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Abstract
Motivation: To gain fundamental insight into the development of embryos, bi-

ologists seek to understand the fate of each and every embryonic cell. For the gen-
eration of cell tracks in embryogenesis, so-called tracking-by-assignment methods
are flexible approaches. However, as every two-stage approach, they suffer from
irrevocable errors propagated from the first stage to the second stage, here: from
segmentation to tracking. It is therefore desirable to model segmentation and track-
ing in a joint holistic assignment framework allowing the two stages to maximally
benefit from each other.

Results: We propose a probabilistic graphical model which both automatically
selects the best segments from a time-series of oversegmented images/volumes and
links them across time. This is realized by introducing intra-frame and inter-frame
constraints between conflicting segmentation and tracking hypotheses while at the
same time allowing for cell division. We show the efficiency of our algorithm on
a challenging 3D+t cell tracking dataset from Drosophila embryogenesis as well
as on a 2D+t dataset of proliferating cells in a dense population with frequent
overlaps. On the latter, we achieve results significantly better than state-of-the-art
tracking methods.

Availability: Source code and the 3D+t Drosophila dataset along with our
manual annotations are freely available on
http://hci.iwr.uni-heidelberg.de/MIP/Research/tracking/

Contact: fred.hamprecht@iwr.uni-heidelberg.de

1 Introduction
Fueled by new microscopic techniques (e.g. (Krzic et al. 2012, Tomer et al. 2012)),
which allow to record in vivo multi-dimensional images in high spatial and temporal

∗The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint
First Authors.
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Figure 1: An excerpt of three consecutive time steps of the Drosophila dataset (2D
slices out of 3D volumes). The raw data (top row) is oversegmented into superpixels
(middle row). Our graphical model then tracks the cells over time and assigns each
segment to a track (indicated by the same random color) or background (black). Off-
spring cells are assigned the color of their parent cell after mitosis (here: orange). Note
that one cell may be represented by multiple superpixels. Scale bars are 10µm.

resolution, and by robotic high-throughput setups, biology is developing a great hunger
for robust and accurate automated cell tracking (Meijering et al. 2009, Kanade et al.
2011, Meijering et al. 2012, González et al. 2013, Maška et al. 2014). As an example,
one major goal in developmental biology is the digitization of embryogenesis and its
computational analysis, where cell tracking plays an important role. Great advances in
this field have been reported most recently (Amat et al. 2014), and one key feature in
their study is that they do not strictly separate the cell detection and segmentation1 stage
from the cell tracking stage. Amat et al. (2014) instead propagate the cell centroids and
their approximated Gaussian shape from the past timesteps to the next while detecting
cell divisions at the same time. Despite handling detection and tracking separately,
tracking-by-assignment algorithms (Padfield et al. 2011, Bise et al. 2011, Kausler et al.
2012, Schiegg et al. 2013), on the other hand, have proven to be most flexible in terms
of modeling power when injecting prior knowledge: Biological laws can be modeled as
constraints (see Sec. 3.2) and prior beliefs about individual detections and assignments
may be incorporated by utilizing local classifiers trained on a small subset of the data
(see Sec. 3.3) rather than using heuristic rules. Furthermore, tracking-by-assignment
models allow for global optimization which will further improve accuracy, since the

1For brevity, we mostly refer to the combination of detection and segmentation as detection only.
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assignment problems are solved in a larger temporal context.
Nevertheless, this modeling power in tracking-by-assignment approaches comes at

the cost of propagating errors from the first stage (segmentation) to the second (track-
ing), and insight from the second stage cannot be used to lift ambiguities arising in
the first stage. In other words, the tracking result is highly dependent on the detec-
tion/segmentation quality, and the overall achievable quality is limited by the lack of
interaction between detection and assignment decisions.

Our work aims at solving this particular problem by introducing a method for joint
segmentation and tracking in one graphical model. Instead of a single fixed segmenta-
tion as used in previous tracking-by-assignment models, the detection phase generates
superpixels/-voxels from which regions (possible cell segmentations) are extracted as
sets of the original superpixels. In particular, these regions can be understood as a se-
lection of possible segmentation hypotheses. Global temporal and spatial information
guides the selection of those hypotheses that best fit the overall tracking. During in-
ference, each superpixel is assigned either a cell track identifier or the identifier of the
background (cf. Fig. 1). Put another way, our algorithm simultaneously produces both,
a valid cell segmentation and an assignment of each cell to its cell lineage.

Our main contribution is the formulation of a probabilistic graphical model for
joint segmentation and tracking for divisible and almost indistinguishable cells.
This undirected graphical model incorporates prior beliefs from multiple local clas-
sifiers and guarantees consistency in time and space. We also present a method to
generate an oversegmentation which respects the borders between cells and generates
an overcomplete set of superpixels even for cells in dense populations. Furthermore,
the 3D+t Drosophila dataset we use for evaluation, as well as our dense manual anno-
tations are provided on our website. This is the first dataset of this size and kind for
which manual annotations are freely available.

1.1 Joint Detection and Tracking
Joint object detection and tracking is handled naturally in tracking algorithms based
on active contours (Xiong et al. 2006), space-time segmentation (Lezama et al. 2011),
or video segmentation of multiple objects (Vazquez-Reina et al. 2010, Budvytis et al.
2011). However, these methods either cannot deal naturally with divisible objects and
heuristics must be used, or they cannot cope with dense object populations where ob-
jects may overlap. In a very recent study, Amat et al. (2014) present a fast pipeline
to simultaneously segment and track cells by propagating Gaussian mixture models
through time, but again heuristic rules remain to detect cell divisions. Furthermore,
optical flow has been extended to jointly deal with segmentation and tracking (Amat
et al. 2013). These authors propose to augment an optical flow algorithm by a regu-
larization term based on similarities of neighboring superpixels modeled in a Markov
random field.

In tracking-by-assignment models, however, joint optimization of segmentation
and tracking is only rarely tackled. Instead, to reduce errors in the final results, er-
rors are minimized in each step of the two-stage tracking-by-assignment separately,
the segmentation step and the tracking step: For the former, specialized segmentation
approaches for the detection of overlapping objects have been developed (Park et al.

3



4
5

4

5

45

1 2
3

1

2

3

123

23

Stage IV

Graphical Model

Stage V

Tracking Result

Stage I

Raw Data

Stage II

Oversegmentation

Stage III

Region Merging

Figure 2: First, the raw data is oversegmented in all timesteps separately (stage II).
Then, in stage III, segmentation hypotheses are generated by merging adjacent seg-
ments into bigger segments (e.g. 2, 3 may be merged into 23). From this structure,
a graphical model is constructed (stage IV): Overlapping segmentation hypotheses are
connected by intra-frame conflicts (red: conflicting segmentation hypotheses; blue: lo-
cal evidence for the number of cells in one connected component) and inter-timestep
transition hypotheses are modeled by binary random variables (yellow nodes) indicat-
ing whether the corresponding cell in t has moved to, divided to, or is not associated
with the corresponding cell in t + 1. Note that, for simplicity, only one connected
component in only two timesteps is visualized. The proposed factor graph in stage IV,
in fact, models all detections and all timesteps in one holistic model at once. Also for
simplicity, only a small subset of transition variables is shown. After running inference
on this factor graph, the most probable selection of active regions (actual cells) and
their transitions between timesteps are found as visualized by the two cells marked in
yellow and blue in stage IV.

2013, Arteta et al. 2013, Lou et al. 2012). These approaches aim to find most accu-
rate segmentations, however, they do not incorporate any time information. To reduce
errors in the tracking step, probabilistic tracking-by-assignment methods for dividing
objects have been proposed (Bise et al. 2011, Kausler et al. 2012), which associate a
random variable with each detected object to make allowance for false positive detec-
tions. This idea has recently been extended by (Schiegg et al. 2013) to further correct
for undersegmentation errors by introducing conservation constraints between time
steps to guarantee a consistent number of objects contained in each detected region.
In a postprocessing step, they correct the original segmentations. Our idea goes one
step further and aims to avoid segmentation errors already in the first place by jointly
optimizing segmentation (i.e. selection of foreground-superpixels) and tracking.

Most similar to our proposed method are the models in (Funke et al. 2012, Hofmann
et al. 2013, Jug et al. 2014). Funke et al. (2012) propose an algorithm which segments
an anisotropic 3D volume of branching neurons by generating segmentation hypothe-
ses in 2D slices separately and posing constraints between overlapping segmentation
hypotheses. In contrast to our model, the authors do not need to model background for
their specific use-case whereas in our domain it is important to infer both whether a
segment should be activated as foreground and to which segments in the consecutive
timesteps it should be linked. Moreover, they do not model detection variables directly
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but introduce additional transition variables which model appearance, disappearance,
and divisions. This is in contrast to our model, where the detection variables allow to
model a prior on the count of cells in sets of regions. The authors in (Hofmann et al.
2013) propose a similar idea for joint tracking and object reconstruction from multiple
cameras. Both methods have in common that they solve an integer linear program with
a large set of hard constraints between superpixels within one (time/z-slice) instance
and across instances. In independent work, Jug et al. (2014) jointly segment and track
bacteria in 1D+t.

The original idea to refine a segmentation by modeling the conflicts between mul-
tiple overlapping segmentation hypotheses was introduced by Brendel & Todorovic
(2010) and Ion et al. (2011). Whereas Brendel et al. propose algorithms to efficiently
find the best independent sets in a conflict graph, Ion et al. present a complementary
approach to search for maximum cliques in the graph of possible hypotheses (where
contradicting tiles are not connected). Their ideas were extended to the temporal do-
main in (Brendel et al. 2011), but they cannot deal with dividing objects. Extending
this idea to dividing cells is a much harder problem and the main contribution of our
paper.

2 Approach
The purpose of this work is to segment and track multiple dividing cells in a tracking-
by-assignment framework. To avoid error-propagation from the segmentation to the
tracking stage, we propose to jointly segment and track the targets based on an over-
segmentation. This process is illustrated in Fig. 2: We first run an oversegmentation
algorithm on the volumes with overlapping cells to generate multiple segmentation
hypotheses. This is followed by the construction of a graphical model for the joint
segmentation and tracking. It models competing (intra-frame) relations between the
potential cell segmentations which overlap in space, as well as possible inter-frame hy-
potheses between regions of adjacent timesteps. In this section, we specify each step
of this pipeline consecutively, starting with the oversegmentation step.

3 Methods

3.1 Competing Segmentation Hypotheses
To make joint segmentation and tracking computationally feasible in tracking-by-
assignment approaches, the time-series of 2D/3D images/volumes must be coarse-
grained into superpixels/-voxels to reduce the problem space (stage (II) and (III) in
Fig. 2). Note that the resulting superpixels also afford the extraction of more expres-
sive features at the object rather than the pixel level. To this end, first superpixels are
obtained which are as large as possible but at the same time small enough to respect
all cell boundaries. Next, neighboring superpixels are grouped to generate different
segmentation hypotheses. Here, we choose to merge the superpixels in a hierarchical
fashion. However, the proposed model does not rely on or exploit the resulting tree
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structure, so any other means of generating complementary but conflicting segmenta-
tions could be used.

Oversegmentation In stage (II), the purpose is to obtain an oversegmentation on
every image which is sufficiently fine but as coarse as possible. That is, we prefer single
segments (superpixels) for (isolated) objects without ambiguities, whereas multiple
(smaller) segments are desired in cases where objects overlap in space. To this end, we
propose the following oversegmentation algorithm:

1. Obtain a coarse segmentation which only distinguishes potential foreground from
definite background (high sensitivity, low specificity).

2. Automatically select seeds fulfilling the requirements outlined above.

3. Compute the seeded watershed on the foreground mask.

4. Merge resulting segments hierarchically to potential regions.

Here, the first step may be performed by any segmentation algorithm which can be
adjusted in a way that only those pixels are predicted as background where we are
sufficiently certain. This step’s output is either a hard segmentation or a probability
map of the foreground (soft segmentation). Note that typically, it is not desirable to
track the resulting connected components directly, since large clusters of cells may
be contained in each connected component. Hence, we continue by splitting these
connected components into multiple segments. To this end, the watershed algorithm
is applied on the probability map of the potential foreground (the foreground mask is
obtained by truncating probabilties below a chosen threshold; we choose 0.5). The
seeds for the watershed algorithm are the local maxima of the distance transform on
the foreground mask. This gives rise to regularly shaped compact segments.

Region Merging Finally, superpixels are grouped into regions which form possibly
competing cell segmentations (stage (III) in Fig. 2). These segmentation candidates
can be generated in very different ways. For simplicity, we choose a hierarchical re-
gion merging in a region adjacency graph using L tree levels. Its edge weights be-
tween neighboring segments/regions may be arbitrarily complex and the regions may
be merged in an order determined by these edge weights.

Since the segmentation hypotheses are composed from the same superpixels, natu-
ral conflicts between these regions exist and are resolved by our graphical model (stage
(IV) in Fig. 2) as discussed in the next section.

3.2 Graphical Model for Joint Segmentation and Tracking
Overview Based on the oversegmentation described in Sec. 3.1, a graphical model
(here: a factor graph (Kschischang et al. 2001)) is constructed whose factors collect
evidence from local classifiers and, at the same time, guarantee consistency due to
linear constraints. That is, impossible configurations are disallowed, e.g. a cell dividing
into more than two children. Building the graphical model corresponds to stage (IV)
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in Fig. 2. The construction of the factor graph and the meaning of contained factors
and random variables are described in detail in this section. We will refer to the toy
example depicted in Fig. 2 as a running example.

Random Variables To build the factor graph for joint segmentation and trackings,
we first introduce two types of binary random variables, detection variables and tran-
sition variables. In particular, each possible cell segmentation (region) gets assigned
a detection variable Xt

iα ∈ {0, 1}, where i is the connected component containing
the region, α is the identifier of the region, and t is the timestep. Secondly, variables
Y tiα,jβ ∈ {0, 1} for each possible inter-frame transition between two regions in adja-
cent timesteps are added. In our illustrative example in Fig. 2, one detection variable
is Xt+1

{45}{4}, referring to region 4 in the connected component formed by regions 4

and 5 at time t+ 1. Y t{123}{23},{45}{4} is an exemplary inter-frame transition variable,
where the indices mean that region 23 in connected component 123 at time t may be
associated with region 4 in connected component 45 at time t+ 1.

Factors We continue the construction of our graphical model by adding factors. Fac-
tors may disallow specific configurations (see paragraph constraints) and score possible
configurations of their associated variables based on estimated posterior probabilities
P̂ that are here determined by probabilistic classifiers using local evidence f tiα. In
the following, intra-frame factors (detection and count factors) and inter-frame factors
(outgoing and incoming factors) are described.

Obviously, all regions in each path from a leaf node to the root node in the region
merging graph (see stage (III) of Fig. 2) form competing segmentation hypotheses and
are represented by a conflict set Ctk each of which contains indices of such conflicting
regions. For each such conflict set Ctk, a higher order detection factor ψdet is added in
the graphical model with the energy2 Edet(X tk,F tk) =

=


−wdet log

(
P̂ftiα (X

t
iα = 1)

)
, Xtiα=1

−wdet max
Xtiα∈X tk

log
(
P̂ftiα(X

t
iα = 0)

)
+ cbias, Xtiα=0 ∀Xtiα∈X

t
k

, (1)

where X tk = {Xt
iκ}κ∈Ctk , F

t
k = {f tiκ}κ∈Ctk are the detection variables (and their corre-

sponding features) of regions contained in conflict set Ctk andwdet weighs the detection
factor against other factors. Equation (1) translates to the following: A prior probabil-
ity Pftiα (X

t
iα = 1) obtained from a pre-trained local classifier (see Sec. 3.3 for details)

with features f tiα is transformed into an energy for the configuration where exactly one
Xt
iα is found to be a true cell. In the second case, none of the regions in the conflict

set is a true cell, a penalty has to be paid based on the classifier’s belief of each of the
regions being false positive detections. The model parameter cbias can put a bias on
regions to be activated rather than deactivated in case of doubt. Note that impossible
configurations, such as the selection of more than one competing region, are forbidden

2A factor ψ(X) can be obtained from the given energyE(X) by the following transformation: ψ(X) =
exp (−E(X)). For the sake of brevity, we will only describe the energies in the remainder of the paper.
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by constraint C1, see paragraph Constraints. In Fig. 2, the potential ψdet ideally ob-
tains a high energy (i.e. low probability) for the single region 2 while region {23} has
a low energy since it better represents an entire cell.

Moreover, to further leverage local evidence, a higher-order count factor

Ecount({Xt
i•}) = −wcount log

(
P̂count

( ∑
X∈{Xti•}

X = k
))

, (2)

where {Xt
i•} denotes the detection variables for all regions belonging to connected

component i at time t. It injects prior beliefs for each connected component i to contain
k actual cells. To this end, a probabilistic count classifier (see Sec. 3.3) is trained using
features such as total intensity or size, and applied on connected components. For
instance, two active regions are favored for connected component {123}.

The factors above are both associated with variables from single timesteps only. To
achieve temporal associations of cells across timesteps, the model has to be extended by
inter-frame factors which connect detection with transition variables. Firstly, outgoing
factors with energy

Eout(X
t
iα,Ytiα→) = Edis(X

t
iα,Ytiα→) + Emove(X

t
iα,Ytiα→)

+ Ediv(X
t
iα,Ytiα→) (3)

associate each variable Xt
iα with all possible transitions Ytiα→ to variables in the suc-

cessive timestep. This factor is decomposed into three energy terms: disappearance
(penalizing the termination of a track), cell division (allowing for cell division, based
on estimated division probabilities by a local division classifier), and cell migration
(simple association between two cells of consecutive timesteps, based on a local tran-
sition classifier).

The second inter-frame factor, the incoming factor, assigns a cost in case a cell
appears, i.e. Xt+1

jβ is one, but all of the transition variables in Yt+1
→jβ are zero. Details

for the inter-frame factors are provided in the Suppl. Material.
Omitted in these factors so far are impossible configurations, such as more than one

ancestor or more than two descendants for one cell. These configurations are prohibited
by adding the following constraints.

Constraints We add linear constraints to guarantee that only feasible configurations
are part of a solution. Constraints within individual timesteps will be referred to as
intra-frame constraints while inter-frame constraints regularize the interaction of detec-
tion with transition variables. The constraints are summarized in Table 1 and explained
in the following.

Since overlapping – and hence conflicting – regions are contained in the segmen-
tation hypotheses, constraints need to restrict the space of feasible solutions to non-
contradicting solutions. For this purpose, conflicting hypotheses are subsumed into
conflict sets Ctk. (Red factors and their associated detection variables in Fig. 3.) Con-
straint C1 in Table 1 ensures that at most one detection variable is active in each conflict
set. Taking conflict set C = {{123}, {23}, {3}} in Fig. 3 as an example, the constraint
states: Xt

{123}{3} +Xt
{123}{23} +Xt

{123}{123} ≤ 1.
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Figure 3: Close-up on stage IV from Fig. 2. In the factor graph, detection variables for
possible cell segmentations are shown in black whereas their allowed inter-timestep
transitions are modeled by random variables depicted in yellow (most of them are
omitted for clarity). Blue factors give a prior probability for each connected com-
ponent how many cells it may contain. By introducing intra-timestep conflict hard
constraints (red factors), it is guaranteed that at most only one variable in each conflict
set, e.g. C = {{123}, {23}, {3}}, may be active at a time. Outgoing and incoming fac-
tors (black squares) connect inter-frame transition with detection variables and ensure
a unique lineage of cells.

Those intra-frame constraints added, outgoing and incoming constraints model
inter-frame interactions and couple detection variables with transition variables. These
constraints (C2 and C4 in Table 1) ensure compatibility of detection and assignment
variables: No transition variable may be active if the corresponding detection variable
has state zero. In terms of the factor graph in Fig. 3, this means that, e.g.

Y t{123}{23},{5}{45} ≤ X
t
{123}{23}.

In a similiar fashion, constraints C3 and C5 in Table 1 enforce compliance with the
tracking requirement that a cell can have at most two descendants and one ancestor,
respectively. A feasible tracking solution must fulfill all constraints C1–C5. It should
be noted that only C3 needs to be adjusted appropriately if non-divisible objects are to
be tracked.
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Constraint Name Description Linear Formulation ID

Intra-Frame Seg-
mentation Conflicts

Conflicting (i.e. overlapping) re-
gions may not be active at the same
time.

∑t
κ∈C X

t
iκ ≤ 1

∀C ∈ {Ctk}k,t
C1

In
te

r-
Fr

am
e

Couple-Detection-
Outgoing

Inter-frame hypotheses may not be
active when the corresponding de-
tection variable is inactive.

Y tiα,jβ ≤ Xt
iα ∀j, β C2

Descendants-
Outgoing

A region may not have more than
two descendants.

∑
j,β Y

t
iα,jβ ≤ 2 ∀i, α C3

Couple-Detection-
Incoming

Inter-frame hypotheses may not
be active when the corresponding
intra-frame hypotheses are inac-
tive.

Y tiα,jβ ≤ X
t+1
jβ ∀i, α C4

Ancestors-Incoming A region may not have more than
one ancestor.

∑
i,α Y

t
iα,jβ ≤ 1 ∀j, β C5

Table 1: Linear constraints for random variables

Inference In our global graphical model, the total energy

E(X ,Y) =
∑
t

∑
i

(∑
k

Edet(X tk) + Ecount({Xt
i•})

+
∑
α

(
Eout(X

t
iα,Ytiα→) + Ein(X

t
iα,Yt−1→iα)

))
(4)

subject to all constraints in Table 1,

is the sum of all factors over all possible variable configurations of detection variables
X and transition variables Y . It should be noted that X and Y contain all random
variables of all time steps taking all information available into account in one holistic
graphical model. The probability for a configuration X , Y is then given by the Gibbs
distribution P (X ,Y) ∝ e−E(X ,Y) and the optimal tracking corresponds to its MAP
solution. We solve the energy minimization problem to global optimality by solving
the corresponding integer linear program.

After inference, the optimal configuration of the factor graph can be interpreted as
a segmentation and tracking result as illustrated in stage (IV) in Fig. 2. The graphical
model assigns a track identifier to each foreground superpixel and sets segment values
to zero which are inferred to be background.

3.3 Local Classifiers
The factors of the graphical model introduced in Sec. 3.2 are based on the predictions
of local classifiers for

1. the number of cells in a connected component: the count classifier is trained
based on the appearance (e.g. the size, intensity, radius) of a connected compo-
nent and predicts the number of cells that are contained within. The predictions
are then injected into the count factors in Eq. (2) as prior belief for the number
of cells contained in a connected component.
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2. true detections: the detection classifier estimates how strongly a region resem-
bles a cell (cf. Eq. (1)).

3. cell divisions: the division classifier rates the probability of triples of regions,
ancestor and two children from consecutive frames, to represent a division.

4. cell migration (moves): the move classifier rates every pair of regions associated
with a transition variable.

In our implementation, we train random forest classifiers, but any classifier which pro-
vides (pseudo-)probabilistic predictions can be used. These classifiers are trained on
user annotated training examples. We refer the reader to the Supplementary for detailed
specifications and features used.

3.4 Implementation Details
In this cell tracking application, we use the following methods and parameters for
the oversegmentation algorithm sketched in Sec. 3.1. To obtain a coarse foreground
mask, we use the segmentation toolkit ilastik (Sommer et al. 2011) which can segment
both the phase-contrast images from the Rat stem cells dataset as well as the stained
cell nuclei from the Drosophila dataset: Here, prediction maps for each timestep are
computed independently using a pixel-wise random forest trained on few training ex-
amples from the respective dataset. We use 100 trees in every experiment and select the
following features at different scales: Gaussian smoothing, Gaussian Gradient Magni-
tude, Difference of Gaussians, Structure Tensor Eigenvalues, and Hessian of Gaussian
Eigenvalues. Then, the seeds are determined by the local maxima of the distance trans-
form on the slightly smoothed foreground mask (Gaussian smoothing with σ = 0.3
and σ = 1.0 in the case of Drosophila and Rat stem cells, respectively) and nearby
seeds are pruned by dilating with a disc/ball of radius 2 pixels. Resulting segments are
merged hierarchically with edge weights determined by the ratio of the length of their
common border and the perimeter of the smaller region. While much more expressive
weights could be used here, we find that these simple features already perform well.
Then, at every level l ∈ {0, ..., L} of the hierarchical segmentation hypotheses (we
choose the tree depth L = 4 in the 2D+t and L = 5 in the 3D+t dataset), edge weights
are ordered and the neighbors with the p% highest weights3 are merged iteratively.
Here, we set p = 20 for l ∈ {0, ..., L− 1} and p = 100 for l = L to get the connected
components of the foreground mask as the root node of the segmentation hypotheses
trees. Our model and implementation is not limited to hierarchical segmentation hy-
potheses. In fact, any algorithm which generates competing segmentation hypotheses
could be used.

The graphical model described in Sec. 3.2 is implemented in C++ using the open-
source library OpenGM (Andres et al. 2012). For tractability, the number of inter-frame
hypotheses is pruned to a reasonable number of candidates in the spatial proximity
of each region: In particular, inter-frame hypotheses between frames t and t + 1 are
generated by finding the 2 nearest neighbors in t+ 1 for each region in frame t as well

3 In this way, segments completely contained within other segments are merged first, whereas regions
which only touch in few pixels are merged last.
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as the 2 nearest neighbors in t for each region in frame t + 1. This procedure yields
many inter-frame hypotheses (� 2) in dense cell populations and only few hypotheses
in the parts of the image where cells are sparse. To create training examples for
the classifiers, a small subset of the raw data is selected and sparsely annotated to
train a random forest (Breiman 2001) for each classifier suggested in Sec. 3.3. We
choose 100 trees for each and train the random forests to purity. The parameters of
the factor graph are then tuned to best fit a small, fully annotated subset of the data.
These parameters are used for the final predictions on the entire dataset to report the
performance measures. To do inference on our graphical model, we use the (integer)
linear programming solver CPLEX. The globally optimal solution for the entire time
sequence is found within≈ 10−70 minutes. We refer the reader to the Supplementary
Material, Sec. 5, for a more detailed runtime discussion.

4 Results & Discussion
We perform comparative experiments on two datasets – a cell culture (2D+t), and a de-
veloping Drosophila embryo (3D+t). The former is challenging due to severe mutual
overlap while the latter is difficult owing to its ambiguity in the segmentation hypothe-
ses due to high cell density under low contrast.

The first dataset is publicly available from (Rapoport et al. 2011) (their dataset A)
and consists of a time-series of 209 images (1 376 × 1 038 pixels) of about 240 000
pancreatic stem cells of a rattus norwegicus (“Rat stem cells”). This dataset is partic-
ularly challenging due to the cells changing their appearance (shape, size, intensity)
over time from long elongated to round cells. Moreover, the proliferating stem cells
quickly grow to a dense population causing frequent overlaps between cells. Due to the
dataset’s high temporal resolution, It is difficult to pinpoint a cell division to a specific
point in time. Instead, mitosis occurs over multiple timesteps. For this reason, we sub-
sample the sequence in time, processing every second image only (leaving us with 104
time steps) and relax the evaluation criterion for divisions (see Sec. 4.1). We further
resample the ground truth provided by (Rapoport et al. 2011) to guarantee that no cell
division is lost in the subsampling.

The second dataset is a developing Drosophila embryo (Schiegg et al. 2013) (their
dataset B). On average, about 800 cells are tracked over 100 time steps (730×320×30
voxels, voxel resolution 0.5µm). Schiegg et al. (2013) evaluate their tracking method
on this dataset conditioned on a given segmentation. To evaluate the performance of
our joint approach of segmentation and tracking, we extend their manual annotations
such that it also covers previously missing cells, and that voxels of falsely merged
cells are assigned to individual cell identities.4 In this way, we can further report seg-
mentation/detection measures in addition to tracking measures unconditioned on the
segmentation result.

4Both the dataset and our manual annotations are freely available on our website.
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Dataset Segmentation
Method Precision Recall F-Measure

Rat stem cells (2D+t) (Rapoport et al. 2011)
(Rapoport et al. 2011) 0.95
CT w/ their segmentation 0.75 0.99 0.85
CT w/ our oversegmentation 0.79 0.99 0.88
TGMM on raw data 0.94 0.95 0.94
TGMM on our prediction maps 0.92 0.95 0.93
Ours 0.99 0.96 0.97

Drosophila embryo (3D+t) (Schiegg et al. 2013)
w/ their segmentation 0.82 0.93 0.87
CT w/ our oversegmentation 0.77 0.95 0.85
TGMM on raw data 0.97 0.93 0.95
TGMM on our prediction maps 0.96 0.89 0.93
Ours 0.99 0.88 0.93

Table 2: Segmentation quality after tracking (higher is better). CT stands for Con-
servation Tracking (Schiegg et al. 2013), TGMM is short for Tracking with Gaussian
mixture models (Amat et al. 2014). Note that in our method, segmentation and track-
ing are optimized concurrently. The rat stem cells dataset contains a ground truth of
121 632 cells across all frames, whereas the Drosophila embryo data consists of 65 821
true cells.

unconditioned conditioned on segmentation
Dataset Moves Divisions Moves Divisions

Method Prec. Rec. F-Meas. Prec. Rec. F-Meas. Prec. Rec. F-Meas. Prec. Rec. F-Meas.

Rat stem cells (2D+t) (Rapoport et al. 2011)
(Rapoport et al. 2011) 0.55 0.87 0.67
CT w/ their segmentation 0.96 0.89 0.92 0.68 0.26 0.32 0.98 0.90 0.94 0.72 0.26 0.38
CT w/ our oversegmentation 0.89 0.90 0.90 0.22 0.44 0.29 0.99 0.91 0.95 0.77 0.45 0.56
TGMM on raw data 0.92 0.63 0.75 0.62 0.17 0.26 0.96 0.68 0.80 0.64 0.24 0.35
TGMM on our prediction maps 0.90 0.88 0.89 0.74 0.31 0.44 0.97 0.94 0.95 0.8 0.41 0.54
Ours 0.97 0.93 0.95 0.74 0.67 0.70 0.98 0.97 0.98 0.90 0.78 0.84

Drosophila embryo (3D+t) (Schiegg et al. 2013)
CT w/ their segmentation 0.95 0.85 0.90 0.65 0.74 0.69 0.97 0.92 0.94 0.80 0.77 0.78
CT w/ our oversegmentation 0.73 0.77 0.75 0.04 0.78 0.08 0.97 0.82 0.89 0.28 0.82 0.42
TGMM on raw data 0.93 0.91 0.92 0.25 0.75 0.38 0.97 0.98 0.97 0.35 0.78 0.48
TGMM on our prediction maps 0.91 0.86 0.89 0.18 0.70 0.29 0.96 0.97 0.96 0.25 0.85 0.38
Ours 0.96 0.86 0.91 0.54 0.75 0.63 0.98 0.99 0.98 0.60 0.89 0.72

Table 3: Quantitative results for cell tracking. Reported are precision, recall, and f-
measure for (frame-to-frame) events move (i.e. transition assignments) and cell divi-
sions (i.e. mitosis). CT stands for Conservation Tracking (Schiegg et al. 2013), TGMM
is short for Tracking with Gaussian mixture models (Amat et al. 2014). Rat stem cells
comprises 119 266 and 1 998 such events, respectively, whereas Drosophila embryo
includes 63 548 moves and 226 divisions. Results are shown for the tracking being
conditioned on its segmentation result and directly compared to ground truth (uncon-
ditioned).
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4.1 Evaluation Measures
In contrast to the typical evaluation of tracking-by-assignment methods, for which an
evaluation conditioned on the segmentation is sufficient to determine the efficiency
of the tracking algorithm, here, both segmentation and tracking must be compared
against a ground truth. To evaluate the segmentation quality, we use the Jaccard index
as a similarity measure between a region rres of the result and ground truth region rgt,
i.e. ρ(rres, rgt) =

|rres∩rgt|
|rres∪rgt| . The best-matching region

r∗res(rgt) = argmax
rres

ρ(rgt, rres)

for some ground truth region rgt counts as a true positive segmentation for that region if
its Jaccard index is greater than some threshold τ (we set τ = 0.5)5. Unmatched ground
truth/tracking result regions are considered false negative/false positive detections.

We then compare the frame-to-frame tracking events (moves and divisions) from
the ground truth to those of the tracking result. We report an unconditioned tracking
result as well as conditioned performance measures. The former evaluates the tracking
on the raw data directly, the latter is conditioned on the true segmentation hypotheses.
Note that it is often not clear from the raw data, in which exact timestep a cell division
is occurring. We hence allow cell divisions to be off from the ground truth by one
timestep, i.e. a division is still counted as a true positive if it occurs one timestep earlier
or later within the same track. Finally, based on the number of true/false positives and
false negatives, precision, recall and f-measure are computed for detections, moves,
and divisions.

4.2 Results for Joint Segmentation and Tracking
To evaluate the performance of our model for joint cell segmentation and tracking,
we perform experiments on the two datasets described above. We compare with two
recently proposed cell tracking algorithms:

1. a graphical model for cell tracking (Schiegg et al. 2013) (based on a given seg-
mentation), which can correct for falsely merged cells in a post-processing step.
In order to show that our method operates on a reasonably fine oversegmentation
and that it is not enough to merely track the superpixels in this oversegmenta-
tion, we also perform experiments using the method of (Schiegg et al. 2013) but
use our oversegmentation as input. To this end, we set their parameter of max-
imally allowed cells in a single detection to 1. In all three methods, we use the
same count and division classifier, to which in our method move and detection
classifiers are added.

2. a cell tracking pipeline designed to track entire embryos (Amat et al. 2014).
We evaluate their algorithm on both the raw data directly and our prediction
maps as input. Note that this code was made for 3D+t datasets; we refer to our
Supplementary for further details.

5For (Amat et al. 2014), we choose τ = 0.0 and use a dilated centroid as segment. See Supplementary
for details.
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In the 2D+t dataset, we furthermore compare with the results of (Rapoport et al. 2011)
for the quantative results reported there.

Segmentation Quality We first investigate the quality of cell segmentations, see Ta-
ble 2 for results. Note that in both ours and (Schiegg et al. 2013), cell candidates
may be set inactive by the graphical model. In both datasets, our method outperforms
the segmentation quality of (Schiegg et al. 2013) with an f-measure of 0.97 and 0.93
compared to 0.88 and 0.87. Since our model groups superpixels into cells or deacti-
vates them, it is not crucial in our approach whether cell candidates (or superpixels)
are touching in the segmented image. In the method of (Schiegg et al. 2013), in con-
trast, the complexity of the model is determined by the worst case cluster size, i.e. the
number of potentially merged cells. Hence, in their approach, the need for correctly
segmented individual cells leads to parameter settings that in turn make for many false
negatives in the segmentation. We consider it a strong advantage of our method to
deal with competing segmentation hypotheses rather than repairing a fixed segmenta-
tion. Moreover, Rapoport et al. (2011) achieve on the Rat stem cells data a recall of
0.95 (they do not report precision), whereas our method obtains a recall of 0.96 under
very high precision (0.99). Note that (Rapoport et al. 2011) use τ = 0.3 (cf. Sec. 4.1)
whereas we set τ = 0.5 as a stronger criterion. Amat et al. (2014) achieve similar or
slightly better detection accuracies on the 3D+t dataset since their parametric model for
cell appearance is seemingly a good fit for the 3D+t dataset. Our nonparametric model,
in contrast, fares better on the more irregular cell shapes in the 2D+t data, where the
detection accuracy of (Amat et al. 2014) only increases in the course of the movie,
seemingly due to the following reasons: The cells adopt a Gaussian shape only after a
number of frames and their model is tailored towards Gaussian shaped objects. More-
over, due to non-homogeneous illumination, initialization with the correct number of
cells seems to be imperfect. Of course, these detection errors in this dataset are also
mirrored when inspecting their tracking quality.

Tracking Quality The detection/segmentation errors usually propagate to the next
stage, the tracking stage. Our model aims at avoiding such error-propagation, the per-
formance measures for the tracking quality are reported in Table 3. On both datasets,
the proposed method is on par with (Schiegg et al. 2013) and (Amat et al. 2014) in
terms of (frame-to-frame) move events. For the division events, we show through the
f-measures of 0.70 (unconditioned) and 0.84 (conditioned) that our method can deal
with mitosis in the challenging 2D+t dataset slightly better than (Rapoport et al. 2011)
(f-measure of 0.67), and improves significantly upon (Schiegg et al. 2013) (f-measures
of 0.32 and 0.56, respectively), although using the same classifier. On the other hand,
the competitive method (Schiegg et al. 2013) yields a slightly better detection rate of
division events on the 3D+t dataset. We believe that this fluctuation is due to a lack of
training data for the graphical model (only 16 divisions occur in our training set) which
is more critical in our approach since it has more degrees of freedom. In particular,
when dealing with oversegmented objects, a strong division classifier is crucial since
the introduced ambiguity may lead to increased confusion in division events. If higher
division accuracies are desired, the training set needs to be expanded at the cost of more
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user annotations.
Furthermore, the division detection accuracy our proposed model achieves is signif-
icantly better than that of (Amat et al. 2014). We believe this is due to the reason
that divisions are handled naturally in tracking-by-assignment approaches (compared
to heuristic rules) and further evidence can be injected through local classifiers trained
on this specific event.

Qualitative results for the 2D+t dataset are presented in the supplementary.

5 Conclusion
This work is motivated by the desire to overcome the propagation of errors from a sep-
arate segmentation phase to an independent tracking phase in a tracking-by-assignment
framework. In response, we propose an undirected graphical model that couples deci-
sions over all of space and all of time. This model simultaneously selects a subset of
competing segmentation hypotheses, and combines these into a tracking. All of these
decisions are made to interact so as to reach the overall most likely interpretation of
the data.

The benefits of this approach are borne out by experimental results that are a sig-
nificant improvement over the state-of-the-art. We present results on 2D+t and 3D+t
datasets from biology that are very challenging due to, firstly, the division of targets
due to cell mitosis; secondly, mutual overlap and poor signal-to-noise; and thirdly, the
near-indistinguishability of cells. The model is one of significant complexity, but re-
mains solvable to global optimality in practicable runtimes of less than an hour on the
large datasets used.

There are several immediately relevant avenues for future work, including struc-
tured learning of the classifiers or speed-ups in runtime. The latter may be achieved by
domain decomposition which need to guarantee consistency in overlaps. Relaxations
such as dual decomposition (Komodakis et al. 2007) will break the graphical model
into smaller portions for each of which inference is fast while at the same time the
individual components are forced to agree on the overlap. Also approximate solvers
may be used to speed up inference. Furthermore, coupling the method of Amat et al.
(2014) with our approach might yield significant speed-ups and high accuracy in terms
of cell division detection.
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