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Abstract

In surface characterization tasks, the material ratio function is one
of the most important tools and the basis for many parameters defined
in international standards. Yet, the material ratio does not contain
information on spatial features. In this contribution, characterizing
functions that generalize the material ratio function approach to in-
clude spatial features are presented. These functions can be related
to properties such as roughness, fluid flow or connectedness of peaks.
In a second step, two classes of surface models for which these char-
acterizing functions can be calculated analytically are presented. By
comparing measured and analytically calculated functions, one can
estimate model parameters from the characterizing functions, which
then serve as simplified surface descriptors. Finally, the capabilities of
the introduced methods are illustrated by means of simulations and
comparison with experiments.

Keywords: surface texture characterization, areal parameters, random
sets, stochastic geometry

1 Introduction

In the development and production of an industrial part, both the macro-
scopic shape and the microstructure of the surface strongly influence its prop-
erties. For instance, the microstructure influences the wear behavior of parts
in frictional contact or may cause leakage in a gasket. Therefore, the mi-
crostructure has to be crafted carefully by using appropriate surface finish
tools and the production needs to be supervised in order to ensure the quality
of the industrial parts.
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To get an insight into the surface microstructure, various measurement
techniques were developed. The first instruments were tactile profilometers
that record the vertical deflection of a stylus that is moved along a line over
the surface. As the stylus has permanent contact with the surface, it is easily
soiled or damaged.

Furthermore, tactile stylus instruments would usually acquire only a sin-
gle line profile; the analysis of the microstructure has therefore mostly been
limited to two dimensional surface data. More recently, 3D-measuring in-
struments such as interferometry or fringe projection have become available
for surface microstructure inspection. These can acquire an entire 3D height
map at once and store it as a 2D image. The optical instruments are fast
and contactless and are thus well suited for the application in an industrial
environment.

The new 3D measurement devices in combination with fast computers
offer new possibilities: It is now possible to study 3D height maps which
contain much more information than single profile sections, as the latter
could always miss important features of a surface if not recorded in the right
position. As 3D height maps are basically 2D images, virtually all methods
developed in image processing are also applicable to the analysis of surface
microstructure. Techniques include but are not limited to digital filters [6],
spectral analysis [13], texture analysis [18] and topographic feature extraction
[28].

The availability of an abundance of analysis techniques leads to the so-
called “parameter rash” [33], that is the development of too many new,
heuristic, and even irrelevant surface microstructure parameters. Successful
parameters should allow for a stepwise information/data reduction, capture
the characteristics of a surface in a compact way, and have a solid statistical
foundation. The Abbott-Firestone curve is a good example, but captures
no spatial information at all. In the following sections, a novel analysis
technique, which is a direct generalization of the Abbott-Firestone curve is
introduced: Section 2 shows how the Abbott-Firestone curve can be extended
using techniques from stochastic geometry and how the new characterizing
functions can be interpreted; section 3 illustrates how further parameters can
be derived from these, and section 4 demonstrates the applicability of the
proposed technique.
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Figure 1: A surface and a level set. The cutting plane is indicated by a mesh
in the left image.

2 Stochastic geometry

2.1 The study of level sets

The study of level sets is another image processing technique that has proven
its usefulness in many applications. A level set is the result of a thresholding
operation, that is, one cuts the surface at a given height and regards the
points where the cutting plane hits the material as a set. Its complement is
the region where the plane cuts through thin air. Thus, a level set AS(h) is
the set of points in IR2 at which the height of the surface S exceeds the height
h (figure 1). Choosing a threshold above the highest surface peak yields an
empty set; choosing a threshold below the deepest pit yields the full domain.

The simplest feature of a level set is the relative area, also called the
material ratio. This dimensionless value is the ratio between the area of the
subset of the sampling window where material is hit by the cutting plane
and the whole area of the sampling window. The material ratio ranges from
0 to 1. Calculating the material ratio at different thresholds h yields the
material ratio curve (Abbott-Firestone curve, [1]), which is equivalent to the
estimated marginal distribution function of a random process. This curve is
an important tool in surface characterization, and a large part of the surface
characteristics defined in international standards [11] are derived from it (e.g.
Rvk) or have a direct relation (Rq, Rsk, Rku).

Complementary to the material area is the void area, the region where the
cutting plane does not hit the material. This void area represents valleys,
dales or cavities in the surface. The void area is of interest in tribology
as cavities in the surface can serve as lubricant retention pockets. Several
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Figure 2: Three 2D-sets with Euler characteristics χ = 395, 1,−371, respec-
tively. White areas represent material, gray represents void areas.

researchers [22, 24] have used the void area in their experiments. In their
analysis, two kinds of void areas are distinguished: those which are connected
to the border of the workpiece/ measurement window and those isolated
from it. The resulting two area functions have been used in a number of
tribological applications [5, 23].

Apart from the area, one can also investigate the contour length of the
level sets. The contour length obviously contains information on how smooth
the level set is. Sets with many or jagged objects will have a greater contour
length than sets with a few smooth objects. The contour length of a level set
at a fixed height has been used [12] to investigate the surface microstructure
of sheet metal.

In addition to contour length and area, the number of isolated void areas
(i.e. cavities) or isolated material areas (i.e. peaks) is also of interest. It has
been shown [34] that the number of isolated cavities, combined with their
contour length and area, can be used to describe the frictional behavior of
surfaces. The number of peaks of a surface has also been adopted by inter-
national standards [11, 10]. A similar quantity useful for counting objects is
the so-called Euler characteristic χ, sometimes also called the genus, which
counts the number of objects in a level set minus the number of holes in them
(figure 2).

The Euler characteristic has an important interpretation in the context of
percolation [16]. A negative Euler characteristic indicates that the material
is predominantly characterized by isolated holes. Vice versa, for a positive
Euler characteristic, the material would consist mainly of isolated objects.
Thus, for a level set with a very low Euler characteristic, a fluid can be
expected to be trapped in the holes, while it could flow freely in the case
of a high Euler characteristic. Since the Euler characteristic relates to the
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possibility of fluid flow on a surface, it may be of great interest in tribological
applications [29].

Area, contour length and the Euler characteristic of a 2D set are known
in mathematics as Minkowski functionals1. In the following section, it will be
pointed out in detail how these quantities can be used to describe surfaces.

2.2 Minkowski functionals

The Minkowski functionals, sometimes also called intrinsic volumes or Quer-
maß integrals, are functionals that describe the shape of sets in IRd [27]2. For
a set C ⊂ IR2, there exist three such functionals, namely the area A, the con-
tour length C and the Euler characteristic χ which is the number of objects
minus the number of holes. Surprisingly, the three functionals can be calcu-
lated in linear time for discrete binary sets by means of look-up tables [21].
Especially the efficient calculation of the Euler characteristic is remarkable
as it does not require complex image segmentation algorithms as one might
expect. These three functionals have the following properties in common, as
detailed in [15]:

• Additivity : For two sets C1 and C2 ⊂ IR2, m(C1∪C2) = m(C1)+m(C2)−
m(C1 ∩ C2).

• Motion Invariance: For any rotation ρ and any displacement t, m(ρC1+
t) = m(C1)

• Convex Continuity : For a convex set K and a sequence of convex sets
Ki approximating K, also m(Ki) → m(K),

where m is one of the functionals A, C or χ.
A famous theorem by Hadwiger [9] states that on the convex ring, every

additive, motion invariant and convex continuous measure can be written as
a linear combination of the Minkowski functionals. Thus, one can express
every level set characteristic that is additive, motion invariant and convex
continuous in terms of the Minkowski functionals only; other descriptors will
be redundant. This completeness makes the Minkowski functionals a very

1Strictly speaking, they are proportional to the Minkowski functionals, but the con-
stants will be neglected here.

2Thresholding a height map yields a 2D set; hence, only the d = 2 case will be consid-
ered in the following.
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Figure 3: The three characterizing functions for the surface example from
figure 1.

important tool for describing sets. Minkowski functionals have been used to
solve problems in areas ranging from materials science [20, 4] to astrophysics
[14], which strongly encourages an investigation of their usefulness for surface
data analysis.

2.3 Characterizing functions and their interpretation

As described in section 2.1, the Minkowski functionals can be calculated for
all level sets As(h), yielding three functions that can be used to characterize
the surface. The area function is, up to normalization, simply the well known
Abbott-Firestone curve, and the functions describing contour length and
Euler characteristic can be seen as extensions thereof (figure 3)3.

The Abbott-Firestone curve is often summarized in terms of parameters
related to its peak, core and valley part. Similarly, parameters can be derived
from the contour length and Euler characteristic function:

• The contour length allows a deeper understanding of a surface’s rough-
ness than the Abbott-Firestone curve alone, as the latter does not take
spatial information into account. The contour length function can be
used to describe spatial features: For surfaces with smooth slopes it
will have a lower amplitude than for surfaces with short-wavelength
structures. The latter will yield level sets with many small or jagged
objects as the surface will cross the threshold very often. Thus, the
maximal amplitude can be related to the spatial aspect of roughness
(figure 6).

3For a height map with n pixels, all three functions with k levels can be calculated in
O(kn).
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• For high thresholds, χ(h) is a good estimate for the number of peaks
above this threshold. It is known that for Gaussian random functions,
the Euler characteristic of a level set is the number of local maxima
plus the number of local minima minus the number of saddle points
above this threshold. As there are only a negligible number of minima
and saddle points above a high threshold, one can use the Euler char-
acteristic to count peaks. The same result holds for low thresholds,
where one can count pits.

• The Euler characteristic can also be used to define a percolation thresh-
old as the height level where the Euler characteristic function has its
zero crossing, according to the argument in section 2.1. Usually, there
will be only one such height level (figures 5, 7). A high percolation
threshold (it is supposed that the surface data has zero mean) suggests
better fluid retention properties, as the fluid will not be able to move
freely below this threshold.

Overall, these vector-valued parameters express surface properties in a con-
densed and interpretable form. Plotting the functions for different surfaces
under investigation can already reveal a lot about the current task. How-
ever, the functions still might contain irrelevant information, and the main
information content can often be condensed into few scalar-valued parame-
ters4. Second, in practical applications other, more specialized parameters
may sometimes be of interest. For surfaces without observable structures,
general statistical properties such as the covariance function are sufficient
descriptors. On the other hand, for structured surfaces like ground surfaces
or surfaces with embedded particles, the structures’ properties, e.g. the num-
ber and shape of the troughs or particles are of interest.

In the following section, it will be shown how the characterizing functions
can be linked to such features. A systematic investigation is most easily per-
formed using surface models, as these can be tailored to one’s needs. A
finite set of surfaces and the corresponding characterizing functions can be
obtained from Monte-Carlo-simulation. But one can do better: For a broad
class of surface models, the characterizing functions can be calculated ana-
lytically, giving a direct link between model parameters and characterizing
functions.

4This fact is well-known for the Abbott-Firestone curve, which is usually summarized
in terms of a few scalar parameters such as the core roughness depth Rk.
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3 Models for random surfaces

Once the relation between model parameters and characterizing function is
known, the model parameters can be fit such that the deviation between
analytically calculated and estimated Minkowski functionals is minimized.
The empirical Minkowski functionals can then be interpreted in the context
of a specific model. Next, two random models especially suited for technical
surfaces are introduced.

3.1 Random fields

The most frequently used and best established model for random surfaces is
the random field model [19]. In this model, a random height value is assigned
to each point of the reference plane5 according to a joint distribution. The
heights at different points are assumed to depend on each other, thus giving
the possibility to model spatial features. In the following, only stationary and
isotropic random fields will be considered. Stationary random fields have the
same mean in each point, which is assumed to be 0 without loss of generality.
That is, the mean over many realizations is 0 in every point. Isotropy means
that the relation between two points depends only on their distance but not
on the direction of the second point relative to the first. In the following,
two important special cases of random fields will be considered:

• Gaussian random fields (GRF) follow a multivariate Gaussian distri-
bution. For a stationary and isotropic GRF, this multivariate distribu-
tion can be completely characterized by its covariance function, which
depends only on the distance between two points. The use of GRF
is often motivated by the central limit theorem of probability theory
which states (roughly) that the sum of arbitrary independent random
variables tends to a Gaussian distribution. This assumption often ap-
plies to practical situations where the machining process consists of
many independent events, e.g. in shot-blasting.

• In χ2 random fields6, the heights are distributed according to a χ2

distribution with N degrees of freedom. A χ2 distribution is the dis-

5As surface measurements are usually recorded as data on a lattice, the points can be
assumed to lie on a grid, corresponding to the pixels of a height map.

6The χ in “χ2 random fields” should not be confused with the Euler characteristic
which is also denoted by χ. There is no relation between the two.
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tribution of the sum of N squared standardized normally distributed
random variables. For small N , this distribution is asymmetric; for
large N , it tends to a Gaussian distribution. The χ2 field is of interest
because it allows us to model asymmetric distributions. It has been
investigated in [3].

• Similar to the χ2 field, other random fields derived from the Gaussian
allow for an analytical investigation. These fields will not be considered
here; details can be found in [25, 36].

All the random function models mentioned above are derived from the GRF.
Other distributions of practical interest exist, but none of these seem to
be theoretically tractable to the extent of the distributions related to the
Gaussian. The latter seem to be adequate for the modeling of a wide range
of phenomena.

3.2 Boolean models

Random fields model the height distribution in every point of the reference
plane; relations between neighboring points are given by a joint distribution.
This assumption is not adequate for some surface topographies. For example,
consider a ground surface which consists of plateaus separated by troughs.
The direction and depth of the troughs will be random, but as one moves
along the bottom of a trough, it is clear that the next point will have the same
height as the current point. Such a behavior cannot be expressed by random
fields, as relations between neighboring points would always be random. The
Boolean model, instead, offers the possibility to model randomly located
deterministic structures, as observed in the ground surface example.

For instance, some surfaces may be modelled as the union of a set of
independently placed, and potentially overlapping, bumps. The projection
of the bumps’ peaks on an imaginary base substrate yields a pattern of points
that are distributed randomly and independently of each other. Each point
marks the location of one bump.

The Boolean model is based on such a point pattern, more accurately
speaking a Poisson point process [7] in IR2. At each of these random points
(also called germs), a 3D-object (called a grain) of random shape and rotation
is placed7. Associating to each point in IR2 the maximum of all objects’

7The original definition of Boolean models uses a point process in IRn and IRn-grains.
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heights in this point yields a 2D-surface embedded in IR3.
In figure 7, two examples of Boolean models are shown. The bottom one

is the trough model mentioned earlier, while the top one is a realization of
a Boolean model consisting of cylinders of random heights with spherical
caps. This model corresponds to the famous Greenwood-Williamson surface
model [8]. Greenwood and Williamson model the surface as asperities with a
spherical cap having a Gaussian height distribution. Each of these asperities
can be seen as a grain of a Boolean model. The grains’ height distribution
can be chosen to be Gaussian.

3.3 Minkowski functionals of random surface models

For the models presented above, it is possible to calculate the expected
Minkowski functionals in terms of the models’ parameters. In the follow-
ing, h will denote the height of the level set.

Gaussian random fields For isotropic stationary zero-mean GRF with
certain smoothness constraints, the analytical formulae for the expected
Minkowski functionals are [2, 31]

A(h) = Φ
(

h
σ

)

C(h) =

√
2|τ |
π

exp
(
− h2

2σ2

)
(1)

χ(h) = h√
2πσ

|τ |
2π

exp
(
− h2

2σ2

)

where Φ denotes the cumulative distribution function of the standard normal
distribution, σ the standard deviation and τ the second derivative of the
covariance function evaluated in 0. Note that the area function depends only
on the standard deviation σ, while contour length and Euler characteristic
are determined only by σ and the second derivative of the covariance function
in 0.

χ2 fields For χ2 fields with N degrees of freedom, one gets [25]

A(h) = 1 − P
(

h
2σ

, N
2

)

The union of all grains yields a IRn random set. For a detailed definition of Boolean models
and their variants, see e.g. [17].
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C(h) =
π
√

|τ |
2Γ(N

2
)

(
h
2σ

)N−1
2 exp

(−h
2σ

)
(2)

χ(h) = |τ |
2πΓ(N

2
)

(
h
2σ

)N−2
2 exp

(− h
2σ

) (
h
σ
− (N − 1)

)
,

where N is the number of degrees of freedom of the χ2 distribution, Γ(a) =∫ ∞
0

e−tta−1dt the Gamma function, P (x, a) = 1
Γ(a)

∫ x

0
e−tta−1dt the incomplete

Gamma function and τ the second derivative of the covariance function eval-
uated in 0 of the underlying GRF. σ is a scaling factor for the χ2 distribution
similar to the standard deviation of a Gaussion distribution.

Similar expressions for other random fields related to GRF can be derived
using the formulae in [25, 36].

Boolean models For Boolean models [32], the equations

A(h) = 1 − exp
(−ρĀ(h)

)

C(h) = 2√
π

exp
(−ρĀ(h)

)
ρC̄(h) (3)

χ(h) = exp
(−ρĀ(h)

) (
ρχ̄(h) − 1

4π
ρC̄(h)

)

hold, where Ā(h), C̄(h) and χ̄(h) denote the area, the contour length and
the Euler characteristic of the typical grain, i.e. the mean over all grains, and
ρ is the density of the underlying point process. If one deals with simply
connected grains only, χ̄(h) is constant 1.

Having equations 1–3 at hand, the influence of a surface’s properties on
its characterizing functions becomes clear immediately. It is obvious, for ex-
ample, that in the case of a surface resembling the realization of a GRF,
the material ratio depends only on the standard derivation of the underly-
ing Gaussian distribution; both the contour length and Euler characteristic
depend on the second derivative of the covariance function evaluated in 0.
Thus, contour length and Euler characteristic make it possible to distinguish
surfaces with same marginal distribution but different covariance functions.

The Minkowski functionals of Boolean models, instead, depend only on
the number of grains and the shape of the typical grain. For example, the
Greenwood-Williamson model, which can be regarded as a special case of the
Boolean model, assumes grains with a constant cap radius r and a Gaussian
grain height distribution. In this case, the formulae for the typical grain
become

Ā(h) =
∫ ∞

u=−∞ π capr(h − u)2pμ,σ(u)du = π(cap2
r ∗ pμ,σ)(h)
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Figure 4: From left to right: A grain with a spherical cap; the Gaussian
density describing the probability of the peak height u; the area Ā(h), contour
length C̄(h) and Euler characteristic χ̄(h) of the corresponding typical grain.

C̄(h) =
∫ ∞

u=−∞ 2π capr(h − u)pμ,σ(u)du = 2π(capr ∗ pμ,σ)(h) (4)

χ̄(h) =
∫ ∞

u=−∞ sgn(capr(h − u))pμ,σ(u)du = (sgn(capr) ∗ pμ,σ)(h)

where capr(z) denotes the radius of the disc resulting from cutting a spherical
cap with peak height 0 and radius r at height level z, pμ,σ the normal den-
sity function with expectation μ and standard deviation σ, sgn the signum
function and ∗ the one-dimensional convolution operator. Together with the
number of grains per unit area ρ, eq. 4 can be plugged into eq. 3.

In figure 4, these results are summarized graphically. Note that in con-
trast to the original grain, the typical grain allows only for a limited geomet-
rical interpretation. In figure 4, for example, χ̄ adopts any value between 0
and 1. The Euler characteristic χ, instead, is an integer for any set.

The convolution in eq. 4 does not allow for a further analytical simpli-
fication except in very simple cases, e.g. for grains with a constant height.
However, the numerical solution can be found quickly and accurately with
standard software packages. Thus, the lack of an analytical solution does not
limit the practical use.

3.4 Microcontact models

The above considerations also encourage the use of the Minkowski function-
als for the validation or, more accurately, falsification of theoretical results
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obtained in the domain of surface microcontact models. As stated above,
the Minkowski functionals can be calculated for the standard microcontact
models. The formulae depend on important model features like the height
distribution of peaks, and will thus also reflect changes of the models’ param-
eters. The latter can be used to derive predictions of the surface behavior.
If experimental data is available and a model for the surface has been cho-
sen, one can check if the hypothesis based on the model can explain both
the estimated Minkowski functionals and the observed surface features, e.g.
frictionional behavior. If it turns out that this is not the case, either the
assumed model or the hypothesis have to be rejected. This is similar to di-
rectly estimating the model parameters from the data and then checking if
the surface features are compatible with them, but in practice the Minkowski
functionals are usually easier to calculate and more robust estimators.

On the other hand, it is also possible to estimate the models’ parameters
from the characterizing functions of real data by fitting an appropriate model
in terms of the expected characterizing functions. If one assumes the typical
grain to be simply connected, thus having a Euler characteristic χ̄(h) ≡ 1, the
number of grains and the area and contour length of the typical grain can be
uniquely determined from the characterizing functions, which is difficult to
achieve by other methods. For Gaussian random fields and χ2-fields, it would
already be sufficient to fit the contour length function: its amplitude is related
only to τ , while its extent along the height axis corresponds to the standard
deviation of the random function. Nevertheless, it is more informative to
fit all three characteristic functions, as this will provide us with more stable
results. Furthermore, one can also check how well the empirical functions
and the analytically calculated ones match. The selected surface model is
tenable only if all three empirical functions match the theoretical well8.

The authors propose to use the values thus estimated as an amendment
to established surface parameters. By using a parametric surface model, a
reduced set of characteristics, whose interpretation is straightforward, can be
derived. The overall number of parameters which can be defined in this way
is limited to the relatively few model parameters, thus limiting the danger of
a new “parameter rash”.

8Note that the choice of the model is up to the user. Often, more than model can be
used to model the same reality.
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Figure 5: A realization of a Gaussian random field and summarized charac-
teristics for 200 realizations.

4 Experimental results

To show the capabilities of the introduced estimators, various simulations
and experiments with real-world data have been performed.

4.1 Simulation results

The first simulation is that of a zero mean stationary Gaussian random field
with a Gaussian-shaped, rotation invariant covariance function. The GRF
has been simulated by means of the circulant embedding algorithm[35] in
a 250×250 pixels window which has by definition area 1. In figure 5, both
the measured characterizing functions (solid lines) and their analytically cal-
culated counterparts (dashed line) have been plotted. The dotted lines en-
closing the measured characterizing functions show the range which contains
99% of the Minkowski functionals of all 200 realizations.

In spite of the relatively small number of data points, the accuracy of
the estimator for area and contour length is remarkable. By choosing a finer
grid for the simulation, the measured functions will match the analytically
calculated ones even better. For various realizations of the same random
process the characterizing functions do not differ significantly, even if the
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resulting surfaces look different. This underlines the stability of the presented
characteristics. Among the three functions, the Euler characteristic shows the
largest deviations, followed by the contour length and area ratio. As the Euler
characteristic counts every object and every hole, it is the characteristic that
is most sensitive with respect to changes in the surface. Unfortunately, the
Euler characteristic estimator used in our investigation is biased if calculated
for a height map with low resolution. This bias will decrease with higher
resolution (see also 4.2).

In figure 6, the results for four other simulations are shown. The charac-
terizing functions were calculated for Gaussian random fields with different
covariance function shapes. All four GRF share the same distribution func-
tion, i.e. their material ratio function is the same. One observes also that
the shapes of the contour length and Euler characteristic functions do not
depend on the general shape of the covariance, but only on the value of its
second derivative evaluated in 0, τ , as predicted by the analytically calcu-
lated functions (eq. 1). The differences in τ show up as different amplitudes
of the characterizing function. Since the τ of the second (Gaussian-shaped
covariance) and fourth (Bessel type covariance) GRF are the same, also their
characterizing functions are almost identical9. Nevertheless, the realizations
look different especially on longer scales. Accordingly, the characterizing
functions cannot provide information on long-wavelength features of the sur-
face. On the other hand, by means of a Taylor series, the covariance functions
used can be approximated accurately by a parabola (this information is con-
tained in the characterizing functions via the parameter τ) in the vicinity of
0. Regarding the roughness of a surface, these short-wavelength features are
the information one is primarily interested in, as longer wavelengths would
be identified with waviness or form and can be separated by a low-pass filter
[30].

These results are valid also for the other random fields, and very similar
simulation results can be obtained for these.

The second simulation example shows two Boolean models. The grains
of the first Boolean model have been chosen to be cylinders of random height
with spherical caps and constant diameter (figure 7, upper left). In the second
model, the void area is modeled and the grains are troughs with a triangular-

9In a perfect simulation, the characterizing functions would match exactly if τ was
the same. However, as the circulant embedding algorithm [35] used to perform the sim-
ulations is only perfect for covariance functions with a finite support, deviations in the
characterizing functions occur.
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Figure 6: Four realizations of Gaussian Random Fields (GRF) with same
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shaped cross section (figure 7, bottom left). The location and orientation of
the troughs is random, but their shape is fixed.

Again, the expected and measured characterizing functions are compared,
calculated for 50 realizations with a resolution of 500×500 pixels.

For high thresholds, both estimators are very accurate and analytically
calculated and simulated characterizing functions coincide; for low thresh-
olds, the estimators for the trough model become unstable and the calculated
contour length and Euler characteristic show a large deviation from their ex-
pected values (dashed lines). This can be explained by aliasing effects: In
the level sets, sections through the troughs appear as bars, which become
narrower as the cutting level is decreased. Finally, the lines become so thin
that they cannot be resolved by the chosen pixel resolution. The lines break
up in several shorter segments. This causes the formerly connected line-
shaped void areas to appear as many small isolated void areas. Thus, the
Euler characteristic suddenly falls below zero and shows a large deviation
from the expected value. The aliasing effect can be reduced by increasing
the sampling rate but will never vanish completely.

4.2 Experiments on shot-blasted surfaces

The shot-blasted surfaces were measured with a NewView Delta white light
interferometer (Zygo, Middlefield). The surface (fig. 8) does not show any
regular texture. It looks purely random and is therefore likely to match the
random field assumption.

Before calculating the characterizing functions, it is necessary to apply
a preprocessing filter step. Especially outliers cause high frequencies in the
data’s Fourier spectrum. As Minkowski functionals tend to concentrate on
these high frequencies10, one would basically describe the noise if applying
the characterizing functions to the unfiltered data. A suitable filter to remove
outliers is the 3×3 median filter which replaces a height value by the median
of the height values in a 3 × 3 environment. As the filter mask size is small
in comparison with the observed extent of the typical microscopic structure,
it does not oversmooth and retains the surface structure.

In figure 8, the empirical characterizing functions for the filtered sur-
face are plotted. Analytical expected functions for GRF were fitted using

10High frequencies are related to the behavior of the autocorrelation function (ACF)
close to the origin. The characterizing functions are again related to the ACF behavior at
the origin, see section 3.3
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Figure 8: A measurement of a shot-blasted surface and the empirical and
fitted analytical characterizing functions.

a weighted least squares minimization according to eq. 1. The deviations
between empirical and analytical functions were weighted proportional to the
empirical probability density function11. Thus, deviations between the func-
tions for high and low thresholds contribute less to the error than deviations
in the core part of the surface. The fitted functions show almost perfect
coincidence of the fitted and empirical functions in the core part of the sur-
face12. Yet the functions’ tails cannot be matched exactly; the deviations are
higher than those typically observed in simulations (figure 5). It is there-
fore very unlikely that the data really is a realization of a Gaussian random
field. Accordingly, it is not straightforward how the width of the estimated
height probability density – this parameter is the most basic parameter to
describe surface roughness – should be calculated. The usual approach is
to simply estimate the data’s standard deviation, which yields the surface
roughness parameter Rq or its areal equivalent, Sq. Alternatively, it is pos-
sible to fit a Gaussian distribution function to the material ratio function
(figure 8). The first approach yields σ = 0.344μm ± .009μm13, the second

11Weighted least squares methods are common in robust statistics, where one tries to
reduce the influence of less reliable data.

12The algorithm for estimating the Euler characteristic is still biased; the zero crossing
of the Euler characteristic function should coincide with the inflection point of the area
characterizing function in theory, but is shifted in practice.

13The confidence intervals were estimated by shifting a window of half the height map
size over the height map and calculating the Minkowski functionals for each of the windows.
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σ = 0.310μm ± .005μm, which is significantly smaller. The reason is that
the fit to the characterizing functions focuses on the core part of the surface
while the heavier-than-normal tails are almost neglected.

It has to be emphasized that none of the two methods can be regarded
as ‘superior’; as the surface is not perfectly Gaussian, it is a matter of choice
how the Gaussian model is fitted to the data. Nevertheless, the fit using the
characterizing functions is more robust as outliers, which will only contribute
to high and low levels’ Minkowski functionals, will have only a small influence
on the estimated parameters.

Similarly to the standard deviation estimation, also the estimation of τ ,
the autocorrelation’s second derivative evaluated in 0, from the shot-blasted
surface data yields significantly different results when estimated from the
characterizing functions (τ = −0.111 ± .002) or from the empirical ACF
(τ = −.100 ± .002). A similar effect can be reproduced in simulations if
salt-and-pepper noise is added to the simulation. The estimator for |τ | based
on the characterizing functions is more susceptible to noise than the estimate
derived from the empirical ACF. This behaviour is plausible: The noise is
sparse in relation to the remaining data points and will not have a large
impact on the empirical autocorrelation. In contrast, the estimator based
on the characterizing function is related to the amplitude of the contour
length function which reaches its maximum at threshold h = 0. The contour
length of the level set at threshold 0 will be considerably larger due to small
“holes” and “needles” induced by the noise. The same argument applies to
the measurement data, which contains sharp edges. These cause the contour
length to become large enough to explain the observed deviation.

As in the following example, the effect described above stresses the im-
portance of a proper preprocessing, which can have significant influence on
the results obtained.

4.3 Experiments on sinter material

The sinter material under investigation consists of metal grains which have
been fused in a thermal process to form a solid material. A KORAD S18
white light interferometer (3D-Shape, Erlangen) was used to acquire a 1000×
1000 height map of the material surface. Neglecting the effect that these
grains can only overlap partially in reality, the material structure can be
modeled with a Boolean grain model. The grains in the model can be as-
sumed to be cylinders with spherical caps, since a grain appears as a cylinder
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Figure 9: Original, preprocessed and simulated surface of a sinter material
and the characterizing functions for the preprocessed and simulated data.

when viewed from above. The cylinders’ radius and height are both assumed
to be uniformly randomly distributed on a fixed interval.

A measurement of such a surface is depicted in figure 9. A closer look
reveals that the single grains are not exactly convex. Since the surface is
modeled using cylinders, one has to make the grains more convex. For this
purpose, every pixel’s height value is replaced by the maximum value of all
height values within a circle of radius 6 around the original pixel. This will fill
up craters within the grains and smooth recesses in the grains’ boundaries.
As a consequence, the single grains get slightly larger14. In practice, one
has to take care not to dilate too much, as the estimators will get unstable
if the area fraction approaches 1. Additionally, a 3 × 3 median filter was
applied before the dilation step to remove outliers, since dilating outliers
would produce small grain-like artefacts.

Now the characterizing functions can be estimated from the data and
the model parameters can be chosen such that the expected characterizing

14This operation is also known as gray-value dilation in the image processing literature.
Dilations in the context of random sets lead to so-called contact distributions, an important
tool for the analysis of Boolean models. For details, see e.g. [17].
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Figure 10: The mean grain characteristics Ā, C̄ and ρχ̄ calculated from the
estimated characterizing functions

functions (eq. 3) best fit the empirical ones (figure 9)15. The fit can be
calculated using a least mean square error approach. Although a perfect fit to
the empirical characterizing functions is not possible, the model parameters
can be chosen in a way to catch the most important features. A simulation
with the estimated parameters produces a height map very simular to the
real data (figure 9).

Although the simulated surface (figure 9) looks convincing, the devia-
tions between the estimated and the fitted characterizing functions have to
be explained. For a better understanding, the equation system 3 is solved
for Ā(h), C̄(h) and ρχ̄(h). The resulting functions are shown in figure 10. In
the transformed functions, the deviations look considerably different. First,
one observes that the assumption of uniform distributed heights of the grains
is only tenable for the core part of the surface, where ρχ̄(h) can be approxi-
mated by a straight line. For large thresholds h, where the model assumes no
grains, a few grains still exist in practice (see also fig. 9). This also explains
that the expected mean grain area and mean grain contour length functions
do not follow the estimated functions for large h. Second, the expected grain
contour length function lies below the estimated16. This is due to the fact
that even with the dilation used as preprocessing, the grains in the measure-
ment are still not exactly convex; therefore, the observed mean grain contour
length is higher than expected from a convex grain.

These findings show that within the context of a specific model (e.g.

15The derivation of explicit analytic expressions for Ā, C̄ and χ̄ in eq. 3 is only practical
for very simple models. Instead, numeric integration was used to calculate the expected
Minkowski functionals for the model parameters.

16The parameters of the model using circular grains cannot be choosen such that both
mean grain area and mean grain contour match the estimated values.
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Boolean grains), it is possible to compute adjunct descriptors (e.g. Ā, C̄
and χ̄) that capture the entire information content, and are more directly
interpretable in terms of that model (e.g. as describing grain shape).

5 Conclusions

A novel method for the evaluation of 3D surface data has been presented.
It is based on stochastic geometry and generalizes the well-known Abbott-
Firestone curve, which has been widely accepted in metrology, by associating
to it two easily interpretable functions. While the interpretation of the Ab-
bott curve alone does not provide spatial information, the three characteriz-
ing functions based on the Minkowski functionals can be related to features
like spatial roughness or percolation.

One limitation of the method is that it cannot characterize long-range
spatial features. In the Gaussian random field examples (section 4.1), it has
been shown that two surface’s Minkowski functionals can be the same even if
their long-wavelength characteristics differ. However, the surface microstruc-
ture is usually investigated in the high-frequency range. Low frequency/long-
wavelength features can be separated by waviness and form filters and treated
separately. Vice versa, noise that would significantly change the estimated
covariance function shape around zero, and therefore also the characterizing
functions, can be removed by adequate digital filters.

The advantage of the three obtained characterizing functions is that they
can be applied to completely different surfaces. The Minkowski functionals
offer the possibility to analyze different models in a unified context. Using
Minkowski functionals, it is possible to analyze analytically both random field
models (e.g. the Nayak model) and Boolean models (e.g. the Greenwood-
Williamson model) using the same characteristics. These two model classes
cover both surfaces without observable structures as well as surfaces with
repeated structural elements.

Especially the analysis of 3D Boolean models in the presented form is, to
our knowledge, new and has not been used in rough surface characterization
before. Boolean models are suited for modeling asperities of rough surfaces
or surfaces consisting of smaller particles. Using the Minkowski functionals,
the mean shape as well as the mean peak curvature of these objects can be
estimated easily.

Finally, within the context of specific models, it is possible to derive
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adjunct descriptors that may be easier to interpret, thus offering further
possibilities to derive simple parameters for surface description.
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