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Abstract

Following [Lempitsky and Zisserman, 2010], we
seek to count objects by integrating over an object den-
sity map that is predicted from an input image. In
contrast to that work, we propose to estimate the ob-
ject density map by averaging over structured, namely
patch-wise, predictions. Using an ensemble of random-
ized regression trees that use dense features as input, we
obtain results that are of similar quality, at a fraction of
the training time, and with low implementation effort.
An open source implementation will be provided in the
framework of http://ilastik.org.

1. Introduction

Counting objects in images or video frames is im-
portant in many real-world applications including in-
dustrial inspection, cytometry, surveying and surveil-
lance. Recent work has shown that object counting can
be solved with equal or better accuracy without prior ob-
ject detection or even segmentation [9, 14, 2]. In fact,
such an approach is the only one viable in settings of
such crowding or such low resolution that detection and
segmentation of individuals becomes impracticable. In
some instances, a count estimate may also boost the per-
formance of object detectors [13].
An estimate of the object count No can either be ob-
tained directly, by mapping from a set of global fea-
tures to the real line or the integers [3, 7, 10]; or it can
be obtained by integrating an estimated density function
F (x) over the image domain Ω

No =

∫
Ω

F (x)dx (1)

where F (x) is computed from local features. The lat-
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Figure 1. Summary of our framework. A
regression random forest learns a map-
ping between patches in the input fea-
ture space and in the target object den-
sity space. Overlapping predictions of
patches are averaged to obtain a density
of objects per pixel.

ter approach delivers state of the art performance while
requiring less training images than global regression
methods. In particular, the pioneering work [9] posits
F (x) = cTφ(x), for local features φ(x). The weight
vector c is learned from a training set by solving a
quadratic program which minimizes the error between
the true and predicted density estimates, integrated over
all possible sub-windows. This model works very well,
even though the predicted density can be negative in
places, and the linear model requires a relatively com-
plex set of features (BoW-SIFT).

Our main contribution is a simplification of the orig-
inal approach, arguably on the conceptual level and that
of the implementation effort, and certainly in terms of



computational effort in the learning phase. In particu-
lar, we compute dense features by ordinary filter banks;
and propose to use a regression forest to predict entire
patches of the desired density function. These struc-
tured predictions are averaged both across predictors in
the ensemble, and across space, akin but not identical to
[8]. In addition, we leverage the random forest out-of-
bag samples to compute an uncertainty measure on the
predicted object density. In section 3, we show that re-
sults, on some dataset, compare favorably with the state
of the art.

2. Predicting a structured regression target

Our algorithm requires a set of training images
Ii, i ∈ 1, ..., N , where all objects present in the im-
age must be annotated with one “dot” in the center. The
true density function for each pixel x ∈ Ii is defined as
a sum of Gaussian kernels centered on the user annota-
tions:

F 0
i (x) =

∑
µ∈Ai

N (x;µ, σ) (2)

where Ai is the set of all annotations for image Ii and
σ is a smoothness parameter. This parameter is fixed at
σ = 2.5 in all reported experiments of the last section,
amounting to roughly 1/4 the objects’ size. The results
obtained are not very sensitive to the precise choice of
σ. Since the basis functions are normalized, the over-
all number of objects in an image can be computed by
equation 1.

Our key observation is that equation 2 represents a
smooth function. As a consequence, instead of predict-
ing the density at each location x individually, we in-
corporate neighborhood information by making predic-
tions for dense overlapping patches. These overlapping
predictions are then averaged in order to reduce the sin-
gle pixel error in the estimate.

Rather than work on the raw images, we first com-
pute a number ν of standard filter bank responses and
then learn a nonlinear mapping

F : Pin → Pout (3)

from a h × w patch in the input space Pin ∈ Rh×w×ν
to a patch in the output or target space Pout ∈ Rh′×w′

.
Given the mapping F , the predicted density estimate
per pixel is obtained by averaging all the predicted over-
lapping patches:

F̂ (x) =
1

|P(x)|
∑

P̂out∈P(x)

P̂out(x) (4)

where P(x) is the set of predicted patches P̂out that
have pixel x in their scope. This formula works for any

method that can predict not merely a single scalar, but
an entire patch at a time. We have opted for regres-
sion forest [1, 4] since it offers the advantage of ef-
ficient learning and inference (around O(n log n) and
O(log n), respectively for a fully grown tree) and high
performance without parameter tweaking. In addition,
it naturally leads to a confidence interval (in a loose
sense) for the prediction as explained in the following.

2.1. Regression Forest using Structured Labels

A regression random forest is an ensemble of regres-
sion trees, each of which associates a continuous pre-
diction with each input. Given a training set of tuples
of patches {Pin,Pout}, we construct the trees on a ran-
domized subset of the training examples, while the rest
is kept as out-of-bag. The learning proceeds recursively,
by splitting all data Sj arriving at a node j into a left and
right subset SL,SR. The split is chosen by thresholding
at a value τ of some simple test function f :

SL = {i ∈ Sj |f(Pin) < τ}
SR = Sj\SL

At every internal node, several test functions f are ran-
domly selected. We choose the simplest functional form
of f , viz. the value of the observation at a specific pixel
position and channel index inside a patch. Given a set
of test functions, the best combination of test function
and threshold value is found by maximizing

−
∑
i∈SR

||Pi
out − P̄R

out||2F −
∑
i∈SL

||Pi
out − P̄L

out||2F

where P̄out is the average patch response and || · ||F is
the Frobenius norm. The recursive splitting ends when
a maximum tree depth is reached (see experiments) or
when |Sj | is smaller than a given number. As a result of
this construction, the variance of all patches associated
with a node decreases with increasing tree depth, and
the leaves contain clusters of similar patches.

For a new test sample Pin, the total response of the
forest is the average of the patches stored during train-
ing time in the leaves:

P̂out =
1

|L|
∑
l∈L

P̄l
out (5)

where L is the set of leaves reached by Pin. It is to
note that in contrast to ordinary scalar regression forest,
in our approach, each output is now a complete patch.
Figure 2 shows a result of the described procedure, and
a comparison with [9]1.

1Using the implementation kindly provided by the authors, and the
suggested parameters σ = 4, N = 10 training images, a dictionary
of size 256 and C = 0.011.
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Figure 2. Estimated bacterial density
maps. The proposed procedure makes
for much smoother estimates. (Colorbar
refers to all but the raw image.)

2.2. Uncertainty of a Prediction

Scalar quantile regression forests use all in-bag train-
ing examples in the leaves [11]. In our multidimen-
sional regression case, we estimate the uncertainty of
the predictions using the residual variance of both in-
bag and out-of-bag samples in the leaves. Using out-
of-bag samples only would seem ideal to obtain an un-
biased estimate even in the small-sample case; unfortu-
nately, not all leaves do receive out-of-bag samples. As
a compromise, we push all samples from the training
set (both in- and out-of-bag) down a tree and compute
the total variance for each leaf l as

σ2
l =

1

|Sl|
∑
i∈Sl

||Pi
out − P̄l

out||2F (6)

For a new test sample Pin, we can then assign an un-
certainty measure by averaging across all trees where L
is, again, the set of all leaves that sample Pin ends up
in:

σ̂2 (Pin) =
1

|L|
∑
l∈L

σ2
l (7)

Figure 3 shows that this uncertainty is related to the test
set error, as desired.

3. Experimental results

In order to compare our algorithm with the state of
the art, we conduct our experiments on two publicly

Figure 3. For every image of the bacterial
microscopy test dataset, sum of local un-
certainties vs. sum of squared local den-
sity errors.

available benchmarks. For simplicity, in the following,
we use square input and output patches of same size, so
h = w = h′ = w′. An ensemble of 30 trees is used in
all experiments, and the minimum split size is set to 20.

3.1. Bacterial cells microscopy images

The dataset [9] is composed of 200 simulated fluo-
rescence microscopy images of cell cultures (171 ± 64
cells on average), with 100 images reserved for train-
ing and 100 for validation. We use a random subset
of N out of all training images. For every N , we re-
peat the experiment five times to obtain standard er-
rors. The maximum depth of trees is set to 10, and
3000 patches (or 1000 for N=32) are randomly sam-
pled from each training image, with 30% of them kept
out-of-bag for each tree. Following [9], we discard the
green and red channels of the raw images, and use the
blue channel as well as the following features computed
from it: Laplacian of Gaussian, Gaussian gradient mag-
nitude and eigenvalues of the structure tensor at scales
0.8, 1.6, 3.2.

The results are reported in table 1. We also include
results for pixel to pixel regression, which emerges as
a special case for h = 1. Note that even this method
uses information from a local neighborhood, through
the finite width of the filters whose response is used as
features for the prediction. In fact, pixel to pixel re-
gression already performs pretty well, but extension of
the regression to use and predict entire patches further
improves performance and reduces variability.



Table 1. Mean absolute errors for cell
counting on microscopy images [9]

N = 2 N = 4 N = 8 N = 32
Detection + correction [9] 22.6± 5.3 16.8± 6.5 6.8± 1.2 4.9± 0.5

Density MESA [9] 5.6± 1.5 4.9± 0.6 4.9± 0.7 3.5± 0.2
This work, h = 1 9.1± 5.5 4.2± 0.9 3.5± 0.3 3.3± 0.3
This work, h = 5 7.7± 4.6 4.2± 1.1 4.4± 2.0 3.3± 0.2
This work, h = 7 4.8± 1.5 3.8± 0.7 3.4± 0.1 3.2± 0.1

Table 2. Mean absolute errors for people
counting in surveillance video [2]

’maximal’ ’downscale’ ’upscale’ ’minimal’
Counting-regression [14] 1.80 2.34 2.52 4.46

Counting-segmentation [14] 1.53 1.64 1.84 1.31
Density MESA [9] 1.70 1.28 1.59 2.02
This work, h = 7 1.70 2.16 1.61 2.20

3.2. Pedestrians in surveillance video

This data set [2] comprises 2000 video frames from
a surveillance camera, along with dotted ground truth
(29 ± 9 pedestrians on average). We compare our
method with the best results obtained in the recent eval-
uations [14, 9] following the proposed experimental
protocol. Note that the “counting by segmentation”
and “counting by regression” [14] methods require a
post-processing step to correct for large differences be-
tween the estimated counts in consecutive frames. As
pre-processing, we subtract from the original images a
static background as estimated by a median filter. As
in the previous experiment, as features we use the raw
image augmented by the filter responses described be-
fore, with the addition of a temporal derivative filter. We
correct all channels for perspective distortion by sim-
ply multiplying their pixel values with the square of the
provided camera perspective map. As in [14, 9] we split
the data into four different training and test sets: “max-
imal”, “downscale”, “upscale” and “minimal”, which
differ strongly in the number of training images and
average number of pedestrians. We use 800 patches
per image and, in order to compensate for differences
in training set size, we optimized the tree depth. We
note that our method performs only slightly worse than
the state of the art method [9] where a hierarchical ap-
proach, with a classifier output from the first level serv-
ing as input to a second level, was used.

4. Conclusion and future directions

We have presented a simple and efficient method to
estimate the density of objects in an image. Our method
conceptually extends scalar regression random forests

to output patches, a specific example of structured la-
bels. We obtain results on par with state of the art algo-
rithms, while conducting all experiments with the same
architecture, simpler features, and minimal parameter
tuning.

Interesting directions for future work include the
learning from less precise, as well as from partial, an-
notations.
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