y« = 0|X,y,x,) =1
yields p(y. = 1|X,y,x,) = 0.128 and p(y. = 1|X,y,x.) = 0.5, respectively.

Remark. For both methods, the AMP and the DSGQ), there is a close relationship between
the sill parameter (see e.g. Chilés and Delfiner, 1999, chap. 2.2), which affects the assumed
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covariance structure and therefore the computation of 3, and the parameter cg.! As already

mentioned in Remark 3, they together influence the variance of the prior in Eq. (12) and therefore
govern the tradeoff between prior and evidence for the final prediction. The smaller ¢y and the
smaller the sill, the higher the weight of the prior. This is particularly evident in Eq. (20).

5 Comparison of the presented algorithms

5.1 Data

42
|

L °
g g//r\@@é

Latitude

U

36
T
\

Longitude

Figure 5: The Western Mediterranean with indication of the 8 explanatory features used to
classify the forecast images. The contour map shows the variance along each possible feature,
i.e. the variance of the logarithm of the wave heights at each pixel. Pixels are 16 x 16 km?
approximately.

The several methods summarized or presented in this contribution will be illustrated and
compared using a typical diagnostic problem: given a static “image” of a system, can we decide
whether it corresponds to a particular (dynamic) regime? In this particular case, we want to
use a map of significant wave height, provided by a numerical forecasting model of the Western
Mediterranean Sea, to decide whether that is a Llevant storm (a storm with dominating winds
from the East) or not.

We have available a set of n = 114 such images of past forecasts, for which we now know
the dynamic situation. We manually select beforehand a small subset of m = 8 “informative”
pixels. Subsampling of pixels is performed to avoid the “curse of dimensionality”. Otherwise
there would be n = 114 points in a space with several thousand dimensions m of which many
correspond to uninformative locations in the East. As the empirical distribution of the individual
wave heights is extremely skewed to the right, they are preprocessed by computing a logarithm.
Then, we build a data set of feature vectors x; € R® i = 1,...,n (the logarithm of the wave
heights at the selected pixel positions) and labels y; (1 corresponds to a Llevant storm, 0 to “no
Llevant storm”) and apply the classification techniques to this set. Fig. 5 shows the variance

1Recall that the corresponding parameter ko of the DSGQ simply is proportional to cg.
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of logarithms of significant wave height for the whole forecasting area, using a larger set of 970
non-classified images. We do not consider all these images (but only 114) for the comparison to
ensure a high degree of stochastic independence between the images, i.e., we selected the images
in such a way that they are at least one week apart from each other. This figure also shows
the locations of the 8 pixels chosen in this case as classification features. Note that the chosen
features have moderate, fairly similar variances. Though this is not a necessary condition, it
allows us to consider an isotropic variogram on R® for the latent Gaussian process.

5.2 Experimental results

We compare the four methods — classical indicator kriging (CIK), simplicial indicator kriging
(SIK), maximum density of the Aitchison posterior distribution (AMP), and the doubly stochas-
tic Gaussian quadrature (DSGQ) — based on the data presented in the previous section. Through-
out this section, we use a Matérn covariance function (see e.g. Rasmussen and Williams, 2006,
chap. 4.2) for all methods and all experiments. Its one-dimensional correlogram is given by

21—v 2ur . 2ur
p(r)*r(y) ( 1 ) Kl/( I ), l/,l>0,

where K, is the modified Bessel function of the second kind (Abramowitz and Stegun, 1965,
chap. 9.6), v is called a smoothness parameter and [ a range parameter. Then, for a given nugget
so > 0 and a sill s > sg, the covariance function is h(r) = (s — s9)p(r) + so1lo(r), where 1g(-) is
the indicator function at 0. Hence, X;; = h(||x; — x,|) and o; = h(]|x; — x.||).

In the first experiment, we simply evaluate the classification performance of the 8-dimensional
data using 5-fold cross-validation (CV): the data is divided into 5 folds; then, 4 of these are used
for training to predict the posterior class probabilities for the samples in the remaining fold (test
fold). This is repeated 5 times such that each sample is once in the test fold.

For both CIK and SIK the parameters are determined by standard variogram methods (Chiles
and Delfiner, 1999) yielding a smoothness of ¥ = 10, a range of [ = 0.4, a sill of s = 0.17, and
no nugget effect (sp = 0). For AMP and DSGQ, the function values of the underlying process
are not observable, because the class labels are modeled as realizations of Bernoulli experiments.
Hence, standard variogram methods are not applicable and we use nested CV for parameter
estimation. In order to predict posterior probabilities for a test fold in the outer CV, only the
data in the respective training folds are used for parameter tuning. This is performed in an inner
CV loop. Hence, for different test folds of the outer CV, different parameters may be used. Note
that, in contrast to a simple (non-nested) CV, this does not yield overoptimistic estimates for
classifier performance as the parameters for predicting probabilities for a test fold in the outer
CV loop are tuned completely without using any information about this test fold (Varma and
Simon, 2006). For computational reasons, we use the same values for v, s and sg as in the other
two methods and optimize | and ko only (co in the case of the AMP).

The quality indicators of the methods are presented in Table 1. One one hand, the highest
and second highest accuracy is achieved by the doubly stochastic methods DSGQ and AMP,
respectively. However, note that the differences are not statistically significant. On the other
hand, the running time of the DSGQ is much higher, by a factor of 1.4 with respect to the
maximum posterior extraction, and more than 500 the time needed for IK techniques.

Next, in order to get more insight into the differences of the methods, we perform an exper-
iment using only two dimensions of the 8-dimensional data. By visual inspection, we select the
second and the third feature as these seem to be the most informative features for classification.
The 2-dimensional data is plotted in all panels of Fig. 6. We use all samples for training and
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Method ‘ Accuracy ‘Computation time

Classical indicator kriging 0.868 £ 0.062 0.68 s

Simplicial indicator kriging 0.868 4+ 0.062 0.88 s
Aitchison maximum posterior 0.877 4+ 0.060 346.99 s
Doubly stochastic Gaussian quadrature | 0.895 4 0.056 481.18 s

Table 1: Relative accuracy and computation time of the four different methods for the classifica-
tion of the 8-dimensional data. Results are obtained by 5-fold cross validation over 114 samples,
“+” indicates the boundaries of the 95% interval. As the parameter estimation is performed
differently across the methods, it is not considered for the computation time.

predict posterior class probabilities on a two-dimensional grid. We obtain v = 0.5, | = 0.4,
s =0.17 and sp = 0 for CIK and SIK using variogram methods. For AMP and DSGQ, we again
use the same values for v, s and sy as in CIK and SIK and optimize the remaining parameters
with cross-validation using only the training samples. This leads to [ = 0.99 and ¢y = 6.81 for
AMP and [ = 3 and kg = 4 for DSGQ. The resulting contour plots for all methods are shown in
Fig. 6.

It can be observed that all points of the training set are classified correctly with CIK and
SIK, in particular the dissenting points that are located in between a cloud of points with a
different label. Here, as the variogram estimate yields so = 0, the estimate for the posterior
class probabilities at those points are p or 1 — p for SIK and even 1 or 0 for CIK. This prevents
the assignment of opposite classes in the neighborhood of observed labels and thus limits the
generalization ability of CIK and SIK. In contrast, in the doubly stochastic models, the dissenting
points are considered unlikely realizations of a Bernoulli experiment. This explains why the
squashed realization of the Gaussian process is much smoother for the doubly stochastic methods
AMP and DSGQ), as can be inferred from the contour lines. Hence, the AMP and specially the
DSGQ methods are more robust with respect to these dissenting points, even under sq = 0.

6 Conclusions

We have presented two new methods for the estimation of the class probabilities in a classification
setting, based on a doubly stochastic process formalism. Seen from a Bayesian perspective,
the two methods are obtained as the maximum posterior probability (AMP method) and the
predictive probability (DSGQ method) of a prior random field updated by a Bernoulli likelihood
obtained from the training set. The posterior happens to be an Aitchison distribution, known in
the field of compositional data analysis. The distinctive characteristic of both methods is that the
underlying estimation is deterministic and analytical up to a final step of iterative maximization
or integration.

The underlying doubly stochastic model is consistent with a classification framework. In
contrast, (classical) indicator kriging (CIK) (Journel, 1983) is theoretically inconsistent, as it
uses a non-transformed Gaussian random field (with range —oo to +00) to describe a probability
(bounded between 0 and 1). SIK uses a logistic-transformed Gaussian RF as reference to avoid
negative probabilities. However, both CIK and SIK are interpolators, and thus do not reflect a
two-step stochastic process. In particular, this becomes apparent in the presence of conflicting
observations (successes surrounded by failures, or vice versa): the posterior probabilities esti-
mated by CIK or SIK can only be exactly 0 or 1 at locations where there are observations.
These methods hence categorically rule out the possibility to observe the opposite label at those
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Figure 6: Contour plots of the posterior predictions for the four methods compared, based on a
two-dimensional projection of the data on the 2(2)-2(®)-plane, i.e. using these two features only.
The decision boundary between the two classes, the level curve for {z. : p(y. = 0|X,y,x.) = 0.5},
is depicted with a thicker line. Samples of class 0 and 1 are represented by empty and filled circles,
respectively. Note that the decision boundary (in contrast to the other contour lines) is equal
for CIK and SIK. Both CIK and SIK make predictions that are compatible with each and every
label from the training set which is prone to overfitting. In contrast, both AMP and DSGQ take
dissenting points into account, but do not follow them unconditionally in their predictions.

locations. This is not realistic for typical prediction settings which are characterized by some
class overlap. In contrast, both AMP and DSGQ can take observations from the neighborhood
into account and produce more plausible predictions at the site of observations.

Although the accuracy of AMP and in particular that of DSGQ is higher than that of CIK
and SIK for the 8-dimensional data used here, the difference is not significant. The fact that
the doubly stochastic model is computationally more demanding than CIK and SIK without
showing convincingly better performance is probably the reason why CIK, the classical approach
in geostatistics for classification, still is very popular despite its inconsistency. Moreover, all
parameters in the underlying statistical model of CIK can easily be interpreted in physical terms.

While the experiments show that the new computational scheme of the DSGQ works in
principle, an alternative to the numerical integration is desirable because it may be too expensive
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or too inexact if n is large. For this, note that we only need to know the ratio of the probability
and the complementary probability of obtaining label y, at the point x, to make a prediction:

~T % o~ 1 iNT pd ~ _1g
C1 fonis Hy ()H, (€)e 38 A8dg [ 72007 (G04E [, e 2*

T  ~ ~ 1 = = = =
4 fRn+1 H, (& )H, ,, (5*)6—%5 AE g fg,ﬁ 5(GET(GE) g¢

where we have defined Q; = {€ : Hy(§)H,, (&) = 1}, Qu = {€ : H (§)H,_,. (&) = 1} and
have used the Cholesky decomposition A = GTG and the multidimensional substitution rule
for integration. The regions G(€);), over which we integrate, are convex cones with apices in

the origin (because they are linear transformations of orthants) and the integrand exp(—%é/Tél)
is a radially symmetric function. Hence, the value of the whole integral is proportional to the
volume of the intersection of the cone with the unit sphere (called a spherical simplex). Thus, in
order to evaluate the fraction (27), we need to compute the ratio of the volumes of the spherical
simplices determined by G(€;) and G(£22) (Aomoto, 1977). Finding a tractable approximation
to this ratio is an attractive avenue for future research.

Our final comment addresses the link between SIK and AMP. AMP can be seen as a two-
step estimation process. First, one estimates the probabilities of success at the sampled locations
maximizing the posterior Aitchison distribution. Second, one interpolates them to the estimation
locations using SIK. Thus, SIK, AMP and DSGQ form a ladder of methods of increasing compu-
tational complexity paired with an increasingly better fit to the underlying two-step stochastic
process hypothesis and reliability of results.
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