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Abstract. This contribution proposes a compositionality architecture
for visual object categorization, i.e., learning and recognizing multiple
visual object classes in unsegmented, cluttered real-world scenes. We pro-
pose a sparse image representation based on localized feature histograms
of salient regions. Category specific information is then aggregated by
using relations from perceptual organization to form compositions of
these descriptors. The underlying concept of image region aggregation
to condense semantic information advocates for a statistical representa-
tion founded on graphical models. On the basis of this structure, objects
and their constituent parts are localized.

To complement the learned dependencies between compositions and
categories, a global shape model of all compositions that form an ob-
ject is trained. During inference, belief propagation reconciles bottom-
up feature-driven categorization with top-down category models. The
system achieves a competitive recognition performance on the standard
CalTech databasdl.

1 Introduction

The automatic detection and recognition of objects in images has been among
the prime objectives of computer vision for several decades. There are several
levels of semantic granularity on which classification of objects can be conducted,
e.g. recognizing different appearances of the same object as opposed to different
representations of the same category of objects. Object categorization aims at
recognizing visual objects of some general class in scenes and labeling the images
accordingly. Therefore, a given set of training samples is used to learn category-
specific properties which are then represented in a common model. Based on
this model, previously unknown instances of the learned categories are then to
be recognized in new visual scenes.

The large variations among appearances and instantiations of the same visual
object category turn learning and representing models for various categories into
a key challenge. Therefore, common characteristics of objects in a category have
to be captured while at the same time a great flexibility with respect to variabil-
ity or absence of such features has to be offered. Consequently, we propose a sys-
tem that infers scene labels based on learned category-dependent agglomerations
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of features which are robust with respect to intra-class variations and are thus
reliably detectable. This approach to categorization has its origin in the princi-
ple of compositionality [9]. It is not only observed in human vision (see [2]) but
also in cognition in general that complex entities are perceived as compositions
of simpler, more unspecific, and widely usable parts. Objects are then defined
by their components and the relations between those components. Therefore, the
relationships between parts compensate for the limited information provided by
each individual part. Moreover, a comparably small number of these lower-level
constituents suffices to enable perception of various objects in diverse scenes. We
like to emphasize that we see key contribution of our approach in the probabilistic
coupling of different components which have been discussed in the literature. The
homogeneity of this compositionality architecture and the common probabilistic
framework for information processing yields the demonstrated robustness which
we consider indispensible for object recognition.

Our architecture detects features of salient image regions and represents them
using a small codebook that has been learned on the training set. Consecutively
relations between the regions are acquired and used to establish compositions
of these image parts. Therefore the part representations, the compositions, as
well as the overall image categorization are all combined in a single graphical
model, a Bayesian network [I9]. Thus the probabilities of compositions and over-
all image categorization can be inferred from the observed evidence using model
parameters that are learned from the training data. This learning is based on
category labels of complete training images as the only information, e.g., im-
ages labeled as belonging to the car category contain a car somewhere in the
image without marking the car region specifically. Therefore, the intermediate
representation, that is the set of relevant compositions, is learned with no user
supervision. Furthermore, the spatial configuration of all object components of a
given category are learned and captured in a global, probabilistic shape model.
Categorization hypotheses are then refined based on this information and objects
can be localized in an image. The architecture has been trained and evaluated on
the standard CalTech database (cars, faces, motorbikes, and airplanes). An addi-
tional background category of natural sceneries from the COREL image database
has been incorporated for learning the hidden compositions. In summary, the ar-
chitecture combines bottom-up, feature-driven recognition with top-down, cate-
gory model driven hypotheses in a single Bayesian network and performs them
simultaneously during belief propagation to infer image categorization.

This contribution outlines our approach in Section Bl An evaluation of the
categorization model follows in Section M before we conclude this presentation
with a final discussion. Related work is summarized in the next section.

2 Related Work

Object categorization has previously been mainly based on local appearance
patches (e.g. [I,12L13L[6L7]). That is, image regions are extracted, converted to
grayscale and subsampled to obtain limited invariance with respect to minor vari-
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ations in such patches. The resulting features are clustered to acquire a codebook
of typically some thousand local patch representatives that are category specific.
To incorporate additional information beyond extracted local patches and
features, a sequence of recognition models have been proposed in the class of
constellation models. Originally, Fischler and Elschlager [8] described a spring
model with local features to characterize objects. In the same spirit, Lades et
al [TI] proposed a face recognizer which has been inspired by the Dynamic Link
Architecture for cognitive processes with a neurobiologically plausible dynamics.
Similar to this model, Weber et al. [2I] have introduced a joint model for all
features present in an object. Fergus et al. [7] extend this approach and estimate
the joint spatial, scale, appearance, and edge curve distributions of all detected
patches which they normalize with respect to scale. However, due to the complex-
ity of the joint models used by these approaches, only a small number of parts can
be used. In contrast to this, Agarwal et al. [I] build a comparably large codebook
of distinctive parts and learn spatial configurations of part tuples which belong
to objects of a single category. However, since the individual appearance patches
are highly specific the joint model is restricted in terms of its generalization
ability and requires large training sets. To overcome these difficulties, Leibe et.
al [I2/[I3] estimate the mean of all shifts between positions of codebook patches
in training and test images. Using a probabilistic Hough voting strategy one ob-
ject category is distinguished from a background category. Moreover, the spatial
information is used to segment images and to take account of multiple objects in
a scene. We further refine this approach and reconcile conflicting categorization
hypotheses proposed by compositions of parts and those proposed by spatial
models. Therefore, compositions and spatial models are coupled in a Bayesian
network and beliefs are propagated between them in an alternating manner.
The approach in [I2] to incorporate top-down information into segmentation
has been proposed previously by Borenstein and Ullman in [5] where learned ob-
ject fragments are aligned based on bottom-up coherence criteria. This improves
especially segmentation boundaries, but they do not use this process for recogni-
tion. In [4] an extension is presented that uses the sum-product algorithm [19}[10]
to solve local contradictions and to obtain a globally optimal segmentation.
The approach of forming an object representation based on compositions of
unspecific, and reliably detectable features has strong support by visual cog-
nition [2]. Geman et al. [9[3] present this concept in the context of stochastic
grammars and use it for recognizing handwritings. However, compositionality
in the scenario of object categorization is a novel technique. In [I8] we have
proposed an architecture for forming compositional grouping hierarchies based
on the psychological principles of perceptual organization [I4]. Therefore differ-
ent types of perceptual relations between parts are established to build salient
compositions of reduced description length and increased robustness.

3 Categorization Based on Interacting Compositions

Our architecture which represents compositionality in a graphical model for
performing object categorization has several stages. The following sketches the



238 B. Ommer and J.M. Buhmann

Interest  Salient Feature  Localized

Image-----=-5-----~. o mmemmmmees === .
& point detect.regions extraction histograms N
. : Detecting SN
------------- e —————— ==
Object relations Y E
location i T
)
sz PR
NE i 22
] a
Qh% [ S~y -ll.
1 = QO
| i | 1w o U,
Image  Categori- .. Forming i |W
————— Compositions —
C’Oﬂ"lp()Sll‘lOi‘lS

Q é@ Category  zation
- 'T-.
A K’ LY [

Fig. 1. Outline of the processing pipeline and information flow. Belief is being propa-
gated along the solid lines, whereas the dotted ones indicate the capturing of evidence.

recognition process and states how learning is involved (see Figure[ll): At first a
scale invariant Harris interest point detector is used [16] to detect salient image
regions. Every region is then captured by several feature histograms, each being
localized with respect to the interest point. The features are represented using a
probability distribution over a codebook that has been obtained by a histogram
quantization in the learning stage. This codebook captures locally typical fea-
ture configurations of the categories under consideration. In a next step relations
are detected between the regions and are being used to infer compositions. This
inference is based on previously learned category specific grouping probabilities.
Thereafter, all these compositions are taken into account to yield the overall
categorization probability for the image. In addition to a maximum a-posteriori
estimate for the category, this also yields a confidence in this classification. Fi-
nally, a learned model of object shapes is used to infer the object position in the
image based on all compositions and the categorization hypothesis. This spatial
probability distribution is in turn used to refine compositions and overall catego-
rization. Thereby, both bottom-up image classification which depends on features
and top-down recognition which depends on category models are corroborating
another by running in an interleaved manner during belief propagation.

The following section gives a detailed account of the different stages and de-
scribes the learning of models which are underlying the inference procedure used
for recognition with the network illustrated in Figure2l Due to the independence
properties represented by this Bayesian network, the categorization probabilities
factorize and their computation is split into separate parts [19]. This factorization
is significant to dividing up the procedure into the different stages and making
inference feasible. In [I9] a message-passing algorithm is introduced that propa-
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Fig. 2. Illustration of the Bayesian network. The evidence nodes (shaded variables) are
E = {e;};U{rij, Xij }<i,j>. Where < i, 7 > denotes pairs of parts that are agglomerated
into compositions—the dotted structure is therefore replicated for all these tuples, see
text for details.

gates evidence through polytrees to estimate the belief of unobserved variables,
that is their posterior given the evidence. For some random variable Y it is

BEL(y) == P(Y = y|E) . (1)

where F denotes the observed evidence. Moreover, it has been widely advocated
that this so called sum-product algorithm [I0] yields good approximations even
for Bayesian networks with loops (cf. [I7]).

3.1 Localized Feature Histograms for Compositionality

As outlined above, representations of object categories have to deal with large
intra-class variations. However, the local appearance patches that have been
widely used in the field of object categorization are basically subsampled image
patches. The clustering that is then performed to obtain patch representatives
is usually based on normalized grayscale correlation whereby invariance to illu-
mination changes of patches as a whole is obtained. However, since the resulting
invariances are just established by a global subsampling and intensity normaliza-
tion, translations or local alterations still have an overproportional influence on
the complete feature. Moreover, due to the low-pass filtering, only information
on the strongest edges is preserved while the remaining patch content is blurred.

To overcome these problems we follow the concept of compositionality [9]
where models for complex objects are decomposed into more unspecific, ro-
bustly detectable and thus widely usable components. This strategy results in
fairly short representations for components and facilitates robust estimation of
the statistics that model the grouping of parts. This section starts by outlin-
ing the part representation, while later sections continue to present relations
and compositions.
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Fig. 3. Sketch of localized feature histograms

A crucial problem of forming a scene representation is the trade-off between
its invariance properties, e.g. to varying influences of the imaging process, and
its specificity for a certain task, e.g. distinguishing object categories. As delin-
eated above, current approaches to categorization base their class recognition
mainly on highly distinctive local appearance patches (e.g. [IL[12L[6]) and in-
corporate only limited invariance with respect to alteration of patch contents.
An alternative approach at the other end of the modeling spectrum is that of
using histograms over complete images (cf. [20]). Thereby, utmost invariances
with respect to changes of individual pixels can be obtained. In conclusion, the
former approach facilitates almost perfect localization while the latter one of-
fers maximal invariance with respect to local distortions. We therefore aim at a
representation whose invariance properties are transparently adjusted between
these two classical extremes and add the specificity lost by invariance through
the relations that are used for forming the compositions.

To process an image, we start by applying the interest point detector to ob-
tain some 102 to 10® interest points together with rough local scale estimates.
Although our implementation incorporates multiple scales, our current approach
is based on a single estimated scale selected by the interest point detector. There-
fore we extract quadratic image patches (with a side length of 10 to 20 pixel
depending on scale) and subdivide them into a number of subpatches with fixed
location relative to the patch center (see Figure [). In each of these subwin-
dows three types of marginal histograms are computed (four bins allocated for
each), measuring edge strengths, edge orientations, and color. The statistics of
each feature channel are estimated independently from another to make the es-
timates robust by having enough data support. In the following, the vector of
measurements e; denotes the combination of the features extracted in all the
subpatches at interest point ¢. These vectors serve as evidence in our Bayesian
network. The trade-off between invariance and localization is represented by the
number of subpatches—in the current implementation a patch is divided up into
four of these subwindows.

The proposed representation differs from the SIFT features [I5] not only in
that color is used. Whereas SIFT features aim at distinguishing different in-
stances of the same object from another, we seek a representation that is invari-
ant to the specificities of individual object instances and environment configura-
tions. To obtain a small codebook of atomic representatives for compositionality,
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we reduce the complexity of the very features whereas the other approach would
have to perform this indirectly by clustering in a high-dimensional space with
few prototypes.

3.2 Codebook Representation of Atomic Compositional Parts

To facilitate a robust estimation of statistics in subsequent stages of the architec-
ture, a small codebook for features is generated during learning. This set forms
a representation of atomic compositional parts. The codebook is generated by
clustering the features detected in training images of all the different categories
with k-means—resulting in a set of 300 centroids in our current implementation.
It should be emphasized that this representation is shared by all the different
categories. During recognition the squared euclidean distance d,(e;) of a mea-
sured feature e; to all the centroids a, from the codebook is computed. The
objective is to represent measurements not merely by their nearest prototype
but by a distribution over the codebook, thereby leading to increased robust-
ness. Now, for each measurement e;, a new random variable F; is introduced
that takes on cluster indices v as its values. Each of these variables is coupled
with the corresponding measurement using the same Gibbs distribution [22]

P(F; = v|e;) := Z(e;) *exp (—dy(e;)) , (2)
Ze) =Y exp(—due) . 3)

Subsequently, P(F; = v) is abbreviated using its realization f; = v and simply
writing P(f;) which models the first stage of the Bayesian network in Figure 2

3.3 Forming Compositions

The part representations have to be augmented by additional evidence. There-
fore, relations between image regions are taken into account. From the various
principles of perceptual organization, investigated in [18] for grouping processes,
we apply good continuation. This concept basically groups those entities together
that form a common smooth contour. Hence we consider pairs of patches which
lie on a common edge curve and measure their distance. To facilitate a later
robust statistical estimation, this distance is discretized into three ranges (i.e.
close/medium/far) which depend on a histogram over all these distances mea-
sured in the training data. The edge curves are obtained by performing Canny
edge detection twice, once with a scale parameter that is the mean of the lower
half of all scales detected at the interest points, and once with scale being equal
to the mean of the upper half. The edge images are then added up. Now consider
two patches at interest points ¢ and j. If they are observed to lie on the same
contour and have a discretized gap of r;; they establish the relation R;; = ry;.
The two parts are then forming a composition which we denote by < i,j >, i.e.,

< 1i,j >< part i & part j form a composition . (4)
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Since the relations between image regions are observed, all the random variables
R;; enter as evidence into the Bayesian network in Figure 2l It should be em-
phasized that this is a sparse set of nodes—iff both patches lie on a common
contour, such a random variable is introduced. In conclusion, a grouping based on
such relations incorporates additional edge information that takes compositions
beyond a mere proximity or co-occurrence grouping.

Based on the detected relations the following modelling heuristic describes
how compositions of parts are formed. Let the random variable C;; represent a
composition of the two image regions 7, j. Each such composition is of a certain
category. That is, it has a certain state c¢;; € Cc, where this state space of
compositions is a superset of the set C; = {face, airplane, ...} of all categories
for images, i.e. C; C Cc. Consider the illustrating example of an image that
is recognized to contain a motorbike. Then compositions representing subparts
such as tires might be added to the set of allowed image categories. In our current
implementation both sets differ by an additional category for background that
we have incorporated for compositions, i.e. Cc = C; U {background}.

The distribution of a composition of the two parts ¢, 7 depends only on the
representations of the involved parts, their relation, as well as on the catego-
rization of the image, denoted by C!, where ¢! € C;. Thereby, the invariances
represented in the Bayesian network from Figure 2] are reflected,

P(Cij = cij| F; = fi, Fy = fj, Rij = rij, CT =) . (5)
All C;; are assumed to be identically distributed and this distribution is split
into
P(cij|fis fj,mij, ") o< P(c!|eig) P(eijl fis f7i5) (6)
using Bayes formula and dropping a normalization constant. The first factor
models category confusion probabilities which are assumed to be independent
from features and relations (P(c!|c;;) = P(c!|eij, fis fi,7i5)) when compositions
ci; are given. With no further assumptions on categories, we have made the
following choice,

|Cr|~t, if ¢;; = background
P(c!eij) =<, if ¢ = ¢ (7)
1—mn, otherwise .

In our current implementation we simply set = 1. The second distribution in
Eq. (@) is the categorization probability of compositions: The underlying non-
parametric model is obtained in the learning stage by processing all the training
images as follows: for each detected grouping, the category label of the whole
image is taken as c;; and the distribution is estimated from the empirical his-
togram of all observed compositions. Figured and Bl visualize the category beliefs
of compositions for the different classes.

3.4 Modeling Object Shape

In the following, a model of the spatial configuration of object components is
presented. This model is used to refine the image categorization by propagating
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Fig. 4. Categorization belief of compositions. For each composition c;;, (b) displays
P(C;; = car|E) at the position of patches ¢ and j. Image regions that are not used
to form compositions are displayed with the uniform distribution over all categories.
Regions that are involved in multiple compositions show the average belief of these
compositions. (c¢) Displays the posterior for class face, (d) for motorbike, (e) for airplane,
and (f) for background. Where the last category facilitates a figure-ground segregation
of compositions. (g) Shows the regions selected by the algorithm to categorize the image
as motorbike.

information on the estimated object location. The shape of an object of a given
category is modeled by the displacement s;; of all of its components from its
center x. Letting x;; denote the location of a composition (the midpoint between
its components) detected in the training data, its shift is computed as

Sij = X — Xj. (8)
During learning, the object centers are computed by

x= > > xij- P(Cij = c!|fi fmis) - )

Ictrain data <i,j>€1
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To predict the location of the object center, a Parzen window density estimation
is performed. The probability of a shift, given the features of a composition and
the object category, is represented by the following non-parametric model

N K (s — s(»l»))
1 oN ij
p(S_SIfzvfj7rljvc )_ NIE_I UN . (10)

Here K, is a Gaussian kernel function with diagonal covariance matrix X' = o-1.
Moreover, sl(»l») is the [-th shift vector found in the training data for a composition
of parts represented by (f;, fj, ri;). The number of shift vectors observed for such
a composition in the training set is denoted N = N(f;, f;, ;). Therefore, the

spatial density of the object center given one composition is
p(X = xlfia fja TijyXij, CI) = p(S =X xij|fi7 fj> Tij, CI) . (11)

Using this equation the conditional probability to observe a composition at lo-
cation x;; can be written as

p(xij| fis F1:7mij, €1 %) 0 p(S = x — x45] fi, fis i, 1) p(xXij | fiy fio i) o (12)

To simplify the representation in the graphical model the locations x;; are dis-
cretized on a regular 10 x 10 grid. The latter term is then approximated during
learning by histogramming over the observed positions of compositions in the
training data. Figure [}l gives an example for the estimation of object locations.

-><
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Fig. 5. Spatial density of the object location, given some categorization C*. (b) displays
p(X|{fi, fi, 75, Xij }<ij>, CT = car). In (c) the category CT is face, in (d) motorbike, in
(e) airplane. (f) shows the inferred final belief for the object center position, p(x|E).
Note that the density for the true category in (d) and the final belief are both nicely
peaked at the true center.
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3.5 Inference of Image Categorization

During recognition, loopy belief propagation is performed using the evidence
E = {e;}; U{rij,xij}<ij> to categorize the scene as a whole, i.e. we are in-
terested in the belief of the random variable C. Belief propagation simplifies
the complex problem of optimizing a marginalization of the joint distribution
over all model variables. This is rendered possible by using the independence
properties represented in the graphical model and taking only the resulting lo-
cal interactions into account. To simplify the computation scheme we transform
the Bayesian network from Figure [ into the factor graph (cf. [10]) displayed in
Figure Function nodes represent the conditional probability distributions,
whereas the remaining variable nodes correspond to the random variables of the
Bayes net. To propagate beliefs each vertex in this graph has to compute and
send messages to its neighbors as follows: Consider some variable node v that
has function node neighbors F, and F,,...,Fw, as depicted in Figure
Adjacent to each F,, is again some variable node w; and F, has variable node
neighbors v and w1, ..., u;;. Now an unobserved variable sends messages to its
function node neighbors by taking all the incoming messages into account [10],

oz, (0) 1= [[ o) (13)

If v is an evidence variable and observed to be in state v’ then this message
is just py,— 7, (v) = 1{v = v'}, where 1{.} denotes the characteristic function.
Moreover a function node sends the following messages to its neighbors

pr,—n(®) = Y Folw,ur,. . um) [ ] sy -z (u)) - (14)
Ul .7

oo Ui

Fig.6. (a) Conversion of the Bayesian network from Figure [ into a factor graph
representation. The function nodes F, represent the posterior of the corresponding
random variable, e.g. Fy, = P(file;), see text for details. (b) A simple factor graph
used for illustrating belief propagation.
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The belief of v given all the present evidence F is then the product of all of its
incoming messages

P@|E) o iz, (0) [[ 17 —0l0) - (15)

In conclusion, our architecture propagates beliefs not only in a bottom-up
manner from the observed image features to infer categorization and object loca-
tion. The system also propagates information backwards in a top-down fashion
from object localization and categorization to composition and part hypotheses,
cij and f; respectively. While the bottom-up feature-driven and the top-down
category model driven updates are performed concurrently, hypotheses get im-
proved by finding those which have optimal mutual agreement.

4 FEvaluation

In the following, the proposed architecture is evaluated on the CalTech image
database. During learning, some 700 images are presented to the system together

Fig.7. A simple Bayesian network for categorization used to evaluate the gain of
compositionality

Belief of categorization

Car

Face

Motorbike

Categories of test images

Airplane

Car Face Motorbike Airplane
Categorization

Fig. 8. Category confusion matrix for categorization without using compositionality.
The predicted class is shown on the x-axis, whereas the true class is on the y-axis. This
model achieves an overall classification rate of 82.5%.
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with the image category labels as the only additional information. The test
scenario is then to classify previously unknown images as belonging to one of
the categories. Moreover, a confidence in this categorization is returned.

In order to evaluate the gain of compositionality in categorization, we first
investigate a simpler model. It is based on the same image representation but
with neither compositions nor a shape model (see Figure [7]). Therefore the cate-
gorizations ¢;; of compositions are replaced by the classification ¢; of single parts,
where P(c;|fi,c!) is empirically estimated from the training data in the same
way as the ¢;; in Section B3] Figure B displays the resulting category confusion
matrix. The confidence in a categorization of class ¢! (shown on the x-axis) of
images with a given ground truth category (shown on the y-axis) is visualized
in this figure. Therefore a row represents the beliefs of the different categories

05

Fig. 9. Categorization belief of compositions. For each composition c;;, (b) displays
P(Ci; = car|E) at the position of patches ¢ and j. See Figure @ for details. (c) Shows
the posterior for class face, (d) for motorbike, (e) for airplane, and (f) for background.
Where the last category facilitates a figure-ground segregation of compositions. (g)
Shows the regions that support categorizing the image as car.
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Belief of categorization
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Airplane

Car Face Motorbike Airplane
Categorization

Fig.10. Category confusion matrix for categorization based on the full model with
compositionality and shape. This approach achieves an overall classification rate of
91.7% and has a significantly higher confidence than the previous one. Considering
only the last three categories a recognition rate of 94.4% is achieved (see text for
details). Compare this with the 93.0% reported in [6] for the same three categories.

for one test image. This model achieves an overall correct classification rate of
82.5%. However, the categorization confidence is quite low.

Subsequently, this simple model is to be compared with the full approach
outlined in Section [3l Figure [I0 displays the category confusion matrix of the
model that is based on compositions and their spatial arrangement. When com-
paring the two plots it becomes evident that the system with compositionality
and shape achieves a significantly increased confidence in the correct catego-
rizations. Moreover, the recognition rate has increased to 91.7%. This illustrates
that the relations used for compositions add crucial information to that already
present in the individual parts. As one can see, most of the error results from
falsely classified car images. This is due to the fact that the interest point de-
tector returns only very few votes for the large homogeneous parts of the body
of a car. Most detections are in the background or at the outline of the vehicle.
This is also apparent in the illustration of compositions in Figure [@ Although
for this specific dataset the background features would provide good indications
for the presence of cars, we do not want to introduce such dependencies as they
are to a great deal database specific and would very likely lead to an overfitting
to this image collection. In a future extension of the approach we therefore plan
to revise the interest point detection stage to also incorporate homogeneous re-
gions. When leaving out the car category and considering only the remaining
three ones, the present approach achieves an overall recognition rate of 94.4%.
Compare this with the average recognition rate of 93.0% reported by Fergus et
al. in [0] for the same three categories.
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5 Conclusion and Future Work

Inspired by Geman’s compositionality approach [9], we have devised a novel
model for object categorization on the basis of a Bayesian network. The underly-
ing image representation emphasizes keypoint relations and it accounts for large
intra-class variations as they are usually encountered in general object catego-
rization. Models for compositions and global object shape have been introduced
and tightly combined in a single graphical model to infer image categorizations
based on the underlying statistical framework. As a result, the system not only
propagates information on an image category in a feature-driven, bottom-up
manner. [t also uses category models to corroborate such hypotheses by a model-
driven, top-down inference, thereby reconciling different locally proposed cate-
gorization hypotheses by belief propagation. The system achieves competitive
recognition performance on a standard image database used for categorization.

The approach shows significant potential for future extensions at several
stages. First, feature representation should incorporate multiple scales and seg-
mentation or other prior information to deal with homogeneous regions. More-
over, compositions could be formed in a recursive manner to yield a representa-
tion that is semantically closer to the final image categorization. Also, additional
types of relations should add significant information on the objects present in
a scene. All these refinements are expected to be necessary for large-scale ex-
periments with hundreds of classes and a diverse nature of rigid, articulate and
flexible objects.
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