
X-GAN: Improving Generative Adversarial
Networks with ConveX Combinations

Oliver Blum, Biagio Brattoli, and Björn Ommer

Heidelberg University, HCI / IWR, Germany
o.blum90@gmail.com

biagio.brattoli@iwr.uni-heidelberg.de
ommer@uni-heidelberg.de

Abstract. Recent neural architectures for image generation are capa-
ble of producing photo-realistic results but the distributions of real and
faked images still differ. While the lack of a structured latent represen-
tation for GANs results in mode collapse, VAEs enforce a prior to the
latent space that leads to an unnatural representation of the underly-
ing real distribution. We introduce a method that preserves the natural
structure of the latent manifold. By utilizing neighboring relations within
the set of discrete real samples, we reproduce the full continuous latent
manifold. We propose a novel image generation network X-GAN that
creates latent input vectors from random convex combinations of adja-
cent real samples. This way we ensure a structured and natural latent
space by not requiring prior assumptions. In our experiments, we show
that our model outperforms recent approaches in terms of the missing
mode problem while maintaining a high image quality.

1 Introduction

One big challenge in computer vision is the understanding of images and their
manifold. Other than discriminative tasks like image/action classification[30, 6]
and pose estimation[5, 2], generative approaches provide a much deeper under-
standing of the nature of the given data. Therefore, the generation of synthetic
data which resembles the real data distribution is major in modern research.

The recent trend of deep generative networks in computer vision led to sev-
eral models capable to produce photo-realistic images [1, 8, 12, 25, 23]. These ap-
proaches are mostly based on Generative Adversarial Networks (GAN) [13] and
Variational Auto Encoders [27] (VAE). GANs are based on an adversarial game
between generator and discriminator, which has been proven successful in gen-
erating realistic images. However, GANs are known to suffer from the missing
mode problem [28, 13]: If the generator becomes strong in producing images of
certain modes the adversarial loss suppresses the generation of more challenging
samples. In contrast to the real distribution, for GANs dense areas in the fake
data distribution can be observed where images are easily generated, while areas
with more difficult samples are not well represented. VAEs are trained to encode
and decode images. They are often applied to tackle mode collapse. To fill the
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Fig. 1. The principle X-GAN setup. For the creation of latent variables that are used
as input of the GAN module, the X-GAN utilities convex combinations of adjacent
discrete samples to create new samples from the continuous manifold. This ensures a
natural representation of the latent space without enforcing a prior to the distribution.

space in between the encoded real data representations, VAEs sample from a
prior. A Kullback-Leibler-divergence loss [15] (KL-divergence loss) pushes the
latent vectors to this prior, that is assumed to match the underlying real distri-
bution. However, this is not necessarily the case: The impact of the overpowering
effect of the regularization term (the prior) on VAE training is often referenced
in the VAE literature [4, 16, 18, 9, 10]. To address the issues of mode collapse
and overpowering effect a combination of VAE and GANs is proposed in several
publications [7, 1, 20]. However, all of the proposed methods either still involve
a KL-divergence regularization [1, 20] or perform the latent vector generation
for the GAN training independent of the AE training such that missing modes
cannot be fully solved [7]. Other methods rely on the strategy of better repre-
senting the latent space [3, 10]. However, they still rely on the idea of fitting prior
distributions. Currently, the challenge of representing the complex manifold of
real images has not yet been addressed satisfactorily.

In this paper, we approach the problem from a different perspective by avoid-
ing any assumption about the probability distribution function but sampling
from the entire continuous latent manifold of the given dataset such that no
modes are missed. In our model, samples are drawn from the full continuous
latent distribution using a non-parametric approach based on a convex combi-
nation of adjacent points in the encoding space, without requiring an explicit
definition of the latent density function. As this novel approach of drawing latent
samples with conveX combinations is our main contribution, we call our model
X-GAN.

The dense representation of the latent manifold, provided by means of the
convex combinations, makes it possible to condition the generator directly using
the position in the latent vectors. Based on this we propose a new method for
conditioning our network.

In our experiments, we show that our model outperforms recent methods in
terms of missing mode and image realism. In the ablation studies, we substan-
tiate the benefits of the convex combination and the conditioning strategy by
illustrating the drawbacks of replacing them with alternative approaches.
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2 Related Work

In this section, we introduce several deep generative architectures that attempt
to tackle the known issues of mode collapse and overpowering effect. We show
that solving both issues with one model is still an unsolved problem.

Variational Auto-Encoder VAEs rely on the idea of compressing their in-
put with an encoder-network and decoding this latent representation with a
generator-network. The network then is trained with an image reconstruction
loss. An additional KL-divergence loss pushes the latent representation to re-
semble a prior distribution, from which samples can be drawn to generate new
images. This approach makes the VAE robust against mode collapse. However,
the underlying true distribution often is poorly represented by the chosen prior
[4, 16, 18, 9, 10]. Moreover, VAEs include a distance metric describing the differ-
ence between original and generated image. An imperfect choice of this distance
metric entails unnatural artifacts in the faked images [11].

Generative Adversarial Network GANs come with a convenient solution for
these problems by learning the loss by an adversarial game between generator
and discriminator, without the requirement of enforcing a prior. However, a
missing control over the latent space easily results in mode collapse [13, 28] as
described in section 1.

GAN+VAE Several recent approaches intend to tackle the previously men-
tioned issues by combining VAEs and GANs [20, 1, 7]. The VAE/GAN trains
a discriminator along with a VAE. As distance metric, for the autoencoder
loss they utilize features provided by the discriminator instead of the pixel-
wise distance metrics. This provides a way to learn a distance metric without
the drawbacks of the GAN training. The cVAE uses a similar approach which
also includes class conditioning. While the the VAE/GAN and the cVAE-GAN
utilize a prior to draw latent vectors from the continuous distribution, in our
model, we use convex combinations. This comes with the advantage of avoiding
the overpowering effect.

The Mode-Regularized-GAN [7] (MD-GAN) suggest training a GAN along
with an autoencoder without using the KL-divergence loss. In the training pro-
cedure, the GAN and the autoencoder are trained alternately with a shared
generator network. The MD-GAN attempts to structure the latent space with
the autoencoder such that all modes are represented in the latent space. The
latent vectors of the GAN module are sampled from a distribution that is inde-
pendent of the encoded image distribution of the autoencoder. Other than the
MD-GAN the encoder of the X-GAN is responsible to define the embedding man-
ifold within the latent space. The latent vectors that are passed to the generator
are sampled from this manifold by applying the convex combination strategy.
As the autoencoder and the GAN sample from the same shared distribution, the
autoencoder also prevents mode collapse for the GAN training.
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Fig. 2. This figure visualizes the X-GAN architecture. During testing, the X-GAN
encodes images x ∈ X using the encoder E into the latent space z ∈ Z. For the creation
of latent variables ẑ, the X-GAN utilities convex combinations of adjacent real samples.
This task is performed by the convex combination sampler CC. The created latent
variables are passed on to the generator G that generates synthetic images x̂. During
the training phase, the images are passed further to a discriminator D, the previously
mentioned encoder E and the classification network Cimg. The network Cemb enforces
class information into the sample by predicting the label ŷ of the latent vectors z. The
colored dashed lines that connect two parameters stand for the loss functions with
which the X-GAN is trained.

Latent Space Based Approaches Apart from combining VAE and GAN,
many recent papers focus on optimizing the latent representation.

To better model the single modes of real data distributions, Dilokthanakul
et al. [10] utilize a Gaussian mixture model instead of a single Gaussian for the
KL-divergence loss. This approach mitigates the issue of overpowering.

The Generative Latent Optimization framework [3] (GLO) represents a slim
generative solution that only relies on one generative network. The latent vari-
ables themselves are optimized along with the generator by an image-reconstruction-
loss. This ensures a solid structured latent space.

The Plug & Play Generative Network (PPGN) [25] involves a network to
sample class conditioned latent variables. This ensures that the network gen-
erates samples of all classes. This strategy reduces the severity of the missing
mode problem as it ensures that all classes are represented in the faked images.

Similarly to the above introduced models, the X-GAN also aims at improving
the latent representation. As we focus on side-stepping the overpowering effect,
other than the Dilokthanakul et al. [10] and Bojanowski et al. [3] we do not
utilize any prior for the latent distribution. Like Nguyen et al. [25] we intend to
support the latent structuring by inducing labels without the requirement of the
concatenation of sparse label vectors to the dense layer information. In contrast
to the PPGN we do not train a conditioning network, but directly encode the
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Fig. 3. The three steps for the convex combination strategy. (a) Chose one latent
vector z ∈ Z (dark blue) from the full latent distribution Z and get z′, the m nearest
neighbors of z in the latent space. (b) Randomly select k samples z′′ ⊂ z′. (c) Get ẑ
as a randomly weighted mean of z′′ (see equation 1).

conditioning information in the position of the latent vector in the embedding
manifold. This supports the encoder finding a solid structure for the latent space
which forms the basis for our convex combination approach.

3 Method

In our model, we use the convex combination strategy to ensure that samples
from the entire manifold are created. This approach has no requirement of as-
suming a prior distribution for the latent space. Thus, our model does not suffer
from the overpowering effect. In this section, we will first describe our novel ap-
proach to directly sample from the data distribution. Afterwards, we illustrate
the model architecture and the training procedure by explaining the utilized loss
functions. Finally, we explain our conditioning strategy in the resulting smooth
latent distribution.

3.1 Convex Combination Strategy

The objective of the convex combination strategy is to provide the generator
with samples from the underlying continuous manifold. As the representation
of photo-realistic images is a high dimensional, complex manifold, a powerful
strategy of drawing samples is required. However, common methods like Kernel-
Density-Estimation or Gaussian-Mixture-Models fail due to the curse of dimen-
sionality: Stone [31] proved that the complexity of any estimator grows exponen-
tially with the dimensionality of the density function. However, drawing samples
from a distribution does not necessarily require the explicit definition of such a
function. A natural approach, in this case, is utilizing neighborhood relations:
We assume that, the space can be approximated as convex for a small neighbor-
hood, such that we can perform a local linear estimation of the manifold. Thus,
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Algorithm 1 Training algorithm for X-GAN

Require: {X,Y }: training set (images, labels). {θE , θG, θD, θCemb , θCimg}: initial pa-
rameters for E,G,D,Cemb, Cimg (Cimg pre-trained on {X,Y } and fixed during the
training). λ: parameter balancing GAN loss compared to the other loss functions.
f(·): image feature extracting function.

1: while θG has not converged do
2: Z ← E(X)
3: Sample {x, y, z} ∼ {X,Y, Z};
4: ẑ ← CCZk,m(z) (see equation 1) with ẑ ∼ Pẑ
5: LE clf ← −Ex∼Pr [y logCemb(E(x))]
6: LEG ae ← |f(xi)− f(G(E(x)))|
7: LGD gan ← −(Ex∼pr [log(D(x))] + Eẑ∼pẑ [log(1−D(G(ẑ)))])
8: LG emb ← |ẑ − E(G(ẑ))|2
9: LG clf ← −Eẑ∼Pẑ [y log(Cimg(G(ẑ)))]

10: θE
adam←−−− −∇θE (LE clf + LEG ae)

11: θG
adam←−−− −∇θG(LEG ae − λLGD gan + LG emb + LG clf)

12: θD
adam←−−− −∇θD (λLGD gan)

13: θCemb

adam←−−− −∇θCemb
(LE clf)

we propose to use random convex combinations of adjacent samples to draw new
points from the continuous manifold.

For a latent vector z ∈ Z, ideally only m directly adjacent neighbors z′

are chosen. Points on an s-dimensional manifold are expected to have m =
2s directly adjacent neighbors (1D: left, right; 2D: left, right, up, down; 3D:
behind, in front, ...). In section 4 we utilize a tool for intrinsic dimensionality
estimation to determine an ideal value for m. The convex combination of several
samples is expected to combine the corresponding individual features. As the
latent manifolds from which we sample are high dimensional (s ∼ 50) we cannot
utilize all directly adjacent neighbors: If too many nearest neighbors are chosen,
they only share the high-level features as the set is too big to produce an image
that exhibits distinct unique features of all individuals. We thus randomly pick k

samples z′′ ⊂ z′. We then create a set of weights wi = |ŵi|∑
i|ŵi| , with i ∈ {1, .., k},

where ŵi ∼ N are drawn from a uniform distribution. Given the simplex of
weights wi we create a sample ẑ by a convex combination of z′′

ẑ =

k∑
i=0

wi z
′′
i : CCZ

m,k(z) , with ẑ ∼ Pẑ. (1)

With the created latent vectors ẑ we fill the space between the discrete latent
representations z and this way reconstruct the full continuous manifold.

3.2 Image Generation Procedure

This section explains how new images are generated with X-GAN. Thereby,
we explain the central role of the convex combination (CC) strategy for guar-
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anteeing the generation of various and realistic images. The utilized network
architecture is shown in figure 2.

Given a set of images X we use the encoder E to produce an embedding
Z = E(X). To create new latent vectors ẑ we utilize our novel CC-sampler
module. It draws samples from the continuous latent manifold which is defined
by the discrete set of image representations Z and thus ensures that no mode
representations are missed. Our convex combination strategy samples directly
from the real manifold without assuming any prior. On the contrary, VAE enforce
a prior on the manifold which may not match the real data distribution, hence it
suffers from the overpowering effect. Finally an image x̂ = G(ẑ) can be produced
using the generator G. Notice that we only need the networks E and G for the
generation of new images.

3.3 Training Procedure

In the following, the training procedure of our proposed method is explained step-
by-step. The summarized procedure is shown in algorithm 1 and a visualization
of the network architecture can be found in figure 2. The notation of the utilized
losses follows the structure LN T, with N as the network which is optimized
using LN T and the T as the loss type.

The parameter λ balances the GAN loss against to the remaining loss func-
tions. We empirically found that further weighting factors do not improve the
results.

Encoder Training Along with the generator, the encoder is updated with an
L1 autoencoder loss on features of the real and the fake images LEG ae (see
algorithm 1 l.7). Therefor, we utilize an image feature extraction function f(·).
For the autoencoder loss, no convex combinations are used in the training. The
reason for this is that the autoencoder is responsible to shape the basic structure
of the latent space. This is done by assigning real images to their corresponding
latent representation. VAE would fill the continuous space in between real image
embeddings with faked samples that minimize the reconstruction error of all
surrounding images. This way of combining features does not necessarily result
in realistic images [11]. Thus, we train the autoencoder with discrete latent
vectors and utilize a learned GAN loss to train the generator to reconstruct
the full continuous distribution defined by convex combinations. Apart from the
autoencoder loss, the encoder is trained to minimize a classification loss LE clf

(see algorithm 1 l.6) to cluster the embedding vectors according to their label y
in the embedding space. This strategy of inducing conditioning helps to structure
the latent space.

GAN Training So far we have a basic encoding space and we trained E and
G to reconstruct the discrete images of the training set. However, we did not
train the generator to produce images from latent vectors which are positioned
in between the discrete image representations. We propose an adversarial loss
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LGD gan (see algorithm 1 l.8) to fill the space in between samples. To gener-
ate input latent variables for the GAN we apply our novel convex combination
module to sample from the continuous manifold.

Stabilizing Loss Functions We propose to additionally train G with an L2
loss LG emb (see algorithm 1 l.9) between the input latent vector ẑ and the
encoded fake image latent vector E(G(ẑ)). This loss can only be minimized if
the generator creates images, that can be mapped back precisely to the latent
space. Thus, sudden jumps from one to the other image in the image space are
suppressed by this loss. This way, a smooth image transition (such as in figure
5) is encouraged.

An additional classification loss LG clf (see algorithm 1 l.10) is applied on the
synthetic images to reward the generation of recognizable objects. Therefore, it
must be ensured that the ẑ (equation 1) is uniquely assignable to one label by
selecting z′′i from the same class.

3.4 Conditioning

An important feature of generative models is the ability to produce samples
that are conditioned on certain characteristic classes. The common procedure of
passing a label vector to the generator is to concatenate it to one or several layers
of the network. Although this forms a joint representation, neural architectures
have problems to capture the complex associations between the two different
modalities of sparse and dense information [19]. This is especially the case for
fine-grained datasets where the number of classes becomes very large. A more
natural way of conditioning, that does not require sparse information, would
be to directly encode the class label in the position of a latent vector within
the manifold. However, commonly, the full continuous manifold in latent space
is not well defined, but a prior distribution is assumed from which samples
are drawn. Our model, thanks to the convex- combination strategy, produces
a latent space that allows a more natural conditioning of the latent vectors by
their position in latent space: The embedding classifier of our model clusters the
latent representation according to their class label by means of a classification
loss. This supports the encoder in creating a well structured latent space.

In practice, given a set of images x from a common class y we can assume
that their embedding vectors z = E(x), can be found in the same cluster in the
latent space. Thus, a new sample ẑ produced by equation 1 will also be placed in
this cluster and is naturally conditioned by its position in latent space. This way
not only class conditioning but also fine-grained mode conditioning is possible
through the encoding in the latent vector.

In table 3 and figure 6 (e) we show that our conditioning method produces
images that are more realistic than those gained with models utilizing the ap-
proach of label concatenation.
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4 Experiments

In this section, we describe the experimental setup, the datasets and the model
parameters used. Moreover, we explain our evaluation procedures and present
their results. In several ablation experiments, we illustrate the advantages of
convex combination based sampling.

4.1 Implementation Details

The encoder, generator, and discriminator are all implemented as 6-Layer-CNNs.
They utilize batch-normalization [14] and leaky-ReLU as activation function.
Cemb is a fully connected network with two layers. Cimg is a VGG-19 network
[30], pre-trained on the given dataset and fixed during training. This ensures
useful gradients from the beginning of training and avoids overfitting in a later
stage. As a feature descriptor f we choose features from intermediate layers of the
VGG network as proposed by Chen et al. [8]. Additionally, we add the features
of a second VGG-19 network that is trained as a discriminator along with the
rest of the model. We set the latent variable size to 512 and the batch size to 80.
We choose λ = 2. That means that we weight the GAN loss twice as high as the
remaining loss functions. We train the network with the Adam optimizer [17]
with a learning rate of 10−4. For training we only need 16 epochs, what is far less
then what is required to train the cVAE-GAN (∼ 50 epochs) or the MD-GAN
(∼ 100 epochs). For the convex combination sampling, we set the parameters m
(total number of nearest neighbors) by estimating the intrinsic dimensionality
s of the embedding manifold with a Maximum Likelihood Estimation [21]. For
our latent embedding we find a mean (over the classes) of s = 48 resulting in
m ≈ 100 (see 3.1). To maintain individual features for each sample we draw ẑ
as randomly weighted convex combinations of k = 5 adjacent samples. In the
evaluation we compare our model with cVAE-GAN [1]1 and MD-GAN [7]2.

Our model is applied to two different datasets: The FaceScrub dataset [26]
with images of 530 different individuals and the 102 Category Flower dataset
[24]. For the FaceScrub dataset, we followed the alignment procedure suggested
by [1]. We want to show that we can maintain a high image quality even for
non-aligned image data. Thus, other than Bao et al. [1] we do not perform any
preprocessing on the 102 Category flower dataset.

4.2 Visual Image Quality Comparison

In figure 4 we compare our results with MD-GAN and cVAE-GAN. For the Face-
Scrub dataset, the MD-GAN generations exhibit noise and artifacts while the
cVAE-GAN and the X-GAN produce photo-realistic images. While the cVAE-
GAN performs well on the FaceScrub dataset the generated flowers look worse.
In the cVAE-GAN paper [1] the authors also evaluate their model with these two

1 cVAE-GAN implementation: https://github.com/tatsy/keras-generative
2 MD-GAN implementation: https://github.com/wiseodd/generative-models
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Fig. 4. Comparison of generated samples from different methods on the (1) FaceScrub
dataset [24] and (2) 102 Category Flower dataset [26] (bottom row). The images are
generated by (a) MD-GAN [7], (b) cVAE-GAN [1], (c) X-GAN (this work) (d) real. Us-
ing the MD-GAN artifacts are clearly visible, the cVAE-GAN and the X-GAN produce
photo-realistic images for the aligned faces. For the more challenging flower dataset,
which has not been preprocessed, the image quality for the X-GAN is better than for
the cVAE-GAN

.

datasets and present appealing results. However, other than we do they align the
images of both datasets. The fact that still photo-realistic images are generated
with X-GAN for the unaligned flower dataset shows, that our model is robust
against the missing alignment.

4.3 Discriminator Score for Missing Mode Evaluation

Che et al. [7] propose to utilize a third party discriminator D∗ to quantify the
robustness of a model towards the missing mode problem. After training D∗ on a
set of real and fake images the discriminator is applied to a set of test images. The
mode of the images that are clearly recognized as real (D∗ ≈ 1) is obviously not
represented in the fake image distribution. Thus, the number of test images for
which D∗ ≈ 1 serves as a proxy for the degree of mode collapse. As this approach
requires a strong discriminator D∗ we use the FaceNet [29]3 which is trained on
the CASIA dataset [22] to produce a face embedding. On top of the FaceNet,
we stack a two-layer neural network (D∗). For our experiments, we used three
different thresholds t ∈ {0.9, 0.95, 0.97} that determine for which D∗ score an
image is assumed to be not represented in the fake data. The mean over five runs
of this experiment is documented in table 1. In total 4412 test images are used

3 weights/code for FaceNet: https://github.com/davidsandberg/facenet
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Table 1. This table shows the D∗-score for the MD-GAN [7], cVAE-GAN [1] and
X-GAN (our model). To obtain this score a third-party-discriminator is trained on a
set of real and a set of fake images. Afterwards, it is evaluated on a set of test images.
Test samples for which D∗ ≈ 1 are assumed not to be represented by the faked images.
Thus, a high D∗-score is a proxy for mode collapse.

Model t = 0.90 t = 0.95 t = 0.97
[# samples] [# samples] [# samples]

MD-GAN 2737± 34 2299± 62 1952± 64
CVAEGAN 325± 47 87± 22 28± 14
X-GAN 134± 32 15± 10 2± 2

for the experiment. For a strict threshold of t = 0.97, our model exhibits almost
no missing representations anymore (2 ± 2), while underrepresented modes for
cVAE-GAN are found for 28 ± 14 images. The MD-GAN, even for t = 0.97,
collapses to almost 50% of the existing modes.

4.4 Image Morphing

The embedding loss (algorithm 1 l.9) ensures that a smooth transition in the
latent space corresponds to a smooth transition in the image space. To visually
underpin this, in figure 5 we show the results of an image morphing experi-
ment. The corners of the shown image array are real images while the space in
between is filled with fake samples. The fact that this is only noticeable in a
detailed investigation shows that our synthesized images smoothly supplement
the underlying real distribution.

Table 2. This table shows the inception score computed on FaceScrub dataset [24] as
a mean of 5 × 100K generated images.

Model Inception Score

Real data 2.372± 0.003
cVAE-GAN [1] 1.757± 0.002
X-GAN 1.831± 0.003

4.5 Inception score

The realism of generated images is characterized by a high diversity in the distri-
bution and easily recognizable objects. Salimans et al. [28] propose the Inception
Score which relies on the output score of a pre-trained InceptionNet[32]. A high
diversity is characterized by a high entropy of the overall score distribution,
while a recognizable object corresponds to a low entropy for a single image.
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Fig. 5. This figure shows morphing experiments. For each of the shown image-arrays,
the four corner images are real and the space in between is filled with fake images
gained from weighted convex combinations. The corner images of the upper right image
originate from unseen test data. Especially for the illustrated faces, the jump from real
to fake data is hardly visible. On a closer inspection of the flower image-arrays, one can
recognize the smoother background. The fine features of the flower itself are preserved.
This shows that the generated images complement the underlying real distribution
well.

In table 2 we compare the inception score of generated images of our model
with cVAE-GAN for the faces dataset. Images generated with our model achieve
higher scores.

4.6 Ablation Study

In this section, we quantitatively (see table 3) and qualitatively (see figure 6)
evaluate the impacts of removing or replacing parts of X-GAN. Here, we not only
illustrate the benefits of the proposed convex combination strategy compared to
conventional methods but also present an unsupervised version of the X-GAN.

Unsupervised X-GAN An unsupervised version of the proposed X-GAN can
be obtained by removing the losses LE clf and LG clf. Table 3 shows that our
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Fig. 6. This figure shows image morphing experiments for each of the performed abla-
tion studies. The images in the corners of the image array are real, while the space in
between is filled with faked images. (a) X-GAN, (b) unsupervised X-GAN, (c) KL-Loss,
(d) KDE-sampling, (e) concatenate label vector. For each of the image arrays, the four
corner images are real, while the space in between is filled with faked images. (1), (2)
different individuals in the corner images, (3) different images of the same individual
in the corner images.

model still performs better then the supervised cVAE-GAN. Even though The
discriminator score deteriorates, it is still on the same scale as the cVAE-GAN. In
the visual evaluation (figure 6 (b)) it can be seen that the generated images are
still sharp and detailed. However, some exhibit artifacts that are not observed
for the original X-GAN.

KL-Loss In this experiment, the convex combination strategy is replaced by the
KL-loss based approach proposed by Rosca et al. [27]. This approach enforces a
prior to the latent distribution. This results in a deterioration of the inception
score and the discriminator score (see table 3). In the visual analysis in figure 6
(c) it can be seen that no distinct facial details can be found in the generated
bury samples anymore. Unlike the X-GAN generations, there is a clear jump
between from the real to the fake images visible.

KDE Sampling The kernel density estimation (KDE) is a non-parametric
approach to estimate the continuous distribution from a set of discrete samples.
In this experiment, the creation of latent vectors with convex combinations is
replaced by KDE sampling. However, the estimation of the high dimensional
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latent space may not sufficiently represent the complex manifold (see section
3.1). This explains the deterioration of the inception and discriminator score
(see table 3) compared to the convex combination sampling. The visual artifacts
in the generated images underpin the quantitative observations (see figure 6 (d)).

Conditioning by the Concatenation of Label Vectors Beside the convex
combination strategy, another special feature of the X-GAN model is the novel
conditioning approach (see section 3.4). In this ablation experiment, we omit
the loss LE clf and condition the latent variables by the concatenation of a label
vector to the latent vector. Neural architectures face difficulties when mixing up
sparse and dense information. Thus, as it can be seen in table 3 the conditioning
by concatenation performs significantly worse than the X-GAN regarding the
inception score and the discriminator score. In figure 6 (e) a close look shows that
the faked images in this ablation study exhibit less distinct features compared
to the original X-GAN. As the label vector is discrete, it is pointless to morph
between images of different classes. Thus, only row (3) is shown.

Table 3. This table shows the quantitative results of the ablation study. The evaluation
metrics are the inception score (see section 4.5) and the discriminator score (see section
4.3). The evaluation approves that the convex combination strategy outperforms con-
ventional approaches (KL-loss and KDE-sampling). Moreover, the superiority of the
novel conditioning approach compared to the conventional concatenation of label and
latent vectors is approved. Finally, we show that also an unsupervised version of the
X-GAN achieves decent inception and discriminator scores.

Model Inception Score D∗ Score
[# samples]

X-GAN 1.831± 0.003 15± 10
unsupervised 1.795± 0.003 153± 28
KL-loss 1.612± 0.002 497± 43
KDE-sampling 1.711± 0.003 203± 34
concat. label 1.727± 0.003 76± 21

5 Conclusion

In this paper, we propose a novel strategy of generating a latent vector represen-
tation by convex combinations. This enables us to reconstruct the full continu-
ous distribution of the manifold defined by the given dataset. We evaluate our
method on two datasets. With various qualitative and quantitative evaluation
approaches, we show the X-GAN architecture represents a major step forward
in terms of tackling the issue of mode collapse and the overpowering effect.
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