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ABSTRACT
Motivation: The characterization of enzyme substrate specificity is
a key step towards understanding signal transduction and protein
interaction in cellular pathways. Exhaustive manual identification
and biochemical validation of enzyme-substrate relationships is
not feasible. Screening procedures that use quantitative protein
reporter ion trace information to identify or computationally enrich
specific groups of substrate candidates are necessary to optimize
experimental design. This contribution introduces a computational
screening procedure that provides enrichment of coregulated
substrate candidates directly from endogenous quantitative mass
spectrometry protein reporter ion trace measurements. Tailored
statistical treatment enables the algorithm to aggregate peptide level
information and to conduct protein level inference. It delivers a ranked
shortlist that is enriched for specific groups of coregulated proteins
and a starting point for targeted biological validation.
Results: The algorithm yields a 46-fold enrichment of anaphase
promoting complex/cyclosome (APC/C) substrate candidates in an
isobaric mass tagging experiment. Among 2443 identified proteins,
seven of 11 known APC/C substrates coregulate with Cyclin-B1
(CCNB1), five of which are reported by the screening procedure.
Availability: A MATLAB toolbox is available from http://hci.iwr.uni-
heidelberg.de/mip/proteomics.
Contact: hanno.steen@childrens.harvard.edu

1 INTRODUCTION
The biochemical processes that govern cell metabolism, proliferation
and death are tightly controlled by complex interactions between
numerous biomolecules [15]. In order to gain experimental insight
into the organization, structure and the functional modules of
subcomplexes of interaction networks or reaction pathways, it is
necessary to understand the nature and role of the underlying
processes. Pathways commonly involve a defined set of subsequent
biochemical reactions, in some cases enzymatic post-translational
modification (PTM) and subsequent degradation of proteins.

Understanding the relationship between PTM enzymes and the
modified protein substrates yields information about the biological
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processes these substrates are associated with to. Further, it
offers insight into conditional substrate specificity of the respective
enzymes. Real-world samples often yield highly complex mixtures
of proteins, making the exhaustive detection of the substrates of an
enzyme non-trivial: biological validation of the substrate properties
of all proteins present in a sample is infeasible for practical reasons.
It is hence desirable to develop an in silico screening procedure that
can output a shortlist of proteins ranked by their correlation with
the abundance of a known substrate over a time-course or over a
set of environmental conditions [45]. Although coregulated protein
abundance levels do not prove common substrate properties, such
a ranking can provide a valuable enrichment and prioritization of
candidates for biological validation.

Post-translational modifications are not detectable by microarray
technologies, and it is in this context that mass spectrometry
(MS) proteomics methods provide direct, quantitative [28, 5]
measurements of a multitude of peptides and proteins and their
post-translationally modified forms at endogenous concentration
levels in a single experiment. MS is thus a method of choice
for the comprehensive analysis of protein abundance changes
and their relationships under changing experimental conditions
[12, 34, 32, 7, 39]. Combined with isobaric mass tagging
(IMT) techniques [36, 43], quantitative MS enables differential
protein expression analysis and biomarker detection in clinical
applications. This includes the analysis of cell lysate, human blood
serum, plasma, cerebrospinal fluid, tissue, or profiling of cells
to identify differentially expressed proteins [40, 1, 19, 10, 45].
Recently, isobaric mass tagging procedures have also been applied
to quantitative phosphoproteomic analyses of signaling networks
[46, 42]. Within certain limitations [46], time-resolved IMT
experiments allow for unbiased analyses of protein abundances at
an endogenous level, obliviating the need for tedious precipitation
procedures and complex biochemical protocols. IMT delivers rich
datasets, and recent computational analyses [14, 27] have developed
problem-specific rigorous statistical treatment.

Our study introduces an unbiased coregulation screening
procedure for the accurate analysis of quantitative mass spectrometry
measurements of IMT datasets. Regarding the statistical evaluation,
we investigate the consequences of data normalization, which,
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Fig. 1. Data analysis workflow for protein coregulation estimation: (A) isobaric mass tagging (IMT) measurements yield sum-normalized quantitative peptide
reporter ion traces. (B) The reporter ion traces are subjected to hierarchical clustering using an appropriate simplicial distance measure. The number of clusters
is determined using a Dirichlet Likelihood Ratio Test (DLRT) based on the observed peptide reporter ion trace distributions on the n-dimensional simplex. (C)
Given the clustering, the quantitative measurements are grouped on the protein level, yielding a peptide cluster distribution for each protein. (D) The protein
signatures are used to determine Mallows distances between proteins, taking into account the fact that the underlying clusters differ in their similarity. (E) The
resulting distance matrix is subsequently evaluated to yield a shortlist of coregulation candidates.

if not accounted for, can jeopardize standard testing procedures.
As a consequence, we establishm the connection between IMT
series and the analysis of compositional data [2, 3, 4]. Finally,
we introduce a novel approach to propagate information obtained
from peptide level measurements to the protein level. The proposed
procedure creates a ranked shortlist of co-substrate candidates in
an automated and user independent manner. The small number
of candidates renders biological validation feasible even even for
complex mixtures of proteins.

Section 2 of the manuscript provides all methodological details,
and the proposed screening procedure is applied to real-world
experimental data in section 3. In sections 4 and 5 we report and
discuss results, suggesting that the proposed approach is indeed
powerful: with only few protein IMT abundance measurements, the
identification of a set of well-known kinase-substrate relationships
is possible. Conclusions and perspectives are offered in section 6.

2 METHODS
2.1 Workflow Overview
We propose a novel procedure for the inference of protein
coregulation from isobaric mass tagging (IMT) analyses of
proteomic time series experiments. Given a set of normalized IMT
peptide reporter ion traces (figure 1, A), we deploy hierarchical
clustering (figure 1, B) tailored to the statistical dependence
structure that results from the normalization. The Dirichlet
Likelihood Ratio Test (DLRT) delivers a suitable cluster tree cutoff
strategy and yields a data grouping on the peptide level. From
there we construct protein signatures, representing the protein-wise
peptide distribution over the clusters (figure 1, C). The Mallows
distance then provides a suitable measure for the inference of protein
coregulation (figure 1, D). In the final step, a list of statistically
significantly coregulated proteins is extracted (figure 1, E).

2.2 Statistical properties of IMT time-series
measurements

Isobaric mass tagging: IMT labels generally consist of three parts:
a reactive group which binds to the peptide, a reporter group

and a balancer group. The sum of the three parts is isobaric
however the reporter and balance groups are different combinations
of heavy and light isotopes [36, 43]. For quantitation experiments,
K labels are attached to N peptide species from K experimental
conditions. In LC/MS analysis, the differentially tagged species
have the same retention time and consequently form a single
peptide isotope distribution in the MS parent spectrum. During
fragmentation, the reporter/balance/peptide compound breaks in
three and yields K absolute reporter ion abundance measurements
x = (x1, x2, . . . , xK)T , for each of the N peptide species. Given
a protein, the vector x holds the respective reporter ion trace of
observed abundances.

Normalization: An absolute reporter ion trace x exhibits inter-
peptide ionization efficiency variability [44, 40] and is dependent
on the MS/MS sampling mode. Especially for data-dependent
acquisition (DDA) schemes, MS/MS sampling depends on the
sample complexity and there is no guarantee that MS/MS
quantitation is carried out at the apex of peptide elution. In order
to remove these effects, a peptide reporter ion trace x needs to
be normalized. Commonly applied approaches include reference-
or sum normalization, i.e. element-wise division by the abundance
of a designated reporter ion or by the sum of all abundances,
respectively. In both cases, the normalization eliminates one degree
of freedom and a covariance/dependency structure is imposed on
the measurements xi (see supplementary material). The following
presentation studies the mathematically more tractable idea of sum
normalization. It yields normalized abundance reporter ion traces
x∗ = (x∗1, x

∗
2, . . . , x

∗
K)T , where x∗i = xi/

∑K
j=1 xj . The lost

degree of freedom manifests itself in that the relative intensity of any
marker i can be recovered from the remaining normalized reporter
ion intensities, i.e. x∗i = 1−

∑
j 6=i x

∗
j .

2.3 Clustering peptides on the simplex
Hierarchical clustering on the simplex: In a first step we group
peptides which exhibit similar peptide reporter ion traces using a
hierarchical clustering procedure. We use hierarchical clustering
[17] as an unsupervised, agglomerative approach, which gradually
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merges small, diverse, but internally homogeneous groups of
peptide reporter ion traces into increasingly general, heterogeneous
groups and eventually yields a binary clustering tree with a single
root. The method requires a suitable dissimilarity measure between
the observed data points. In our case, as a direct consequence
of sum normalization, the coefficients of any peptide reporter ion
trace x∗ add to 1, i.e.

∑n
i=1 x

∗
i = 1. This defines a hyperplane

in K dimensions and every vector x∗ lies on a K-dimensional
simplex. Standard distance measures like the Euclidean distance
cannot account for such dependency structures and we thus resort
to the natural measure of distance on the simplex [3] given by

∆S(x∗,y∗) =

[
n∑
i=1

(
ln

x∗i
g(x∗)

− ln
y∗i

g(y∗)

)2
] 1

2

, (1)

where x∗ and y∗ are K × 1 vectors of sum normalized reporter ion

traces and g(x∗) =
(∏K

i=1 x
∗
i

)1/K

denotes the geometric mean
of x∗. For the calculation of agglomerative distances during the
clustering procedure, we use average linkage [9].

Dirichlet Likelihood Ratio Test (DLRT): Hierarchical clustering is
driven by sequential merging of subclusters. Given the resulting
clustering tree, it is necessary to determine whether each merging
can be statistically justified by the dissimilarity of the respective
clusters. We approach this problem with a statistical hypothesis test
for differences between groups of observations. Although this is a
standard question in statistics, it is not possible to apply standard
multivariate testing procedures since the normalized underlying data
violate the necessary independence assumptions. Consequently,
standard statistical tests would either yield unreliable p-values or
a substantial decrease in test power. As an alternative, we interpret a
normalized peptide reporter ion trace x∗ as a realization drawn from
a Dirichlet distribution, defined as

p(x∗|α) = D(α1, . . . , αK) =
Γ(
∑
i αi)∏

i Γ(αi)

∏
i

(x∗i )
αi−1

, (2)

with Gamma function Γ, x∗i > 0,
∑K
k=1 x

∗
i = 1 and a parameter

vectorα = (α1, . . . , αK), αi > 0. The Dirichlet can be understood
as a multivariate generalization of the beta distribution and is
the natural distribution for independent measurements which are
afterwards constrained to the simplicial domain.

We assume that the peptide abundance traces in each cluster
of peptides are realizations from a single Dirichlet distribution;
and we further assume that merging of two clusters is permissible
whenever the respective Dirichlet distributions do not differ to a
statistically significant extent. To implement this idea, we derive a
likelihood ratio test [8] for the Dirichlet distribution: Given two sets
of observations X and Y , we test whether the null hypothesis that
the observations of the two groups stem from the same underlying
Dirichlet distribution with parameter vector αX∪Y can be rejected,
i.e. we evaluate

H0 : αX = αY versus H1 : αX 6= αY . (3)

Wilk’s λ [8] is a measure of how well the data can be explained
given the null hypothesis and is given by

λ(X ,Y) =
supH0

L0

(
αX∪Y |X ,Y

)
supH0∪H1

L1 (αX ,αY |X ,Y)
(4)

=
L0

(
α̂X∪Y |X ,Y

)
L1 (α̂X , α̂Y |X ,Y) ,

(5)

with the likelihoods L given by the products of the individual
Dirichlet distributions

L0

(
α̂X∪Y |X ,Y

)
=

m∏
i=1

p
(
xi|α̂X∪Y

) m∏
i=1

p
(
yi|α̂X∪Y

)
(6)

L1

(
α̂X , α̂Y |X ,Y

)
=

m∏
i=1

p
(
xi|α̂X

) m∏
i=1

p
(
yi|α̂Y

)
. (7)

The vectors α̂X , α̂Y and α̂X∪Y denote the maximum-likelihood
parameter estimates for the respective Dirichlet distributions which
need to be estimated from the observations. This is complicated
by the fact that there is no closed form solution for the maximum
likelihood estimator (MLE) of the Dirichlet parameter vectorα. We
follow previous approaches [35, 47, 25] and estimate α based on a
Newton-Raphson approximation scheme with a method of moments
initialization.

To allow inference, we take advantage of Wilk’s λ and define t =
−2 log(λ(X ,Y)), where t can be shown to approximately follow a
chi-square distribution t ∼ χ2

K , and are thus able to compute (one-
sided) p-values. The DLRT can be shown to be the uniformly most
powerful test [8] for the problem at hand.

Adaptive Thresholding for Cluster Determination: With the
DLRT it is possible to use a rigorous statistical testing scheme to
determine adaptive thresholds in the clustering tree: Starting from
the root we conduct a DLRT for each cluster tree node. The DLRT
computes the p-value of the null hypothesis in equation (3) with X
and Y being the sets of peptide reporter ion traces associated with
the left and right branches of the node. Given a predefined type-
I error rate/alpha level (generally 0.05 or 0.01) we merge all tree
leaves into a cluster if the assigned p-value of a node is larger than
the alpha level threshold. This implicitly determines the number of
clusters and the top-down scheme circumvents potential multiple
testing issues intrinsically related with bottom-up testing procedures
[6].

2.4 Estimating Protein Similarity
Protein Signatures: To determine which proteins show similar
reporter ion traces over a set of K experiments, the aggregation of
peptide-level information is required. The peptide-level clustering
identifies peptides with similar behavior and groups them into
clusters. We represent each of the P proteins observed in the
MS/MS experiments by a peptide signature vector s with C
components (with C the number of peptide clusters that result from
the DLRT-truncated clustering). The element skl holds the ratio of
peptides observed for protein k which fall into cluster l. The peptide
cluster representation for proteins eliminates intra-cluster variance
(which is then regarded as experimental noise) and serves as a data-
dependent dimension reduction procedure, effectively projecting the
protein onto the peptide clusters. Using protein-normalized counts
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removes the dependency on the absolute number of peptides that
have been identified for a protein.

The rationale behind this approach is that IMT peptide reporter
ion traces are susceptible to effects from post-translational
modifications: in the presence of PTMs, peptides of a protein
may exhibit very diverse reporter ion traces. Different types of
reporter ion traces aggregate in different clusters and determining
the distribution of peptides over these clusters yields a robust and
versatile protein representation. Subsequent comparison of protein
signatures then allows for the calculation of protein abundance level
regulation similarity.

Mallows distance: An intuitive way of comparing two protein
signatures sk and sl is to determine the least-effort redistribution
of the mass of the signature sk to yield sl, taking into account that
the clusters which underlie the signatures exhibit different degrees
of similarity. Mathematically, this leads to a discrete version of the
Mallows distance [37, 21]: we define a discrete joint distribution
F (sk, sl) = {fij(sk, sl)} of flows between the signature entries ski
and slj of proteins k and l. We then identify the distribution F ∗ that
minimizes the expected cost dij :

F ∗(sk, sl) = arg min
F

{
C∑
i=1

C∑
j=1

dijfij
(
sk, sl

)}
. (8)

Admissible solutions F ∗ must fulfill the properties of a distribution
function, i.e.

f∗ij

(
sk, sl

)
≥ 0, and

∑
i

∑
j

f∗ij

(
sk, sl

)
= 1, (9)

and their marginals must correspond to the signature vectors,∑
j

f∗ij

(
sk, sl

)
= sk, and

∑
i

f∗ij

(
sk, sl

)
= sl. (10)

The costs of changes dij are defined as the average squared distance
between the peptide clusters i and j, i.e.

dij =
1

NiNj

Ni∑
u=1

Nj∑
v=1

(xu∗ − yv∗)2, (11)

where xu∗ with u ∈ {1, . . . , Ni} represents all normalized
reporter ion traces of peptides in the ith cluster and yv∗ with
v ∈ {1, . . . , Nj} all normalized reporter ion traces of peptides
in the jth cluster. This definition of dij is consistent with the
average linkage clustering scheme. The Mallows distance between
two protein signatures sk and sl is then given by

mkl = m(sk, sl) =

C∑
i=1

C∑
j=1

dijf
∗
ij(s

k, sl). (12)

For the complete set of protein signatures, this yields aP×P protein
distance matrixM = {mkl}.

2.5 Identifying Coregulated Proteins
In order to analyze the substrate properties of a specific protein,
we must generate a shortlist of coregulation candidates from the
protein distance matrix M . Given a known substrate protein p, the

Fig. 2. Experimental setup: Lysates from HeLa S3 cells were arrested in
different states of the cell cycle. Samples were digested, iTRAQ-labeled,
combined and analyzed by LC-MS/MS. Reporter ion traces were acquired
by subsequent quantitation and normalization.

elements of the column vector mp = (m1p,m2p, . . . ,mPp)
T are

constrained to the interval [0,1] and approximately follow a beta
distribution. The parameters αp and βp are estimated by maximum
likelihood and subsequently allow the computation of a cutoff
quantile q (generally the 0.01 or 0.05 quantile). All proteins t with a
Mallows distance mtp below the quantile q are then included in the
protein shortlist.

3 EXPERIMENTS
We evaluated our method on an iTRAQ isobaric mass tagging
MS experiment of the Anaphase Promoting Complex/Cyclosome
(APC/C). The APC/C is a highly specific ubiquitin ligase that
marks its substrates for degradation by the 26S proteasome and thus
controls entry into and exit from mitosis in the cell cycle.

The analysis attempts to elucidate APC/C substrate candidates
from a full cell extract, based on the temporal protein abundance
profile of the known APC/C substrate Cyclin-B1 (CCNB1,
IPI00745793, P14635) [20].

3.1 Experimental Background
The data are from lysates of HeLa S3 cells arrested in four time
points in the cell cycle: prometaphase, M/G1, G1 and G1/S (fig.
2). During the selected time course cells undergo division and the
observed protein changes also reflect changes induced by APC/C
activity. The samples were digested with trypsin, iTRAQ-labeled,
combined, fractionated first by SCX then by reversed phase liquid
chromatography and analyzed by MALDI-TOF/TOF MS (Applied
Biosystems/MDS Sciex 4800 TOF/TOF). The iTRAQ reagents [36]
consist of three parts: a reporter group with mass 114-117, a
balance group with mass 28-31, and the amine-specific peptide
reactive group (N-hydroxysuccinimide, NHS), targeting the peptide
N-terminal and the ε-amino group of lysine. The overall mass of
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Name UniProt Gene Name AccNum position # pept. ref.

G2/mitotic-specific cyclin-B1 P14635 CCNB1 IPI00745793 1 11
Thymidine kinase TK1, cytosolic P04183 TK1 IPI00299214 3 2 [18]
∗Protein regulator of cytokinesis 1 O43663 PRC1 IPI00022629 6 4 [16, 26]
Nucleolar and spindle-assoc. protein 1 Q9BXS6 NUSAP IPI00000398 8 4 [22]
Serine/threonine-protein kinase PLK1 P53350 PLK1 IPI00021248 9 3 [11, 23]
Targeting protein for Xklp2 Q9ULW0 TPX2 IPI00008477 10 5 [41]
Cytoskeleton-associated protein 2 Q8WWK9 CKAP2 IPI00071824 86 2 [38]
Kinesin-like protein KIFC1 Q9BW19 KIFC1 IPI00306400 88 4 [45]
Serine/threonine-protein kinase 6 O14965 AURKA IPI00298940 670 2 [24]
Sororin Q96FF9 CDCA5 IPI00061989 1571 3 [33]
DNA (cytosine-5)-methyltransferase 1 P26358 DNMT1 IPI00031519 1951 9 [13]
G2 and S phase-expressed protein 1 Q9NYZ3 GTSE1 IPI00160901 2075 3 [31]

Table 1. Results of the Cyclin-B1 (CCNB1) coregulation screening for APC/C substrates: the table displays the list of known (i.e. chemically validated)
APC/C substrates present in the sample. The entries are ordered by the ranking derived from the proposed screening procedure. Including PRC1 (a known
coregulator with unclear substrate properties, marked by ∗), the screening procedure identifies 5 out of 11 CCNB1 coregulating proteins at a confidence level
of 1%. The screening yields an approximately 46-fold enrichment of CCNB1-coregulation candidates among the first 24 proteins in the shortlist.

the reporter-balance combinations is kept constant (145 Da) using
differential isotopic labeling of 13C, 15N and 18O. Peptide and
protein identifications were performed using the Mascot search
engine (Matrix Science, version 2.2.1) [30] with a fully tryptic
human database (IPI human, version 3.23) and a false positive rate
of 4.1% at the peptide level. The iTRAQ reporter group abundances
were extracted from the raw MALDI-TOF/TOF data and matched
to identified peptides using in-house software tools. In addition,
the quality of the spectra and/or identification matches was also
assessed requiring a spectral quality score (SQS) [29] above 1000.

3.2 Computational Analysis
The MS analysis yielded 19619 MS/MS spectra with complete
quantitative information and identified 5258 proteins, 2443 of which
were identified based on two or more of the 16785 unique peptides.
All reporter ion traces were sum-normalized and subjected to the
computational analysis described in the previous section. The DLRT
significance level was set to 0.01. We selected Cyclin-B1 (CCNB1)
as a reference protein, and derived a shortlist for the most similarly
regulated proteins in the sample. Protein co-regulation candidates
were treated as significant if their dissimilarity measure was below
the 1% distance cutoff quantile.

4 RESULTS
After MS/MS analysis, the 11 known APC/C substrates listed in
table 1 could be observed in the acquired data (see supplementary
table 1 for a full list of all 45 known APC/C substrates). Along with
names, accession numbers and references for chemical validation
of the APC/C substrate properties of a protein, the table lists the
number of observed peptides for a specific protein and its ranking
as reported by the proposed screening procedure.

At a 1% confidence level, the screening reports five of the known
proteins among the set of coregulators, increasing to seven at 5%.
This includes CCNB1, on which the analysis was based. The
procedure also reports a confident hit for PRC1 (protein regulator
of cytokinesis 1). PRC1 is a mitotic spindle-associated microtubule
binding and bundling protein that is essential to cell cleavage. Its
tight regulation is necessary to maintain the spindle midzone and to

guarantee microtubule interdigitation. For PRC1 there is a body of
evidence indicating that it tightly coregulates with CCNB1 and that
it indeed may be an APC/C substrate [16, 26], however, biological
validation is still pending.

Consequently, among the set of confident coregulators, we
observe (at least) 5 truly coregulating proteins, yielding a true
positive ratio of 5/24 = 0.2083. Remarkably, the 5 true positives
are among the top ten hits in the shortlist.

Figure 3 displays the normalized peptide reporter ion traces (gray
lines) for the 11 known APC/C substrates found in the sample
and for PRC1 and their respective geometric means. The latter
serve as a measure of (simplicial) central tendency and are suitable
for visual comparison and discussion of the results. High-ranking
substrates (TK1, NUSAP, PLK1, TPX2) and PLK1 exhibit U-
shaped tendencies similar to CCNB1, whereas the low-ranking
AURKA, CDCA5, DNMNT1 and GTSE1 show clearly different
tendencies.

Overall, the screening results on the APC/C iTRAQ dataset
yield an approximately 46-fold enrichment of CCNB1-coregulated
proteins as compared to the original raw data: the likelihood to
observe an CCNB1-coregulating protein (i.e. an APC/C substrate
candidate) in the set of significant ranks is 5/24 = 0.2083 vs.
11/2443 = 0.0045 in the original unranked data.

5 DISCUSSION
The biologically validated set of top-ranked APC/C substrates
includes CCNB1, TK1, NUSAP, PLK1 and TPX2 and potentially
PRC1. The examination of the peptide reporter ion traces of
the known APC/C substrates (AURKA, CDCA5, DNMNT1 and
GTSE1) which were not reported as coregulation candidates
shows significant deviations from the CCNB1 reporter ion traces
(see figure 3). Consequently, the proteins feature very different
protein signatures and the reported results are supported by the
measurements.

Of particular interest are CKAP2 and KIFC1 which are reported
as coregulators on the 5%, but not on the 1% confidence level.
They both exhibit U-shaped peptide reporter ion traces, but with

5



Kirchner et al.

114 115 116 117

0.1

0.25

0.4

CCNB1

114 115 116 117

0.1

0.25

0.4

TK1

114 115 116 117

0.1

0.25

0.4

PRC1

114 115 116 117

0.1

0.25

0.4

NUSAP

114 115 116 117

0.1

0.25

0.4

PLK1

114 115 116 117

0.1

0.25

0.4

TPX2

114 115 116 117

0.1

0.25

0.4

CKAP2

114 115 116 117

0.1

0.25

0.4

KIFC1

114 115 116 117

0.1

0.25

0.4

AURKA

114 115 116 117

0.1

0.25

0.4

CDCA5

114 115 116 117

0.1

0.25

0.4

DNMT1

114 115 116 117

0.1

0.25

0.4

GTSE1

Fig. 3. Peptide reporter ion trace plots for all identified APC/C substrates in the sample: peptide reporter ion traces are shown in gray, protein-wise geometric
means are used as a measure of simplicial central tendency and shown in black. Cyclin-B1 (CCBN1, upper left corner), the reference protein in the analysis,
exhibits a U-shaped centra5 tendency of peptide reporter ion traces which is shared by the coregulating proteins reported by the proposed screening procedure
at the 1% level as well as by CKAP2 and KIFC1 (reported at the 5% level). In the bottom row, the observed peptide reporter ion traces and strongly diverging
central tendencies support the algorithms findings that the data do not exhibit detectable coregulation for AURKA, CDCA5, DNMT1, GTSE1.

higher starting and lower ending points compared to CCNB1. In the
case of KIFC1, an overall larger variation is visible. For CKAP2,
the two observable peptide reporter ion traces are similar to some
of the CCNB1 reporter ion traces and the cluster assignment of
one of the peptides is close to a CCNB1 cluster (data not shown).
However, because only two reporter ion traces are available, only
half of the CKAP2 protein signature matched to CCNB1; we assume
that if better sequence coverage were available, CKAP2 would be
ranked closer to the top. In this context, limiting the approach to
proteins with a minimum amount of sequence coverage might be a
worthwhile step to increase the screening accuracy.

6 CONCLUSIONS
The proposed data analysis procedure enables protein level
coregulation screening from series of isobaric mass tagging
experiments. The procedure introduces novel statistical methodology
for the treatment of IMT abundance reporter ion traces that takes
into account the dependency structure inherently present in the
measurements. It also introduces advances in exploratory data
analysis that enable protein-level inference based on peptide-
level measurements. The experimental results indicate that the
methodology is sufficiently powerful to cope with practical
requirements.

The proposed procedure identifies coregulation candidates
without the need for tailored biochemistry or high-effort
experimental protocols. In particular, the method is applicable to
full cell lysate measurements at endogenous protein levels. As
a consequence, the method is unbiased. In practical application,
coregulation screening is carried out in a fully automated manner,

requiring only a single, well-interpretable user parameter (the
DLRT significance level). The overall algorithmic setup merely
assumes sum-normalized relative quantification measurements, and
the underlying statistical methodology is thus applicable to a wide
range of IMT research questions.

Ultimate validation of substrate relationships has to be carried
out in the biochemical domain. However, our findings indicate that
high-confidence coregulation candidates reported by the proposed
methodology are well-chosen candidates for chemical validation.

Of particular importance for the proposed approach is the fact
that the correct metrics with regard to the underlying statistical
dependency structures are employed for each analysis step. Thus,
the overall approach gains statistical power and is able to generate
usable results even with comparatively small sample sizes. The
underlying methods, including the DLRT, can also be applied to
other fields of application dealing with relatively quantified data,
e.g. biomarker discovery.

Future developments in time-resolved isobaric mass tagging
experiments will likely include the ability to measure the sample
under investigation at much better temporal resolution, providing
a much more complete description of quantitative protein behavior
and a significant increase in the amount of available discriminative
information.
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[7]T Bürckstümmer, K L Bennett, A Preradovic, G Schütze, O Hantschel, G Superti-
Furga, and A Bauch. An efficient tandem affinity purification procedure for
interaction proteomics in mammalian cells. Nature Methods, 3(12):1013–1019,
2006.

[8]G Casella and R L Berger. Statistical Inference. Duxbury Press, 2001.
[9]J A Cortés, J L Palma, and M Wilson. Deciphering magma mixing: The

application of cluster analysis to the mineral chemistry of crystal puopulations.
Journal of Vulcanology and Geothermal Research, 165:163–188, 2007.

[10]L DeSouza, G Diehl, M J Rodrigues, J Guo, A D Romaschin, T J Colgan, and
K W Siu. Search for cancer markers from endometrial tissues using differentially
labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and
tandem mass spectrometry. J. Proteome Res., 4:377–386, 2005.

[11]D K Ferris, S C Maloid, and C C Li. Ubiquitination and proteasome
mediated degradation of polo-like kinase. Biochemical and Biophysical Research
Communications, 252(2):340–344, 1998.

[12]S Fields and O Song. A novel genetic system to detect protein-protein interactions.
Nature, 340(6230):245–246, 1989.

[13]K Ghoshal, J Datta, S Majumder, S Bai, H Kutay, T Motiwala, and S T Jacob.
5-aza-deoxycytidine induces selective degradation of dna methyltransferase 1
by a proteasomal pathway that requires the ken box, bromo-adjacent homology
domain, and nuclear localization signal. Molecular and Cellular Biology,
25(11):4727–4741, Jun 2005.

[14]E G Hill, J H Schwacke, S Comte-Walters, E H Slate, A L Oberg, J E Eckel-
Passow, T M Therneau, and K L Schey. A Statistical Model for iTRAQ Data
Analysis. Journal of Proteome Research, 7(8):3091–3101, 2008.

[15]O N Jensen. Interpreting the protein language using proteomics. Nature Reviews
Molecular Cell Biology, 7(6):391–403, 2006.

[16]W Jiang, G Jimenez, N J Wells, T J Hope, G M Wahl, T Hunter, and R Fukunaga.
PRC1: A human mitotic spindle-associated cdk substrate protein required for
cytokinesis. Mollecular Cell, 2(6):877–885, 1998.

[17]S C Johnson. Hierarchical clustering schemes. Psychometrika, 32(2):241–254,
1967.

[18]P-Y Ke and Z-F Chang. Mitotic degradation of human thymidine kinase
1 is dependent on the anaphase-promoting complex/cyclosome-Cdh1-mediated
pathway. Molecular and Cellular Biology, 24(2):514–526, 2004.

[19]V G Keshamouni, G Michailidis, C S Grasso, S Anthwal, J R Strahler, A Walker,
D A Arenberg, R C Reddy, S Akulapalli, V J Thannickal, T J Standiford, P C
Andrews, and G S Omenn. Differential protein expression profiling by iTRAQ-
2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition
reveals a migratory/invasive phenotype. J. Proteome Res., 5:1143–1154, 2006.

[20]R W King, J M Peters, S Tugendreich, M Rolfe, P Hieter, and M W Kirschner.
A 20s complex containing cdc27 and cdc16 catalyzes the mitosis-specific
conjugation of ubiquitin to cyclin b. Cell, 81(2):279–288, 1995.

[21]E. Levina and P. Bickel. The earth mover’s distance is the Mallows distance:
some insights from statistics. In Computer Vision, 2001. ICCV 2001. Proceedings.
Eighth IEEE International Conference on, volume 2, pp. 251–256 vol.2, 2001.

[22]L Li, Y Zhou, L Sun, G Xing, C Tian, J Sun, L Zhang, and F He. NuSAP
is ddegraded by APC/C-Cdh1 and its overexpression results in mitotic arrest
dependent of its microtubules’ affinity. Cellular Signalling, 19(10):2046–2055,
2007.

[23]C Lindon and J Pines. Ordered proteolysis in anaphase inactivates PLK1 to
contribute to proper mitotic exit in human cells. Journal of Cell Biology,
164(2):233–241, 2004.

[24]L E Littlepage and J V Ruderman. Identification of a new APC/C recognition
domain, the a box, which is required for the Cdh1-dependent destruction of the
kinase Aurora-A during mitotic exit. Genes & Development, 16(17):2274–2285,
Sep 2002.

[25]T Minka. fastfit, 2004.
[26]C Mollinari, J-P Kleman, W Jiang, G Schoehn, T Hunter, and R L Margolis. PRC1

is a microtubule binding and bundling protein essential to maintain the mitotic
spindle midzone. Journal of Cell Biology, 157(7):1175–1186, 2002.

[27]A L Oberg, D W Mahoney, J E Eckel-Passow, C J Malone, R D Wolfinger, E G
Hill, L T Cooper, O K Onuma, C Spiro, T M Therneau, and H R Bergen Iii.
Statistical analysis of relative labeled mass spectrometry data from complex
samples using ANOVA. Journal of Proteome Research, 7:225–233, 2008.

[28]S-E Ong and M Mann. Mass spectrometry-based proteomics turns quantitative.
Nature Chemical Biology, 1(5):252–262, 2005.

[29]K C Parker, D Patterson, B Williamson, J Marchese, A Graber, F He, A Jacobson,
P Juhasz, and S Martin. Depth of proteome issues: a yeast isotope-coded affinity
tag reagent study. Mol Cell Proteomics, 3(7):625–59, 2004.

[30]D N Perkins, D J Pappin, D M Creasy, and J S Cottrell. Probability-based
protein identification by searching sequence databases using mass spectrometry
data. Electrophoresis, 20(18):3551–67, 1999.

[31]C M Pfleger and M W Kirschner. The KEN box: an APC recognition signal
distinct from the d box targeted by Cdh1. Genes & Development, 14(6):655–665,
Mar 2000.

[32]O Puig, F Caspary, G Rigaut, B Rutz, E Bouveret, E Bragado-Nilsson, M Wilm,
and B Seraphin. The tandem affinity purification (tap) method: a general
procedure of protein complex purification. Methods, 24(3):218–229, 2001.

[33]S Rankin, N G Ayad, and M W Kirschner. Sororin, a substrate of the anaphase-
promoting complex, is required for sister chromatid cohesion in vertebrates.
Molecular Cell, 18(2):185–200, 2005.

[34]G Rigaut, A Shevchenko, B Rutz, M Wilm, M Mann, and B Seraphin. A generic
protein purification method for protein complex characterization and proteome
exploration. Nature Biotechnology, 17(10):1030–1032, 1999.

[35]G Ronning. Maximum likelihood estimation of dirichlet distributions. J. Statist.
Comput. Simulation, 32:215–221, 1989.

[36]P L Ross, Y N Huang, J N Marchese, B Williamson, K Parker, S Hattan,
N Khainovski, S Pillai, S Dey, S Daniels, S Purkayastha, P Juhasz, S Martin,
M Bartlet-Jones, F He, A Jacobson, and D J Pappin. Multiplexed protein
quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging
reagents. Molecular & Cellular Proteomics, 3(12):1154–1169, 2004.

[37]Y Rubner, C Tomasi, and L J Guibas. A metric for distributions with applications
to image databases. In Sixth International Conference on Computer Vision, 1998.

[38]A Seki and G Fang. CKAP2 is a spindle-associated protein degraded by APC/C-
Cdh1 during mitotic exit. Journal of Biological Chemistry, 282(20):15103–15113,
2007.

[39]M Selbach and M Mann. Protein interaction screening by quantitative
immunoprecipitation combined with knockdown (QUICK). Nature Methods,
3(12):981–983, 2006.

[40]X Song, J Bandow, J Sherman, J D Baker, P W Brown, M T McDowell, and M P
Molloy. iTRAQ Experimental Design for Plasma Biomarker Discovery. Journal
of Proteome Research, 00:00, 2008.

[41]S Stewart and G Fang. Anaphase-promoting complex/cyclosome controls
the stability of TPX2 during mitotic exit. Molecular and Cellular Biology,
25(23):10516–10527, 2005.

[42]N C Tedford, F M White, and J A Radding. Illuminating signaling network
functional biology through quantitative phosphoproteomic mass spectrometry.
Briefings in Functional Genomics and Proteomics, 2008.

[43]A Thompson, J Schfer, K Kuhn, S Kienle, J Schwarz, G Schmidt, T Neumann,
R Johnstone, A K A Mohammed, and C Hamon. Tandem mass tags: A novel
quantification strategy for comparative analysis of complex protein mixtures by
MS/MS. Analytical Chemistry, 75(8):1895–1904, 2003.

[44]C W Turck, A M Falick, J A Kowalak, W S Lane, K S Lilley, B S Phinney, S T
Weintraub, H E Witkowska, and N A Yates. The Association of Biomolecular
Resource Facilities Proteomics Research Group 2006 study: relative protein
quantitation. Mol. Cell Proteomics, 6:1291–1298, 2007.

7



Kirchner et al.

[45]A Tzur, S T Liffers, F Monigatti, M Kirchner, B Y Renard, K C Parker, P Ross,
D J Pappin, MW Kirschner, H Steen, and JAJ Steen. A quantitative proteomic
analysis of the mammalian cell cycle identifies targets of the anaphase-promoting
complex. submitted, 2008.

[46]F M White. Quantitative phosphoproteomic analysis of signaling network
dynamics. Current Opinion in Biotechnology, 19(4):404–409, 2008.

[47]N Wicker, J Muller, Kalathur R K R, and O Poch. A maximum likelihood
approximation method for Dirichlet’s parameter estimation. Computational
Statistics & Data Analysis, 52(3):1315–1322, 2008.

8




