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Introduction

localization microscopy techniques such as STOrM and 
PalM have become major tools for cell biology (Bates 
et al. 2008; Heilemann 2010; Henriques and Mhlanga 
2009; Huang 2010). Despite differences in the experimen-
tal procedures, these techniques rest on a unified compu-
tational principle: Super-resolution images are constructed 
by means of subpixel-accurate spot detection in a sequence 
of images taken at optical resolution. Various algorithms 
have been proposed for this task, and many of them are 
available in open-source software. We will briefly review 
existing solutions in section “related work” below.

While many of these algorithms are able to obtain good 
reconstructions in principle, their practical success requires 
a careful adjustment of various configuration settings. This 
parameter tuning may be difficult even for experts and 
raises the entry barrier for localization microscopy novices. 
To overcome this problem, SimpleSTOrM was designed to 
determine all necessary parameters automatically from the 
raw image data during an initial self-calibration phase that 
precedes the actual reconstruction phase. It can thus pro-
duce good reconstructions with minimal user input, while 
still allowing optional configuration by experts for non-
standard use cases.

SimpleSTOrM is based on an accurate model of the 
image acquisition process. It assumes that Poisson-distrib-
uted photon counting noise is the dominant noise source. 
However, we explicitly account for the fact that photon 
counts are only observed after a number of transformations 
by amplification stages and digitization. Under the assump-
tion that the combined transformation can be described by a 
linear equation, we can recover Poisson-distributed intensi-
ties by inverting this linear equation after robust estimation 
of its parameters (gain and offset). Furthermore, we assume 
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that the point spread function (PSF) is fixed throughout the 
image sequence and can be determined as a nonparamet-
ric or parametric (gaussian) model. Finally, we assume 
that the background intensity varies at a much coarser scale 
than the PSF width and that less than half of the pixels in 
any sufficiently large window contain signal. Under these 
assumptions, the model parameters (gain and offset, PSF 
width, local background intensity) can be estimated auto-
matically in a self-calibration and preprocessing phase.

In the reconstruction phase, the model parameters are 
used to transform each frame such that it can be consid-
ered as a sum of a background-free fluorescence signal and 
additive gaussian noise with zero mean and unit variance. 
Fluorescence spots can thus be recognized by a simple 
statistical test: a pixel whose intensity is higher than three 
times the noise standard deviation contains signal with a 
probability of about 99.7 % (the threshold of the test can 
be adjusted to control the detection sensitivity of our algo-
rithm). Since the PSF spreads over several pixels, whereas 
the noise of neighboring pixels is independent, it is even 
more unlikely that three adjacent pixels exceed the thresh-
old just by chance. The combination of both criteria defines 
a reliable mask for spot detection. Pixels under (and near) 
the mask are finally convolved with a matched filter (i.e., a 
gaussian filter corresponding to the PSF) for optimal noise 
reduction and interpolated to the desired resolution using 
a cubic spline. The coordinates of local intensity maxima 
after interpolation are reported as the detected spots.

Specifically, our algorithm proceeds in these steps:

1. robust estimation of the gain and offset parameters
2. estimation of the width of a gaussian PSF via the lev-

enberg-Marquardt algorithm
3. linear intensity transform into unit gain and zero offset 

to make the noise approximately Poisson distributed
4. anscombe transform of the intensities to make the 

noise approximately normal
5. Dynamic background estimation and subtraction
6. Statistical test to determine the detection mask accord-

ing to the specified sensitivity
7. Matched filtering with the PSF for optimal noise reduc-

tion
8. Cubic spline interpolation to specified subpixel accu-

racy and maxima detection

a typical result is shown in Fig. 1. On a standard laptop, 
our algorithm is able to process about 50 frames per second 
for a typical raw image size of 200 × 200 pixels. It per-
formed favorably in the recent ISBI localization Micros-
copy Challenge1 that carefully tested more than 20 recon-

1 http://bigwww.epfl.ch/smlm/challenge/.

struction algorithms. In particular, SimpleSTOrM achieved 
high localization accuracy on high-density data, where a 
relatively large number of spots were simultaneously 
switched on in order to minimize total acquisition time. 
Software for our algorithm is freely available in an easy-to-
use gUI program.2

Related work

The classical reconstruction approach is based on direct 
fitting of the PSF to every spot candidate. a model of the 
PSF with adjustable parameters must be given. Usually, an 
isotropic gaussian PSF like (6) or an anisotropic variant of 
it is sufficiently accurate (Thompson et al. 2002), although 
alternative models may be required under certain circum-
stances (Stallinga and rieger 2012). The free parameters 
of the model are optimized by a nonlinear fitting algo-
rithm (e.g., the levenberg–Marquardt method) in order 
to minimize the least-squares residual between the fitted 
model and the intensities of a spot candidate. This method 
is the basis of the popular rapidSTOrM software (Wolter 
et al. 2010), the ImageJ plugins Octane (Yu 2011), Peak-
Fit (Herbert 2012) and graspJ [offering gPU acceleration, 
Brede and lakadamyali (2012)], as well as the localization 
Microscopy MicroManager plugin [Stuurman (2012) and 
the Python localization microscopy environment (PYMe, 
Baddeley (2012)].

an even simpler approach avoids iterative optimization 
by computing the centroid of each spot directly, either in 
terms of the intensity-weighted mean (Thompson et al. 
2002) or the fluoroBancroft method (andersson 2008). 
These methods were found to be only slightly less accu-
rate then the least-squares fit when properly parametrized 
(Thompson et al. 2002; Hedde et al. 2009) and form the 
basis of fast reconstruction solutions such as the hardware-
accelerated method of (grüll et al. 2011) and the Quick-
PalM ImageJ plugin (Henriques et al. 2010).

Both fitting and direct methods have difficulties with the 
reconstruction of high-density image sequences, because 
these images violate the basic model assumption that neigh-
boring spots do not overlap. greedy procedures for fitting 
overlapping spots where proposed by (egner et al. 2007), 
who adapt Högbom’s classical Clean algorithm (Högbom 
1974) to localization microscopy, the DaOSTOrM algo-
rithm from (Holden et al. 2011), an adaptation of DaOPHOT, 
a well-known algorithm from astronomy (Stetson et al. 
1987), and the multi-emitter fitting algorithm of (Huang et al. 
2011), who fit up to Nmax overlapping PSFs simultaneously 
and select the most likely spot number by a statistical test.  

2 https://github.com/ukoethe/simple-STOrM.

http://bigwww.epfl.ch/smlm/challenge/
https://github.com/ukoethe/simple-STORM


Histochem Cell Biol 

1 3

a more principled model for overlapping spots is provided by 
compressed sensing (Zhu et al. 2012). Here, a PSF candidate 
is initialized at all pixels of a fine grid (e.g., having one-eighth 
the pixel size of the original image). The fit is then performed 
under a strong sparsity prior which ensures that only the 
center pixels of true spots get non-zero activation. While this 
method is more accurate than DaOSTOrM, it is also very 
expensive (about a hundred times slower). recently, substan-
tial improvements of the sparse reconstruction approach have 
been achieved by more sophisticated modeling and optimiza-
tion methods (Kim et al. 2013; Min et al. 2013). However, it 
is as yet unclear if the improvements over simple algorithms 
like SimpleSTOrM warrant the added complexity.

Proper noise modeling is a critical ingredient for reli-
able distinction between true spots and noise artifacts. 
Many authors simply use a generic additive noise model 
and select spots whose intensity exceeds the background by 
a certain multiple of the background’s noise SD (Thomp-
son et al. 2002; grüll et al. 2011). Frequently, the image 
is preprocessed by averaging filters (Wolter et al. 2010; 
Huang et al. 2011), gaussian filters (Křížek et al. 2011) 
or a wavelet transform (Izeddin et al. 2012) before thresh-
olding. However, non-uniform background intensity and 
intensity-dependent background noise make the choice of 
an appropriate threshold very difficult. Heuristic solutions 
to this problem lead to algorithms with many adjustable 
parameters that are very hard to use.

Moreover, it has been shown in (abraham et al. 2009) 
that a maximum likelihood fit based on a Poisson noise 
model outperforms the least-squares algorithm which 
implicitly assumes additive noise. a fast gPU-acceler-
ated version of this method is described in (Smith et al. 
2010). However, the Poisson model cannot be applied 
directly to the observed image intensities because they 

deviate from the recorded photon counts due to the action 
of amplification. amplified intensities are no longer Pois-
son distributed. The amplification can be inverted when 
gain factor and offset are known, but this requirement is 
apparently overlooked sometimes [e.g., (andersson 2008; 
grüll et al. 2011; Brede and lakadamyali 2012)]. a sim-
ple gain and offset estimation procedure using dedicated 
calibration images was proposed in (lidke et al. 2005). 
a more convenient self-calibration algorithm was intro-
duced in (Boulanger et al. 2010), who adaptively subdi-
vide the given image sequence to determine regions of 
homogeneous intensity for gain estimation. This method 
is very similar in spirit to our approach in section “noise 
normalization”, but their algorithm is considerably more 
complicated.

Methods

Matched filters

It was shown by (abraham et al. 2009) that a maximum like-
lihood fit outperforms least-squares fitting when the noise 
follows a Poisson distribution. On the other hand, it is well 
known that maximum likelihood and least-squares fitting are 
equivalent under additive gaussian noise. Moreover, least-
squares fitting can be replaced by matched filtering (Turin 
1960) when the mean background intensity is zero. Under 
these conditions, these algorithms are mathematically equiv-
alent (as we show below), but filtering is much more effi-
cient, in particular when the matched filter is a gaussian PSF. 
This motivates our desire to work on standardized images, 
and robust standardization of the given image sequence is at 
the heart of the SimpleSTOrM algorithm.

Fig. 1  Microtubuli, labeled with aTTO520 in Hela-cells (raw data courtesy of Mike Heilemann). Left maximum projection of the raw data. 
Right reconstructed high-resolution image. Scalebar represents 1 μm
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We briefly recall the relationship between matched filter-
ing and least-squares fitting. let the image s(x, y) contain 
just a single spot with unknown scaling μ0 at an unknown 
location (x0, y0). We assume that the noise is additive 
gaussian noise with mean zero and variance σ2, i.e., our 
image model is

The least-squares algorithm determines the scaling μm 
and location xm, ym of a model h(x, y) such that the least-
squares residual

is minimized. after expanding the integrand, this is equal 
to

The first integral is a constant (since the signal is fixed), the 
last one has zero expected value (since the noise is uncor-
related), and both terms can be dropped from the optimiza-
tion. after reversing the sign, we obtain the equivalent opti-
mization problem

Setting the derivative w.r.t. μm to zero gives an analytic 
solution for µ∗

m 

resulting in a reduced optimization problem for the 
location

(1)

s(x, y) = f (x, y) + n(x, y)

f (x, y) = µ0 PSF(x − x0, y − y0)

n(x, y) ∼ N (0, σ 2)

µ∗

m, x∗

m, y∗

m = arg min
µm ,xm ,ym

∫

R2

(s(x, y) − µmh(x − xm, y − ym))2 dx

arg min
µm ,xm ,ym

∫

R2

s(x, y)2 dx + µ2
m

∫

R2

h(x − xm, y − ym)2 dx

− 2µm

∫

R2

f (x, y)h(x − xm, y − ym) dx

− 2µm

∫

R2

n(x, y)h(x − xm, y − ym) dx

arg max
µm ,xm ,ym

2µm

∫

R2

f (x, y)h(x − xm, y − ym) dx

− µ2
m

∫

R2

h(x − xm, y − ym)2 dx

µ∗

m =

∫
R2 f (x, y)h(x − xm, y − ym) dx∫

R2 h(x − xm, y − ym)2 dx

x∗

m, y∗

m = arg max
xm ,ym

(∫
R2 f (x, y)h(x − xm, y − ym) dx

)2

∫
R2 h(x − xm, y − ym)2 dx

The numerator is the squared correlation function between 
f(x, y) and h(x−xm, y−ym). expanding it in terms of the 
Cauchy-Schwarz inequality yields

and equality (i.e., the maximum possible value) is only 
achievable when h(x − xm, y − ym) = κ f (x, y). The maxi-
mum is thus obtained for x∗

m = x0 and y∗

m = y0 as desired. 
Since κ can be chosen arbitrarily, h(x, y) can be defined as 
a matched filter 

The optimal estimate of the spot location is therefore the 
point where the convolution

assumes its maximum (recall that correlation is equivalent 
to convolution with the mirrored kernel). This point can be 
conveniently determined by spline interpolation of g, see 
section “Spot localization.”

To use matched filters in localization microscopy, the 
following requirements must be met:

1. The PSF must be known. We address this in section 
“estimation of the PSF.”

2. The PSF should be uniform throughout the image. This 
condition may not be fulfilled when some spots are out 
of focus. However, this is not a major problem in prac-
tice, because the filter h degrades gracefully: although 
no longer the best possible filter, it still performs rea-
sonably as long as the PSF is not too far off.

3. each image should contain only one spot. This is 
clearly violated in practice and in fact undesirable. 
But this is no problem as long as the spot density is 
not too high. Since the PSF decreases quickly, the filter 
response at point (x, y) is not influenced by spots that 
are sufficiently far away. The detector suffers only a 
minor degradation at overlapping spots whose distance 
remains larger than the PSFs full width at half maxi-
mum (FWHM). The spot density can easily be con-
trolled by the experimental setup.

4. The image’s background intensity must be zero. We 
use a standard background subtraction procedure as 
described in section “Background subtraction.”

5. The noise must be additive gaussian. This is the 
most serious obstacle, because the noise variance is  
actually a function of the intensity and therefore not 

(∫
R2 f (x, y)h(x − xm, y − ym) dx

)2

∫
R2 h(x − xm, y − ym)2 dx

≤

∫
R2 f (x, y)2 dx ·

∫
R2 h(x − xm, y − ym)2 dx∫

R2 h(x − xm, y − ym)2 dx

=

∫

R2

f (x, y)2 dx = const.

h(x, y) = PSF(x, y)

(2)g(x, y) = PSF(−x, −y) × s(x, y)
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additive. To rescue the matched filter approach, we 
transform the original image intensities so that the 
noise is approximately turned into additive gaussian 
noise. Our noise normalization procedure is described 
in section “noise normalization.”

noise normalization

Matched filtering is only optimal when the noise is additive 
and gaussian distributed. However, localization micros-
copy is based on a photon counting process, which instead 
follows a Poisson distribution with intensity-dependent var-
iance. The probability of observing k photons in pixel (x, y) 
is given by:

where λ =  λ(x, y) is the expected count, i.e. true intensity 
(we dropped the dependency on (x, y) to improve readabil-
ity). Moreover, these counts are not observed directly but 
are subjected to several amplification stages and discretized 
into a finite set of gray levels. If we assume linear amplifi-
cation characteristics and neglect discretization effects,3 the 
observed image gray levels k′ depend on  k according to the 
linear function

where a denotes the total gain factor and b the dark signal 
(offset). The noise in  k′ is no longer Poisson distributed. 
One can easily see this by recalling that both the mean and 
variance of a Poisson distribution are equal to λ. In con-
trast, mean and variance of  k′ are

and these quantities are in general different. Consequently, 
it is incorrect to apply algorithms which rest on the 
assumption of Poisson or gaussian noise (like matched fil-
tering) directly to the observed image k′(x, y). Fortunately, 
there is an easy way out: the Anscombe transform (ans-
combe 1948)

turns a Poisson-distributed signal k(x, y) into an approxi-
mately gaussian distributed one q(x, y) with unit variance, 
regardless of the value of k (as long as  k ≥ 4). However, in 
order to apply the anscombe transform, we need to know 

p(k) =

�
k

k!

e−�

3 This is possible because the discretization noise is typically much 
smaller than the noise from other sources.

(3)k′
= a k + b

E
[
k
′
]

= a E[k] + b = a � + b

Var
[
k
′
]

= a
2

Var[k] = a
2
�

q(x, y) = 2

√
k(x, y) +

3

8

the coefficients a and b that map the observed gray values 
k′ back into the Poisson-distributed counts  k:

Determining a and b turns out to be tricky. The standard 
solution is to record dedicated calibration images where 
the mean and variance of  k′ can be computed easily (lidke 
et al. 2005). Then, a linear regression through a set of pairs (
E[k′

], Var[k′
]

)
 with different  k′ directly provides the 

desired coefficients. However, this approach is inconven-
ient when the camera is mounted on a microscope. There-
fore, we seek to determine these coefficients from the raw 
localization images themselves by self-calibration.

among a large number of ideas we tried, the follow-
ing turned out to be the most stable. Consider a pixel (x, 
y) whose true intensity is constant over time, i.e., the pixel 
shows background or a bead, but no blinking molecule. 
Then, we can easily compute its average intensity and vari-
ance over time and obtain a point for the linear regression. 
The difficulty is that we do not know which pixels have 
this property. The following consideration shows a way to 
identify them: Whenever the true intensity is not constant, 
the apparent variance is larger than it would otherwise be, 
because

where f(t) is a time-dependent signal and n(t) denotes 
noise which is uncorrelated with the temporal behavior 
of f. When  f(t) = const, its variance is zero, resulting in 
the minimal possible value of Var

[
f (t) + n(t)

]
. Otherwise, 

the total variance increases. This leads to the following 
algorithm

1. Select n image locations at random.
2. Compute mean and variance of the corresponding pix-

els over the first T frames of the sequence (T = 200 
works well in practice, but the value can be adjusted). 
Create the scatter plot of the resulting mean/variance 
pairs.

3. Use the ranSaC algorithm (Fischler and Bolles 
1981) to compute the lower leaning line of the scatter 
plot: repeat k = 10,000 times:

(a) Select two points at random and compute the line 
through these points.

(b) Determine the number of inliers of this line, i.e., 
the number of points whose distance from the line 
is at most a twentieth of the range between the 
minimal and the maximal value.

(c) Keep the line with the maximum number of 
inliers as the best estimate of the lower leaning 
line.

(4)q(x, y) = 2

√
k′(x, y) − b

a
+

3

8

Var
[
f (t) + n(t)

]
= Var

[
f (t)

]
+ Var[n(t)]
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4. The coefficients a and b now correspond to the slope 
and intercept of the lower leaning line, because this 
line contains precisely the points whose intensity was 
constant over time. all points not near the lower lean-
ing line are “contaminated” by intensity variations and 
therefore ignored.

Figure 2 shows an example of the fit according to this 
algorithm. It can be seen that it does indeed detect the 
lower leaning line of the scatter plot, which corresponds to 
the pixels with constant intensity.

Occasionally, the range of intensities on the lower lean-
ing line is rather small (e.g., when no beads are present), 
resulting in noisy gain estimates. This can be fixed by itera-
tive post-optimization: We use the estimated parameters to 
transform the data according to (4) and compute an intensity 
histogram for each of the first 200 frames. These histograms 
contain mixture distributions with one mixture component for 
the background and one for the rest. We fit a gaussian to the 
background mixture component in each histogram and com-
pute the average variance of these gaussians. When this value 
is not within 5 % of unity, the gain factor is multiplied with 
the measured variance and the procedure repeated. This algo-
rithms lead to stable gain estimates within a few iterations.

Background subtraction

Once, the noise model is known, we transform the observed 
images k′

t(x, y) into noise-normalized ones qt(x, y) (where t 
indicates time) according to section “noise normalization.” 
The next step is the estimation of the background intensity. 
It is based on the standard assumption that the background 
varies much slower then the actual signal both spatially and 
over time. We split the dataset into non-overlapping blocks 
of size ρ2 × τ, where  ρ is the block size in the two spatial 
directions, and τ is the block size along the time direction. 
Default values of  ρ = 30 and  τ = 20 work well in all our 
experiments. If necessary, the user can adjust these settings. 

This is easy because he or she can determine how fast the 
background varies by simple visual inspection of the data.

In each block, the median of the gray values s is computed. 
The median is preferable to the mean because it is more sta-
ble when the block contains non-background pixels (blinking 
spots and beads): these pixels lead to a significant upward 
bias in the mean, whereas the median increases only margin-
ally. The median values are placed on the grid points defined 
by the centers of the blocks and interpolated to the original 
image resolution (both in spatial and time direction) using a 
Catmull-rom spline which ensures smooth (i.e., differenti-
able) interpolation and thus avoids blocking artifacts in the 
background estimate βt(x, y). after subtracting  βt from the 
noise-normalized signal  qt, we obtain the signal  st which has 
unit variance in all pixels and zero mean in the background:

We call the resulting image  st the standardized image 
because it now conforms to the requirements of the 
matched filter method. Figure 3 shows examples.

estimation of the PSF

In order to apply the matched filter method, an accu-
rate estimate of the PSF is required. We investigated two 
approaches to PSF estimation, a nonparametric and a par-
ametric one. In both cases, the PSF is estimated by aver-
aging over many spots after image standardization. The 
nonparametric method determines the PSF in the form of 
an optimal Wiener filter which is based on the magnitude 
spectrum of the signal. let

the Fourier transform of standardized frame st. Then the 
average power spectrum over T frames is

(5)st(x, y) = qt(x, y) − βt(x, y)

St = F[st]

P =

1

T

T∑
t=1

|St|
2

Fig. 2  ranSaC-fitting of a 
lower leaning line to a scatter 
plot showing variance versus 
mean intensity for randomly 
selected pixels. Slope and inter-
cept of this line determine the 
correction coefficients in eq. (4)
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where |St | is the point-wise magnitude of the complex fre-
quency response. The Wiener filter is then defined as

where Pnoise is the expected power spectrum of the noise 
and (.)

+
= max (0, .) is the hinge function that truncates 

negative values at zero (negative values can occur because 
we estimate W from a finite sample). Since the noise (after 
standardization) is additive gaussian noise with zero mean 
and unit variance, its expected power spectrum is simply  
Pnoise = 1. The matched filter can now be computed by 
multiplication of each frame’s Fourier transform with the 
Wiener filter, followed by inverse Fourier transform

In contrast, the parametric method assumes that the PSF is 
shaped like a gaussian, which is a very good approxima-
tion for typical microscopes. Under this assumption, the 
self-calibration only needs to determine a single param-
eter, the PSF scale σPSF. Clearly, the variance of a single 
parameter estimate is much smaller than the variance of an 
entire nonparametric PSF estimate when the same number 
of samples is used. The gaussian model is therefore pref-
erable when it conforms to the actual PSF shape, whereas 
the Wiener filter should be applied otherwise. Due to image 

W =

(
P − Pnoise

P

)

+

ŝt = F
−1

[St · W ]

standardization, our estimate σPSF is related to the PSF size 
σ ∗

PSF of the raw data by the relation σPSF =

√

2 σ ∗

PSF.
The gaussian fit can be performed both in the spatial and 

in the Fourier domain. The Fourier domain approach starts in 
the same way as in the nonparametric case, i.e., we compute 
the average power spectrum of the noise-normalized signal. 
To simplify subsequent computations, we cut out sufficiently 
large square rOIs from the original frames and compute 
their average power spectrum P′. now, instead of using the 
power spectrum directly to define a Wiener filter, we com-
pute the average magnitude spectrum 

√

P′ and use it to fit a 
gaussian function. Since the Fourier transform of a gaussian 
PSF and the corresponding magnitude spectrum are again 
rotationally symmetric gaussian functions, the model is

where r =

√

u2
+ v2 is the distance of the point from the 

origin. The parameters wi are chosen by means of nonlin-
ear least-squares optimization (using the levenberg–Mar-
quardt algorithm) such that the squared difference between 
the model and the power spectrum is minimized

(6)g(r|w1, w2, w3) = w1 exp

(
−

r2

2w2
2

)
+ w3

w1, w2, w3 = arg min
wi

∑
u,v

[
g(r|w1, w2, w3) −

√
P′(r)

]2

Fig. 3  Top original images (from left frame 50 of the artificial Tubulin2 dataset, actin conjugated to meos2, and tubulin labeld with Cy5, see 
section “results” for details on the data). Bottom the same frames after standardization
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Parameters w1 and  w3 account for the signal and noise 
intensities respectively, whereas the desired PSF scale in 
the spatial domain can be obtained from the parameter  w2 
by the simple relation

where W is the width of the rOI used to compute the mag-
nitude spectrum (recall that we select squared rOIs to sim-
plify matters). The fit in the spatial domain is performed 
similarly, but the simple averaging via the average power 
spectrum is not possible here. Instead, we fit the PSF inde-
pendently to a number of easy-to-detect spots, and then 
define  σPSF as the median of the parameter  w2 of the indi-
vidual estimates. (Thus, we also use the standard fitting 
algorithm of (Thompson et al. 2002), but only to estimate  
σPSF.)

Finally, the result of matched filtering is

where ⋆ denotes convolution. experimental results are 
reported in section “Validation datasets”.

Spot detection

Spot detection is performed in each frame after image 
standardization. Since the background now contains only 
gaussian additive noise with zero mean and unit variance, 
a standard statistical test can be used to detect pixels whose 
intensity is unlikely to be background. For a given p value, 
corresponding to the probability of false positives, the 
intensity threshold is

where erfi(.) is the inverse error function. That is, a normal-
ized pixel with intensity at least t has a probability of at 
most p to represent background. For example, p values of 1 
and 0.1 % correspond to thresholds 2.3 and 3.1 and indicate 
that one gets one false positive on average per 10 × 10 and 
30 × 30 window, respectively. note that these thresholds 
are independent of the image content. In contrast to many 
existing algorithms, there is no need for manual threshold 
adjustment or complicated threshold selection heuristics in 
SimpleSTOrM.

The false positive rate can be further reduced by notic-
ing that true spots always cover several pixels, whereas the 
noise in neighboring pixels is uncorrelated. Therefore, the 
probability that multiple adjacent pixels are above thresh-
old simultaneously is low for background pixels, but high 
for true spots. In practice, we accept a spot if at least three 
connected pixels exceed the threshold for the chosen  p 
value. The probability of false positives in this setting can 
be approximated by a binomial distribution with parameter  

σPSF =

W

2πw2

ĝt = st ⋆ gaussσPSF

(7)t ≥

√

2 erfi(2p − 1)

p. For example, for  p = 1 %, the probability that three or 
more background pixels are above threshold in a given 
3 × 3 window is below 0.01 %, for p = 0.1 % the result-
ing probability is ≈10−5 %. The result of this step is a set 
of spot masks, i.e., connected regions above threshold that 
contain at least three pixels.

Spot localization

In order to perform spot localization, we first subject the 
normalized image to the matched filter described in section 
“Matched filters”, i.e., we filter with a gaussian whose size 
σPSF has been determined according to section “estimation 
of the PSF.” We do not apply this filter before spot detec-
tion because this would introduce complicated correlation 
between the noise of neighboring pixels, making the dis-
tinction between signal and noise more difficult.

The theory of matched filtering suggests that each local 
maximum of the filtered image corresponds to a location 
of best match between the data and the spot model. This 
location needs to be determined to subpixel accuracy, and 
a residual error of 1/5 to 1/10 of a pixel is typically achiev-
able. The simplest possibility to do so is via cubic spline 
interpolation of the filtered image to the desired resolution. 
The upsampling ratio can be chosen by the user and is typi-
cally between 8 and 16. To save time, the interpolation is 
only performed in sufficiently large rectangles around each 
spot mask (i.e., the bounding rectangle plus four pixels 
in every direction). each local maximum of the interpo-
lated image which is covered by one of the spot masks is 
returned as a detected spot.

Important spot properties such as signal-to-noise ratio 
and anisotropy can be readily obtained from the proper-
ties of the interpolated image. let  g be the intensity of the 
interpolated image at the local maximum position, and gxx,  
gxy,  gyy the corresponding second derivatives (these deriva-
tives can be easily computed analytically from the spline 
representation). Then the following relations can be derived 
from basic properties of gaussian functions. Since the 
noise has unit variance before matched filtering, the (unfil-
tered) signal-to-noise ratio is simply given by

(the factor of 2 accounts for the smoothing effect of the 
matched filter). The SD of the 2D localization error  Δx 
after matched filtering, defined in units of the pixel spacing, 
is then

This is of the expected form, because g is proportional to 
√

N  (the square root of the photon count) due to the action 
of the anscombe transform.

SNR = 2g

(8)StdDev[∆x] =

1
√

π g
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The maximum and minimum radius of a potentially ani-
sotropic spot can be computed from the eigenvalues of the 
second derivative matrix

by the expressions

(with  σfilter =  σPSF for matched filtering) and their ratio 
gives the spot anisotropy

Spot radii and anisotropy can serve as additional selec-
tion criteria to remove undesired anisotropic spots, or as a 
means to determine spot depth in 3D localization micros-
copy with cylindrical lenses (however, depth estimation is 
not yet implemented in the SimpleSTOrM software).

It should be noted that each spot mask can contain mul-
tiple local maxima. This is desirable because it allows us to 
detect overlapping spots, provided that the overlap is not 
too big. Specifically, when we skip the filtering step alto-
gether and detect maxima directly in the interpolated stand-
ardized images, overlapping spots of equal intensity remain 
separable (i.e., give rise to distinct maxima) when the dis-
tance of their centers exceeds 2σPSF. The localization error  
Δx′ then becomes

where g′ is the intensity at the location of the maximum 
and  σPSF is taken in units of the pixel spacing. This pos-
sibility is an advantage of our method over reconstruction 
algorithms that explicitly fit the PSF to the image data: The 
fitting approach only works reliably when the spots do not 
overlap significantly, i.e., when the spot distance is about 
twice as big.

Results

Validation datasets

Validation data should be both realistic and accompanied 
with ground truth. a good compromise between these con-
flicting goals is achieved by the simulated image sequences 
that have been designed with great care for the ISBI Single-
Molecule localization Microscopy Challenge 2013 and 

κ1,2 =

1

2

(
gxx + gyy ±

√
g2

xx + g2
yy + 4 g2

xy − 2 gxxgyy

)

smax =

√
−g/κ1 − σ 2

filter

smin =

√
−g/κ2 − σ 2

filter

AI =

smax

smin

StdDev[∆x
′
] =

π σ 2
PSF

√

3 g′

can be downloaded freely.4 The ground truth is available 
for four “training” datasets, and we used these for most of 
our quantitative experiments. Six additional datasets with 
undisclosed ground truth were used in the contest, where 
SimpleSTOrM also performed well. Since the organizers 
did not yet publish the results officially, we compiled the 
ranking charts in Fig. 4 from the material handed out at the 
competition workshop. The charts place each participant 
according to the average ranking in two performance met-
rics (Jaccard index and rMSe, see below) in the “high-spot 
density” and “low-spot density” data categories.

Two of the training datasets show simulated tubulin 
tubes, and we will refer to them as “Tubulin 1” and “Tubu-
lin 2”. They consist of 2400 frames with a resolution of 256 
px × 256 px (at 150 nm per pixel) and strong autofluores-
cent background. The Tubulin 2 dataset has a higher noise 
level than Tubulin 1. The other two datasets simulate a bun-
dle of tubulin tubes. There is a long sequence with 12000 
frames and almost no overlapping spots and a high-density 
set with 361 frames and severely overlapping spots. These 

4 http://bigwww.epfl.ch/smlm/datasets/index.html.
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Fig. 4  average algorithm rankings in the ISBI localization Chal-
lenge (top low density, bottom high-density datasets). Smaller dis-
tance to the origin is better

http://bigwww.epfl.ch/smlm/datasets/index.html
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datasets will be referred to as "long sequence" (lS) and 
"high density" (HD), respectively. Both datasets consist of 
images with a resolution of 64 px × 64 px at 100 nm per 
pixel. Full details are available on the challenge web site.

In addition, a free program5 to compute performance 
metrics such as Jaccard index, F score (both measuring 

5 http://bigwww.epfl.ch/smlm/evaluation/index.html.

detection reliability) and root mean square localization 
error (rMSe) accompanies the data.

PSF estimation

We compared a nonparametric (Wiener filter) and two 
parametric (gaussian fitting in the Fourier and spatial 
domains) algorithms for PSF estimation. The three estima-
tion methods performed similarly on the test datasets with 
non-overlapping spots. This confirms that the gaussian 

Fig. 5  Histograms of estimated  
σPSF for the training datasets 
from the ISBI localization 
challenge

Fig. 6  rMSe for different filter 
widths

http://bigwww.epfl.ch/smlm/evaluation/index.html
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model is indeed applicable, because otherwise the Wiener 
filter would have been superior. Spatial domain fitting was 
slightly more robust than Fourier domain fitting, which 
tended to overestimate σPSF and occasionally failed to con-
verge to the correct solution. Since a gaussian matched 
filter is faster than a Wiener filter, we prefer the former. 
Figure 5a–d show the distribution of sigmas estimated by 
applying the levenberg-Marquardt algorithm to all spots in 
the first 2000 frames (respectively all frames in the high-
density dataset). The FWHM of the true PSF was 258 nm 
in all cases, which translates into  σtrue = 0.73 pixels in 
Tubulin 1 and 2 and into  σtrue = 1.09 pixels in the others. 
Our estimate of  σPSF is the median of these histograms and 
within 10 % of the true values, except in the high-density 
dataset where our estimate is slightly too high because the 
fitting algorithm falsely merged some overlapping spots.

To improve results in high-density datasets, another 
advantage of the parametric PSF model comes into effect: 
It is easy to change the filter strength by choosing  σfilter <  
σPSF. This reduces the tendency of overlapping spots to be 
erroneously fused. Figure 6 shows the rMSe as a function 

of  σfilter for low- and high-density data. It can be seen 
that the matched filter indeed minimizes the rMSe when 
spots do not overlap, whereas the optimal filter size is 
much smaller when spots overlap. The same effect is illus-
trated qualitatively in Fig. 7: the detection quality clearly 
decreases with increasing  σfilter. Therefore, we choose a 
small value for  σfilter for high-density data.

gain estimation

a key feature of SimpleSTOrM is the estimation of the 
camera gain directly from the data. This is important since 
the actual gain factor may differ from the value indicated 
by the camera’s control settings. For validation purposes, 
we captured a series of 500 frames of a standard cell cul-
ture with phalloidin-labeled actin filaments using different 
gain settings in the camera. Figure 8 shows that the true 
and indicated gain values differ, but are proportional to 
each other. This justifies our linear model (3) and the gain 
estimation method of section "noise normalization."

Image standardization

To check whether the image standardization works as 
desired, we measure the false positive rate of the statistical 
test according to section "Spot detection" on the image back-
ground. Since the ground truth is known, we can define the 
background precisely as the set of pixels which are at least 
four pixels away from any true spot position. For the plain 
statistical test (without connectivity constraint), the false pos-
itive rate should equal the p value. To verify this, we counted 
the fraction of background pixels whose intensity exceeds 
the threshold according to (7) after image standardization. 
Figure 9a shows results for Tubulin 1 where the actual error 
rate is even a bit less than expected. as can be seen in Fig. 
9b, the additional connectivity test reduces the error rate 
further: Out of 46 million background pixels, we found 228 
false positives for  p = 1 % and only 16 for  p = 0.1 %.

Fig. 7  The effect of filter width on high-density data

Fig. 8  Scatter plot of estimated gain vs. gain setting in the camera
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reconstruction results

We finally report results for the entire SimpleSTOrM algo-
rithm on artificial and real data. For the artificial data, we 
adopt the performance metrics suggested by the ISBI chal-
lenge, namely the Jaccard index 

the F score which is defined via precision and recall as

and the rMSe

Jaccard =

TP

FN + TP + FP
,

Recall: R =
TP

TP + FN

Precision: P =
TP

TP + FP

F score: F =
2 R P

R + P

RMSE =

(
1

TP

TP∑
i=1

d(x∗

i , xi)
2

)1/2

where TP, Fn, and FP are the number of true posi-
tives, false negatives and false positives respectively, and 
d(x∗

i , xi) is the euclidean distance of the ith detection from 
the corresponding ground truth location. a true match is 
recorded if the ground truth position is within radius r of 
the detection, and each ground truth point can be assigned 
at most once. We use the evaluation tool from the ISBI 
challenge website to compute these metrics with r = 0.3 
px (which corresponds to 30 nm for the high-density and 
long-sequence dataset and 45 nm for the tubulin1 and 
tubulin2 datasets).

Fig. 9  False positives rates for 
Tubulin 1 as a function of  p

Table 1  SimpleSTOrM performance

Precision recall rMSe (nm) Frames 
per sec

Tubulin1 0.938 0.542 16.9 51

Tubulin2 0.912 0.368 20.4 72

lS 0.946 0.802 10.2 563

HD 0.437 0.033 20.5 257

Fig. 10  Tubulin 1. Left mean projection of the raw data. Center reconstructed image. Right localizations (green) and ground truth (red), yellow 
indicates perfect alignment. Scalebar represents 2 μm for the first two images and 100 nm for the third (best viewed in color)
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Table 1 shows the metrics and the processing speed for 
the four training datasets, where SimpleSTOrM was run 
with standard settings on the first three datasets. That is, 
gain, offset, and PSF size were determined by self-calibra-
tion, the p value was set to 0.3 %, and the reconstructed 
images were upsampled 16-fold relative to the originals. 
In the high-density dataset, matched filtering was skipped, 
and an asymmetry threshold of two was introduced. Cor-
responding reconstructions are shown in Figs. 10 and 11. 
The reconstructed images contain both our detections and 
ground truth. It can be seen in the low-density dataset (Fig. 
10 right) that the detections are typically within one pixel 
of the ground truth position in the reconstructed image. 
On the difficult high-density dataset, SimpleSTOrM still 
performs reasonably after the indicated manual parameter 
adjustments. While these adjustments result in a rather low 
recall, the localization error of the surviving spots is accept-
ably low. For comparison, Table 2 contains corresponding 
results for rapidSTOrM (version 3.2) whose parameters 
were manually adjusted for good performance (this takes 
some time and experience, especially for datasets with vari-
able background). The performance in terms of precision 
and localization error is comparable, but SimpleSTOrM 
achieved this without parameter tuning. On average, rap-
idSTOrM processes the data 5–6 times faster than Sim-
pleSTOrM, but on very small images with low-spot 

density, the speed difference can be up to a factor of 11. In 
summary, SimpleSTOrM is easier to use, rapidSTOrM is 
faster, and both produce images of comparable quality.

While SimpleSTOrM produces good results on “nor-
mal” data without parameter tuning, advanced users can 
still adjust the settings to tailor the output to the needs 
of a particular experiment. Specifically, it is possible to 
strengthen the criteria for true positives, so that only points 
with high certainty and correspondingly better localization 
accuracy are recorded. This trade-off reduces the detec-
tion performance (Jaccard and F-score), but improves the 
rMSe (it is not possible to improve both at the same time). 
To this end, SimpleSTOrM offers the opportunity to set the 
p value, an asymmetry threshold and the upscaling factor 
for the reconstructed image. Table 3 shows the changes in 
Jaccard index, F score, and rMSe for the ‘long-sequence’ 
dataset after these changes. Baseline settings are: p value = 
0.1 %, upscaling factor = 10 and asymmetry threshold off.

lowering the p value does not alter the results signifi-
cantly, because the false positive rate is already very low. 
applying an asymmetry threshold improves the rMSe, but 
discards a number of true positives along with the undesir-
able distorted spots. a higher upsampling factor increases 
the localization accuracy without removing any points, but 
increases the reconstruction time.

Table 2  rapidSTOrM performance

Precision recall rMSe (nm) Frames 
per sec

Tubulin1 0.890 0.537 16.9 333

Tubulin2 0.901 0.378 20.2 387

lS 0.935 0.797 9.63 6000

HD 0.467 0.041 20.3 256

Fig. 11  High-density dataset. Left frame 3 of the raw data. Middle reconstructed image. Right localizations (green) and ground truth (red). 
Scalebars 1 μm (first two images), 200 nm (third image, best viewed on color)

Table 3  effect of advanced parameter settings

Jaccard F score rMSe 
(nm)

Baseline 0.824 0.903 12.88

p value = 0.001 % 0.815 0.898 12.76

asymmetry (1.5) 0.620 0.765 12.13

Upscale factor = 100 0.619 0.764 11.45
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experimental data

Finally, we applied SimpleSTOrM to experimental single-
molecule localization data recorded from cellular struc-
tures. The images we processed were recorded either using 
the principle of direct stochastic optical reconstruction 
microscopy [dSTOrM, Heilemann et al. (2008), Figs. 1 
and 12], or photoactivated-localization microscopy [PalM, 
Betzig et al. (2006), Fig. 13]. all data were recorded with 
an exposure time of 100 ms and irradiation intensities 
between 1 and 4 kW/cm2 (for experimental protocols, the 
reader is referred to Heilemann et al. (2009) (dSTOrM, 
aTTO520), Heilemann et al. (2008) (dSTOrM, alexa 
Fluor 647) and Muranyi et al. (2013) (PalM, meos2). 
HeK cells for Fig. 12 were fixed with methanol at −20 °C 
for 5 min and left over night in PBS. Fixed cells were 
blocked with 5 % horse serum in PBS and incubated with 

the primary antibody against alpha-tubulin (Sigma, T6199) 
for 1h. Cells were washed three times for 5 min with block-
ing buffer (5 % horse serum in PBS). afterward, cells were 
incubated with the secondary antibody (Invitrogen catalog 
no. a-21236) against mouse coupled to the fluorophore 
alexa 647 for 1 h. again, cells were washed three times 5 
min with blocking buffer. With 4 % PFa, cells were post-
fixed for 10 min before putting the cells in a 0.1 % poly-
l-lysine solution for 4 h. 100 mM Mea solution and Tet-
raspeck (lifeTechnologies) beads with a concentration of 
1:200 were used as imaging buffer.

reconstructed super-resolution images are shown for 
tubulin labeled with aTTO520 (Fig. 1) or alexa Fluor 647 
(Fig. 12), as well as for actin labeled with meos2 (Fig. 13). 
We further estimate the spatial resolution by measuring the 
width of tubulin filaments, which were found to be about 
60 nm (Fig. 1) and comparable to previously published 

Fig. 12  Micro-tubulin labeled with alexaFluor647 in HeK cells. Left mean image of the raw data. Middle reconstruction by SimpleSTOrM. 
Right magnification of the indicated subregion. Scalebars 10 μm (first two images), 1.5 μm 

Fig. 13  actin labeled with meos2 in Hela cells. Left mean image of the raw data (data courtesy of M. Heilemann). Right reconstruction by 
SimpleSTOrM. Scalebars represent 3 μm
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values [Heilemann et al. (2008)]. Considering the expected 
rMSe and the average distance of the fluorescent markers 
from the actual molecule, this is in the expected range.
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