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Abstract. In this paper we present a self-supervised method for rep-
resentation learning utilizing two different modalities. Based on the ob-
servation that cross-modal information has a high semantic meaning we
propose a method to effectively exploit this signal. For our approach
we utilize video data since it is available on a large scale and provides
easily accessible modalities given by RGB and optical flow. We demon-
strate state-of-the-art performance on highly contested action recogni-
tion datasets in the context of self-supervised learning. We show that
our feature representation also transfers to other tasks and conduct ex-
tensive ablation studies to validate our core contributions.

1 Introduction

In the last decade, Convolutional Neural Networks (CNNs) have shown state
of the art accuracy on a variety of visual recognition tasks such as image clas-
sification [18], object detection [10] and action recognition [33]. The success of
CNNs is based on supervised learning which heavily relies on large manually
annotated datasets. These are costly to obtain, however unannotated data in
form of images and videos have become easily available on a very large scale.
Recently this encouraged the investigation of self-supervised learning approaches
which do not require semantic annotations for the data. Here the general proce-
dure involves pretraining a network on a surrogate task which requires semantic
understanding in order to be solved. Although the gap is closing, self-supervised
approaches usually cannot compete with feature representations obtained by su-
pervised pretraining on large scale datasets such as ImageNet [31] or Kinetics
[15].

In this paper, we use cross-modal information as an alternative source of
supervision and propose a new method to effectively exploit mutual information
in order to train powerful feature representations for both modalities. The main
motivation of our approach is derived from the following observation: Informa-
tion shared across modalities has a much higher semantic meaning compared to
information which is modality specific. We showcase this point in Fig. 1 where
we present a tuple of pairs obtained from an action recognition video dataset.
We can see that cross-modal information such as the barbell or the baseball bat
provide good clues to identify the action. On the other hand modality specific
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Fig. 1. A tuple of pairs obtained from UCF-101 using RGB and optical flow as modal-
ities. The cross-modal information (barbell, bat, person) has a much higher semantic
meaning than the modality specific information (background, camera movement, noise)

information such as the background or camera motion do not help to identify
the action.

Feature representations which are sensitive to cross-modal information and
invariant to modality specific content are therefore desirable. The latter condi-
tion is fulfilled if the feature representations of a pair are similar to each other.
The former condition is fulfilled if the feature representations are also dissimilar
across different pairs. To achieve that we utilize a trainable two stream archi-
tecture with one network per modality similar to [33] and propose two different
loss contributions which guide the networks to learn the desired feature repre-
sentations.

For our method we require paired data from different modalities on a large
scale. We therefore apply our method to video data which provide very easily
accessible modalities RGB and optical flow in practically unlimited quantity.
Our choice for the modalities is also motivated by past work where it has been
shown that RGB and optical flow complement each other in the context of action
recognition [33].

In order to demonstrate the effectiveness of our cross-modal pretraining, we
conduct extensive experimental validation and a complete ablation study on
our design choices. Our method significantly outperforms state-of-the-art un-
supervised approaches on the two highly contested action recognition datasets
UCF-101 [34] and HMDB-51 [19] while pretraining for only 6h GPU time on a
single NVIDIA Titan X (Pascal). We also show the transferability of our feature
representation to object classification and detection by achieving competitive
results on the PASCAL VOC 2007 benchmark.

2 Related Work

In recent years, unsupervised deep learning has been an hot topic for the re-
search community due to the abundance of unannotated data. One of the first
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approaches was the Auto-Encoder [36, 16] which learns to encode an image in
a lower dimensional features space. The obtained feature representation would
mostly focus on low level statistics instead of capturing the semantic content of
the input.

A significant step forward in deep unsupervised learning was made by [6, 1, 40]
which introduced the paradigm of self-supervision in the context of deep learning.
This family of methods exploits the inherent structure of data in order to train
a CNN through a surrogate task. The most recent approaches can generally be
divided into two groups, those which make use of static images and those which
make use of videos.

As for static images, there are several approaches exploiting color information
[42, 20] and spatial context [6, 26, 28]. For the latter an image is tiled into patches
and their relative position is exploited as a supervisory signal in order to obtain a
good feature representation. These approaches have shown reliable results on the
task of object detection and surface normal estimation. There is also a variety
of works which specifically aim to learn reliable posture representations without
supervision [3, 30, 23, 32, 4].

Approaches which use video data mainly exploit temporal context as source
of supervision [40, 24, 4, 5, 2]. A common idea is to shuffle frames of a video clip
and use a network to reconstruct or verify the correct chronological order [24, 9,
21]. The obtained feature representations generalize well to action recognition.
Closely related to our approach is the work of S. Purushwalkam and A. Gupta
[30]. They use RGB and optical flow data obtained from videos and learn a
feature representation which transfers to the task of pose estimation. Although
they achieve good results for action recognition, our method exploits cross-modal
information in RGB and optical flow data much more effectively.

There is a large body of work which demonstrates the effectiveness of utilizing
multimodal data in order to solve a variety of tasks. For example [33, 8] show
that RGB and optical flow are complementary modalities in the context of action
recognition.

S.Gupta et al. [11] train a feature representation for depth data by distilling
the knowledge from a teacher network pretrained on ImageNet [31]. The work
of [38] proposes cross-modal ranking in conjunction with structure preserving
constrains in order to learn a joint feature representation between image and text
data. Both works show successful cross-modal supervision but rely on annotated
data, which is not required for our approach.

The work of [25] utilizes a bimodal deep autoencoder in order to learn a
shared feature representation for the audio and visual stream of video data.
Similarly [41] extends this work to temporal feature representations.

3 Approach

In this section we present an efficient method for representation learning utilizing
two different modalities. Our goal is to obtain feature representations which are
sensitive to cross-modal information while being invariant to modality specific
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Fig. 2. Visualization of our model. Networks of same color share weights and are de-
noted by f (red, dark) and g (blue, bright) respectively. f and g are trained so that
the cross-modal distance (vertical) decreases while the distance between different pairs
(horizontal) increases

content. As already explained in the introduction, these conditions are fulfilled
by feature representations which are similar for a pair and dissimilar across
different pairs. To achieve the former we propose a cross-modal loss Lcross and
to achieve the latter we utilize a diversity loss Ldiv, both of which act directly
in feature space thus promising better training signals.

Our method requires paired data from two different modalities x ∈ X and
y ∈ Y , which is available in most use cases i.e. RGB and optical flow. We utilize
a two-stream architecture with trainable CNNs in order to obtain our feature
representations f(x) and g(y). With exception of the first layer, the networks
share the same architecture but do not share weights. To calculate both loss
contributions we need a tuple of pairs xi,yi and xj ,yj from our dataset. A
visualization of our method is provided in Fig. 2.

Cross-Modal Loss. In order to enforce cross-modal similarity between f and
g we enforce the feature representations of a pair to be close in feature space via
some distance d. Solving this task requires the networks to ignore information
which is only present in either x or y

Lcross(xi,yi,xj ,yj) =
1

2
[d(f(xi), g(yi)) + d(f(xj), g(yj))] . (1)
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We utilize the bounded cosine distance for d, which is given by

d(a,b) = 1− a · b
|a| · |b|

≤ 2. (2)

We prevent singularities during training by adding a small ε into the square-
root of the euclidean norm. We also experimented with the unbounded euclidean
distance for d, as done in [11] but found that it leads to an unstable training.

Diversity Loss. We obtain diversity by enforcing the feature representation for
both modalities to be distant across pairs with respect to the same distance d as
before. This spreads the features of different pairs apart in feature space. Due to
the cross-modal loss these features mostly encode cross-modal information, thus
ensuring sensitive feature representations for this content. The distance across
pairs therefore contributes negatively into the loss

Ldiv(xi,yi,xj ,yj) = −1

2
[d(f(xi), f(xj)) + d(g(yi), g(yj))] . (3)

Here we assume our data to be diverse in the sense that the probability of the
two pairs being very similar to each other is sufficiently low. This assumption
holds true for most real world data and for modern datasets as they emphasize
diversity in order to be challenging to solve. Nevertheless our approach handles
two very similar pairs well since our loss is bounded limiting the impact of false
information during training.

Combining Both Loss Contributions. Our final training objective is given
by a weighted sum of both loss contributions which leaves the weighting as
an additional hyperparameter of our method. Determining this hyperparameter
might sound like a challenging problem but we find that there are not many
reasonable options in practice. We make two observations considering the balance
of cross-modal and diversity loss. 1) Weighting Lcross over Ldiv encourages f and
g to collapse their feature representation onto a single point. 2) Weighting Ldiv

over Lcross significantly slows down the convergence of training and leads to a
worse feature representation. It is important to note that these observations only
hold true if the distance distributions in both loss contributions can quickly be
equalized by the network during training. This is usually the case for modern
deep CNN architectures with multiple normalization layers.

Given our observations, we weight both loss contributions equally which
yields our final loss

L(xi,yi,xj ,yj) = Lcross(xi,yi,xj ,yj) + Ldiv(xi,yi,xj ,yj). (4)

We obtain our training signal by randomly sampling B tuples (2B pairs) from
our dataset and averaging the loss in equation 4 across the tuples. In section 4.5
we further validate our design choices.
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4 Experiments

In this section we quantitatively and qualitatively evaluate our self-supervised
cross-modal pretraining mainly using RGB and optical flow as our modalities
of choice. We will therefore refer to f and g as RGB-network and OF-network
respectively. First, we present the implementation details for the self-supervised
training. Afterwards, we quantitatively evaluate our feature representation by
fine-tuning onto highly contested benchmarks and show a qualitative evaluation
of the learned feature representation. Finally, we close with an extensive ablation
study where we validate our design choices.

4.1 Implementation Details

We use the CaffeNet [14, 18] architecture as this is well established for represen-
tation learning and extract our feature representation from fc6 after the ReLU
activation. We use dropout with p = 0.5. If not stated otherwise, we use batch
normalization [12] on all convolutional layers in order to be comparable with
[21]. We conduct our experiments using pytorch [29].

We use the trainset of UCF-101 for our pretraining in order to be consistent
with previous work, the (TV-L1) optical flow data is pre-computed using the
OpenCV [13] implementation with default parameters. Due to having tempo-
rally ordered data we use a stack of 10 consecutive optical flow frames and its
temporally centered RGB frame for each pair. This is motivated by past work
[33, 30] which show that additional optical flow frames are beneficial for motion
understanding. The input of the OF-network therefore has 20 channels.

During training we randomly sample 60 videos (B = 30 tuples) and from
each video we randomly sample a pair. Similarly to [21, 24] the latter sampling
is weighted by the average flow magnitudes in a pair which reduces the number
of training samples without meaningful information.

The following augmentation scheme is applied independently to both pairs.
Given the optical flow stack and the RGB frame we first rescale them to a height
of 256 conserving the aspect ratio. We then randomly crop a 224x224 patch and
apply random horizontal flips, both of which are done identically across the 10
flow frames and the RGB frame. We further augment the flow stack by applying
random temporal flips (augmentation from [30]) and subtract the mean [33].
Additionally we apply channel splitting [21] which yields a color-agnostic input
forcing the network to learn a less appearance based representation.

We find that a proper choice for ε is crucial for the stability of our training
and recommend using ε = 1e− 5 or bigger. We use SGD with momentum of 0.9
and weight decay of 5e−4 with an initial learning rate of 0.01 which is reduced to
0.001 after 50K iterations. Training is stopped after 65K iterations and requires
only 6h GPU time on a NVIDIA Titan X (Pascal).

4.2 Action Recognition

We evaluate our approach on the action recognition datasets UCF-101 and
HMDB-51 which emerged as highly contested benchmarks for unsupervised rep-
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resentation learning on videos. To show the versatility of our approach we also
utilize the considerably deeper VGG16 architecture, using its fc6 layer as our
feature representation. We train on a single GPU using B = 12 and a learning
rate of 0.005 for a total of 160K iterations, leaving all other hyperparameters
unchanged. Pretraining on a single GPU completes in less than two days.

Datasets. The action recognition datasets are typically divided in three splits.
UCF-101 is composed of 13K video clips per split, 9.5K for training and 3.5K for
testing, divided in 101 action categories. HMDB-51 consists of 51 classes with
3.5K videos for training and 1.4K for testing per split. Although both datasets
are created in a similar manner, HMDB-51 is more challenging as there can be
multiple samples from the same video with different semantic labels (draw sword,
sword exercise, sword fight). Samples from different classes can therefore have
very similar appearance or posture information and require an understanding of
motion to be distinguished properly [19].

Finetuning Protocol. We start with a randomly initialized CaffeNet and use
the parameters of our pretrained RGB-network to initialize the convolutional
and batch normalization layers (FC-layers start from scratch). For training and
testing we follow the common finetuning protocol of [33] in order to be compa-
rable with previous work [24, 21]. We provide test classification accuracies over 3
splits for both datasets. In order to ensure that the test set of UCF-101 does not
contain images which have been previously seen during pretraining we conduct
pretraining and finetuning on the same split.

Table 1. Test classification accuracies over 3 splits for different pretraining schemes. If
not stated otherwise the referenced methods use the CaffeNet architecture. +: indicates
only Split 1. Our RGB-network outperforms previous state-of-the-art self-supervised
methods especially on HMDB-51, while also being very efficient

Dataset Traintime UCF-101 HMDB-51

Random None None 48.2 19.5
ImageNet [21] ImageNet 3 days 67.7 28.0

Shuffle and Learn [24] UCF-101 - 50.2 18.1
VGAN [37] (C3D) flickr (2M videos) > 2 days 52.1 -
LT-Motion [22] (RNN) NTU (57K videos) - 53.0 -
Pose f. Action [30] (VGG) UCF,HMDB,ACT - 55.0 23.6
OPN [21] UCF-101 40 hours 56.3 22.1

Our UCF-101 6 hours 58.7 27.2

Random (VGG16)+ None None 59.6 24.3
Our (VGG16)+ UCF-101 1.5 days 70.5 33.0
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Results. As shown in Table 1, our approach outperforms the previous state-
of-the-art method [21] by over 2% and 5% on UCF-101 and HMDB-51 respec-
tively. For the latter dataset our network almost closed the gap to its ImageNet
pretrained counterpart. As mentioned before HMDB-51 requires a better un-
derstanding of motion and is not easily solved by appearance information. This
favors our method because solving our pretraining task requires a good under-
standing of motion. Compared to past approaches which make use of optical
flow [30, 22] our method exploits motion information much more effectively. We
further expand this point in our qualitative evaluation and ablation studies.

4.3 Transfer Learning

In this section, we evaluate the transferability of our learned feature representa-
tion to object classification and detection. To this end we use the Pascal VOC
2007 benchmark and compare to other recent unsupervised learning methods.

Datasets. The Pascal VOC 2007 dataset [7] provides annotation for 20 classes
on 10K images, containing in total 25K annotated objects. The images are split
equally between training/validation and testing set. The annotations provide
class label and bounding box location for every object.

The ACT [39] dataset is composed of 11K video clips of people perform-
ing various actions. The dataset contains 43 different action categories which
can be summarized to 16 super-classes. For our pretraining we use the trainset
containing 7K videos and do not make use of the semantic labels.

Pretraining and Finetuning Protocol. We apply our model onto the train-
ing videos from UCF-101, HMDB-51 and ACT [39] which yield about 20K videos
during pretraining. We double the number of iterations to 130K (dropping learn-
ing rate at 100K) and leave all other hyperparameters unchanged. Similar to sec-
tion 4.2 we use the Convolutional layers of our RGB-network to initialize a new
CaffeNet for finetuning but we do not transfer the batch normalization layers, as
suggested by [21]. In order to be comparable to [21] we finetune our RGB-network
on Pascal VOC for the multi-class classification task following Krähenbühl et al.
[17] protocol and use Fast-RCNN [10] framework when fine-tuning for object
detection.

Results. Table 2 shows a comparison of our approach to other unsupervised
learning methods. Among the methods which do not make use of ImageNet
data we improve upon state-of-the-art in both categories. We also show compet-
itive accuracy in object classification among methods which do use ImageNet
data. This result is remarkable as the datasets we used for pretraining are very
dissimilar to the ImageNet or Pascal VOC dataset. This demonstrates the trans-
ferability of the feature representation obtained by our method.
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Input                    Ours               ImageNet               OPN

Fig. 3. Comparison of the input activations for different models. The first column rep-
resents the input sample, second is our RGB-network, third is an ImageNet pretrained
network and lastly OPN [21]. The activation are computed using guided backpropaga-
tion [35]. In contrast to the other approaches our network is able to identify meaningful
objects (Bow, bowling ball, drumstick ...) while also ignoring irrelevant background
content
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Input                    Ours              ImageNet               OPN

Fig. 4. Additional input activations for our RGB-network, ImageNet pretraining and
OPN [21]. Our network is also capable of identifying small moving objects (table tennis
ball, pen), and ignore most of the background
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Table 2. Results for Pascal VOC 2007 classification and detection. First segment shows
baseline performance for supervised training. Methods in the second segment used large
scale image data to pretrain their models whereas methods in the last segment used
video data during pretraining

Dataset Traintime Classification Detection

ImageNet [21] ImageNet 3 days 78.2 56.8

Context [6] ImageNet 4 weeks 55.3 46.6
Counting [27] ImageNet - 67.7 51.4
Jigsaw [26] ImageNet 2.5 days 67.6 53.2
Jigsaw++ [28] ImageNet - 72.5 56.5

Shuffle and Learn UCF-101 - 54.3 39.9
OPN [21] UCF,HMDB,ACT > 2 days 63.8 46.9
Our UCF,HMDB,ACT 12 hours 70.7 48.1

4.4 Qualitative Evaluation

In this section we present a qualitative evaluation of our learned feature represen-
tations by showing input gradients obtained from high-level layers. We calculate
the input layer activations for our pretrained RGB-network and compare to other
approaches on the UCF-101 testset. To obtain the results in Fig. 3 and 4 we use
guided backpropagation [35] on the 100 strongest activations in pool5 of the net-
works. We can see that our training leads the network to focus on key moving
objects involved in an action (bowling ball, drumstick, pen...) while ignoring ir-
relevant background information. Contrary, the ImageNet and OPN pretrained
networks take the entire appearance of the scene into account indicating a more
appearance based feature representation.

4.5 Ablation Study

In this section we give a complete ablation study on all of our design choices. We
start by investigating the effectiveness of our model without using optical flow
as second modality. Afterwards we reveal that our method is mutually beneficial
for the used modalities. We close by demonstrating the importance of our cross-
modal loss and show that a more mainstream model design yields inferior results.
We conduct our evaluation with CaffeNet on split 1 of UCF-101 and HMDB-51
only using UCF-101 for pretraining.

Using Stack of Frame Differences as Second Modality. In the works
of [9] and [21] reliable results were achieved using stack of frame differences
(SOD) for action recognition. Inspired by their findings we train our model
using RGB and SOD as modalities (we use the term SOD-network for g in this
context). We apply the same data sampling procedure as described in section
4.1 with slight modifications. To obtain a SOD we sample 5 RGB frames and
calculate the difference between successive frames yielding us a SOD with 4 frame
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Table 3. Comparing different choices of modalities. The left segment shows test accu-
racies obtained by using RGB and optical flow as modalities whereas the right segment
reports test accuracies using RGB and SoD. We observe that all modalities benefit
significantly from our pretraining

Dataset Pretraining RGB OF RGB SOD

UCF-101 Random weights 49.1 76.4 49.1 64.5
UCF-101 Our 59.3 79.2 55.4 66.3

HMDB-51 Random weights 19.2 47.1 19.2 30.8
HMDB-51 Our 27.7 51.7 23.5 33.3

differences. The RGB input is then just the temporally centered RGB frame. We
only apply random crops and random horizontal flips to SOD but keep the same
augmentation as 4.1 for RGB. All other hyperparameters are kept the same for
pretraining and finetuning.

Test classification results on split 1 of UCF-101 and HMDB-51 are reported
in the right segment of Table 3. The RGB-network achieves 55.4% and 23.5%
test classification accuracy respectively which is still competitive to previous
state of the art methods.

Mutual Benefit Between the Modalities. In order to demonstrate the mu-
tual benefit of our method we finetune our obtained OF and SOD-network onto
split 1 of UCF-101 and HMDB-51. We apply the same scheme already used for
RGB to finetune both networks. We compare to randomly initialized networks
and report results in Table 3.

We observe that our pretraining increases the classification accuracy on all
used modalities. The OF-network acts supervisory on the RGB-network and also
vice versa. This result is quite remarkable given the huge performance gap on the
classification task and also holds true for RGB and SOD. Although the weaker
modality benefits more from the pretraining it does not drag down the results
of the stronger modality but instead gives a considerable boost especially for
HMDB-51.

Alternative Design Choices. As already indicated in section 3 we obtain
trivial feature representations if we do not utilize the diversity loss. In the fol-
lowing we also demonstrate the importance of our cross-modal loss. To this end
we pretrain our model the same way as before but set the cross-modal loss con-
tribution to zero. We then finetune its RGB-network on UCF-101 and HMDB-51
and present our findings in Table 4. Without the cross-modal loss we perform
on par with a randomly initialized network which indicates a failed pretraining
and highlights the importance of the cross-modal loss.

To validate our design choices further we now compare to a more mainstream
approach of exploiting cross-modal information which is inspired by the work of
[30]. We concatenate the fc6 layers of our RGB and OF-network (8192 chan-
nels) and put a modified CaffeNet binary classifier (fc7, fc8) on top of it. We
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Table 4. Ablation study for alternative design choices conducted on split 1 of UCF-101
and HMDB-51. Models were pretrained onto UCF-101. Utilizing Ldiv only performs
on par with random weights. A more mainstream model design leads to a worse per-
formance

Dataset Pretraining RGB OF

UCF-101 Random weights 49.1 76.4
UCF-101 Only Ldiv 49.0 75.3
UCF-101 Concat 57.6 77.8
UCF-101 Our 59.3 79.2

HMDB-51 Random weights 19.2 47.1
HMDB-51 Only Ldiv 18.0 47.2
HMDB-51 Concat 24.5 49.9
HMDB-51 Our 27.7 51.7

preserve our sampling and augmentation protocol described in 4.1 in order to be
as comparable to our approach as possible. Given two pairs xi,yi and xj ,yj we
now exploit the mutual information by posing a binary classification surrogate
task. We assign the combinations xi,yi and xj ,yj positive labels whereas xi,yj

and xj ,yi obtain negative labels. Essentially the network has to figure out if a
presented RGB frame and flow stack belong to the same pair or not. We pretrain
this model using the Cross-Entropy loss and use the same hyperparameters as
our original model. Finetuning is then performed for both modalities in the same
way as before. We reference this alternative model as Concat.

Results for our Concat model can be found in Table 4. We observe that
the RGB-network of the Concat model is outperforming its randomly initialized
counterpart but achieves significantly worse results than our pretraining.

5 Conclusion

Recently self-supervised learning emerged as an attractive research area since
unannotated data is available on a large scale whereas annotations are expen-
sive to obtain. In our work we reveal cross-modal information as an alternative
source of supervision and present an efficient method to exploit this signal in
order to obtain powerful feature representations for both modalities. We eval-
uate our method in the context of action recognition where we significantly
outperform previous state-of-the-art results on the two highly contested action
recognition datasets UCF-101 and HMDB-51. We also show the transferability
of our feature representations by achieving competitive results in object classi-
fication and detection. We close out by conducting an extensive ablation study
in which we validate all our design choices.
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