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Abstract

Deep neural networks trained to inpaint partially occluded images show a deep un-
derstanding of image composition and have even been shown to remove objects from
images convincingly. In this work, we investigate how this implicit knowledge of image
composition can be be used to separate cells in densely populated microscopy images.
We propose a measure for the independence of two image regions given a fully self-
supervised inpainting network and separate objects by maximizing this independence.
We evaluate our method on two cell segmentation datasets and show that cells can be
separated without any supervision. Furthermore, combined with simple foreground de-
tection, our method yields instance segmentation of similar quality to fully supervised
methods.

1 Motivation
Recent inpainting neural networks demonstrate a remarkable ability to remove distortions
in natural images (e.g., text overlays, watermarks, or pixel-wise independent noise) and are
even able to entirely remove foreground objects. Trained on large datsets, these networks
learn the statistics that underlie images in a way that goes well beyond low level features.
In this work, we aim to leverage those learnt statistics to distinguish individual objects in
images from each other, without any form of supervision. Let us consider a high-capacity
inpainting network trained on a very large corpus of microscopy images and imagine the
following scenario: Given the image of a cell culture with a region in the center masked out
to inpaint, such a network will be able to continue inpainting cells that are partially visible.
If, however, the masked-out region is large enough to contain entire objects, the provided
context will be uninformative about their location, shape, and texture and will therefore not
be able to recover those objects. In other words, the success of predicting masked out objects
depends on the information about those object contained in the surrounding context.

In this paper we ask the question if the predictability of image regions given partial in-
formation can be used to separate instances. In particular, we define an information gain
measure between image segments that can be approximated efficiently given an inpainting
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Figure 1: Extraction of instance separating affinities from an inpainting network. Given
an image patch, we optimize a set of pixels M (shown in purple) to minimize the informa-
tion gain measure (IGM), which is based on the predictions of a probabilistic inpainting
network (see Section 3.2 and Fig. 2 for details). This optimization ensures that pixels in
M∗ provide minimal information about the intensity values of pixels in the complement M∗

(shown in orange). We apply this procedure recursively to M∗ and M∗ to obtain a hierarchi-
cal segmentation of the image patch from which we extract affinities (shown in blue/red for
x-/y-direction, respectively). These affinities are computed and averaged over a set of sliding
image patches (green box) to obtain the final affinity estimates.

network. We show that minimizing this measure through a hierarchical optimization algo-
rithm yields useful image decompositions. We represent those decompositions by affinities,
i.e., attractive or repulsive edges between pairs of pixels, which we average over a set of im-
age patches in a sliding window fashion to obtain affinities for arbitrarily large images (see
Fig. 1).

We evaluate our method on the problem of separating cells in microscopy images. We
show that the inpainting network’s understanding of image composition can be used to sepa-
rate cells in images without any supervision. Furthermore, combined with simple foreground
detection trained from few samples, our method yields instance segmentation of similar qual-
ity to fully supervised methods.

2 Related Work

While classical patch-based inpainting methods such as [2, 8, 26] synthesize high quality
images, they fundamentally cannot make semantically aware decisions for intensity predic-
tions. Deep inpainting networks, on the other hand, trained on large corpuses of data are
known to develop an intrinsic understanding of images [17], which raises the question what
aspects are captured by these networks. The usefulness of these inpainting models for image
segmentation was shown by Pathak et al. [22], who demonstrate that features extracted from
a trained inpainting network capture appearance and semantics of visual structures aiding
in the pre-training of classification, detection, and segmentation tasks. Extending inpainting
networks that directly minimize the reconstruction error [13, 31] with texture and structure



WOLF, HAMPRECHT, FUNKE: INPAINTING NETWORKS LEARN TO SEPARATE CELLS 3

aware loss, such as multi-scale neural patch synthesis [32] or Structure-aware Appearance
Flow [23] leads to high-fidelity images and prediction and modeling of higher order rela-
tions In parallel, specialized architectures and convolutions have been developed that make
it possible to realistically inpaint arbitrary masks [19, 33].

In this work, we use the network architecture and loss proposed by Liu et al. [19], which
is designed to inpaint arbitrary masks and is trained with an additional style component
loss. Since we leverage the network’s learned distribution by measuring information gain
between image patches, we intentionally avoid networks trained with an additional GAN
loss [5, 20, 34]. Although GANs produce extremely realistic looking images, they are prone
to mode collapse that affects our estimate of information gain.

More generally, inpainting falls under the broader category of unsupervised prediction
of left-out data, also known as self-supervised learning [6]. Self-supervised prediction ob-
jectives are formulated using only unlabeled data and, but do require higher-level semantic
understanding in order to be solved [35].

Other than inpainting, self-supervised tasks include image colorization [16, 36], co-
occurrence [9], predicting permutations [24], and denoising [14]. These methods are highly
effective at extracting robust features for further transfer learning [37] and image embeddings
[27] and can be considered a proxy task for developing a semantic understanding [17].

In some cases, the self-supervised task can be used as a free supervisory signal that
directly translates to classically supervised tasks. For example, object tracking emerges from
video colorization [28] or through obeying cycle-consistency in time [29]. When provided
with background images and images with objects, Ostyakov et al. [21] learn to segment by
predicting masks and paste patches from the object domain onto the background domain
constrained by an adversarial and a cycle consistency loss.

Our work uses the statistical properties of instances to derive a method for separating
instances, which closely relates to other self-supervised segmentation approaches that utilize
different properties to identify objects. Burgess et al. [3] utilize compressibility, in a compo-
sitional generative model, where image regions are reconstructed through a low dimensional
bottleneck. They show that their model is capable of discovering useful decompositions of
scenes by identifying segments that can be represented in a common format. Another ap-
proach by Chen et al. [4] learns to find masks of objects by learning to replace the masked
content that corresponds with altering the masked objects properties (e.g. altering the color
of flowers).

3 Self-Supervised Instance Separation
In general, self-supervised instance separation or (more generally) segmentation is an under-
constrained problem. What exactly constitutes a correct segmentation of an image depends
not only on the application context (e.g., segment all cells in a microscopy image), but also
on a subjective level of detail (e.g., segment nuclei and cell membrane individually). Without
constraining assumptions or instructions, several different segmentations of the same image
are plausible, leading to an intrinsic ambiguity. This ambiguity can be prominently observed
as the inter-human variance for segmentation tasks where the concept of a segment is not
precisely defined [1].

In the case of supervised image segmentation, this ambiguity is resolved by a set of
training object instances in the form of, e.g., affinities, labeled images, bounding boxes, or
polygons. For self-supervised segmentation, on the other hand, assumptions about what
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constitutes a segmentation have to fill in for the lack of training data.
Here, we propose to resolve this ambiguity by assuming that pixels of the same instance

are more predictable from each other than across instances. We define the similarity between
two pixels (and therefore the likelihood to be part of the same instance) as the information
gained about the value of one pixel by observing the value of the other one. To obtain a
segmentation, we therefore separate an image into segments that contain individual instances
by repeatedly cutting the image (see 3.4). Our main insight is that a cut is more likely to
separate instances if the information gain of pixel values across the cut is minimized. We
quantify the information gain indirectly by measuring how accurately an inpainting network
can predict the other side. Since we measure the accuracy pixel-wise, we can find an optimal
cut by iteratively reassigning pixels that increase the inpainting inaccuracy.

Since inpainting networks are central to our method, we will revisit their probabilistic
formulation in Sec. 3.1. We then show that those networks can be used to estimate the
information gain (IG) of the given data to the inpainted pixels (Sec. 3.2). We use this
estimate to introduce a new IG measure that estimates the information gain between two
regions (groups of pixels). We show that this measure can be efficiently approximated, which
requires only a minimal number of network inferences (Sec. 3.3). This efficiency makes it
feasible to iteratively find optimal cuts and generate a segmentation as a set of optimal cuts
(Sec. 3.4).

3.1 Self-supervised Inpainting
Let xi be a random variable representing the intensity of pixel i ∈ Ω, and xM with M ⊆ Ω

a set of random variables {xi | i ∈ M}. Probabilistic inpainting is equivalent to learning a
parameterized function pθ (xi|xM), i.e., the conditional distribution over intensities of pixel i,
given known intensities of a partial observation M. The parameters θ of the distribution pθ

can be learned by minimizing the negative log-likelihood of a measurement x = x∗:

Linpaint(θ ;M) = ∑
i/∈M
− log pθ (xi = x∗i |xM = x∗M) (1)

It is worth noting that this loss formulation resembles the objective of probabilistic NOISE2-
VOID [15], highlighting the close connection between inpainting and denoising. In the next
subsection, we will derive a similar connection between inpainting and instance separation.

3.2 Predictability is Affinity
Our central assumption is that the intensity value of a pixel in an instance is conditionally
independent of all pixels outside the instance. In other words, pixel values should be well
predictable given the values of other pixels in the same instance (high affinity). Conversely,
pixel values from other instances should provide no additional information (low affinity).
More formally, let S = {Su ⊆ Ω} be a segmentation of Ω (i.e.,

⋃
u Su = Ω and ∀u 6= v :

Su∩Sv =∅), and let S(i)⊆Ω denote the segment containing pixel i. We assume that for the
true instance segmentation S∗

p(xi|xΩ\{i}) = p(xi|xS∗(i)\{i}), (2)

i.e., that there is no further information gain provided by Ω compared to S∗(i) for estimating
the value of xi. For any subset M ⊆Ω, let IG(i|M) denote the additional information gained
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for estimating the value of xi when observing Ω compared to M alone, i.e.,

IG(i|M) = DKL

(
p(xi|xΩ\{i})

∣∣∣∣∣∣ p(xi|xM\{i})
)

, (3)

where DKL denotes the Kullback-Leibler divergence. Hence, IG(i|M) is a measure of how
much xi depends on values not contained in M.

Considering our assumption stated in (2), a sensible objective to recover a single segment
of the true segmentation S∗ would be to minimize (3) with respect to M. In practice, however,
it would be unreasonable to assume that even for a correct segment M the information gain
for pixels in this set from pixels outside this set is exactly zero. In other words, dilating M
would trivially decrease IG(i|M) until M = Ω. Therefore, instead of minimizing (3) directly,
we propose to minimize a symmetric information gain measure. Let M = Ω \M be the
complement of M. We introduce a relative information gain that indicates whether M or M
provide more information about the value of xi: RIG(i|M) = IG(i|M)− IG(i|M). The quality
of a single segment M can now be assessed by the following symmetric information gain
measure over all pixels i:

IGM(M) = ∑
i∈M

RIG(i|M)+ ∑
i∈M

RIG(i|M) = ∑
i∈M

RIG(i|M)−∑
i∈M

RIG(i|M). (4)

3.3 Efficient Approximation of IGM(M)

In its current form, IGM(M) requires evaluation of IG(i|M) for every pixel i∈Ω. For each of
these evaluations, pθ (xi|·) has to be computed two times (conditioned on M and M), which
is too inefficient for a practical implementation.

To remedy this inefficiency, we make two approximations: First, we take advantage of
convolutional neural network architectures that can inpaint an arbitrary set of pixels N for
the same conditional [19]:

∏
i∈N

pθ (xi|M \{i})≈∏
i∈N

pθ (xi|M \N) (5)

A similar approximation technique was first proposed by Krull et al. [14], who argue that this
approximation is error-free for convolutional neuronal networks, if all pixels in N are spaced
further apart than the field of view of the network. In our experiments, we find that even
much denser subsets can be chosen without significant impact. We will refer to RIG(i|M)
using this approximation as RIGN(i|M) in the following.

Second, due to the limited field of view of the inpainting network, pixels far away from
the conditional set have to be estimated via a constant prior and the relative information gain
can therefore be computed without evaluating the neural network. Similarly, the complement
conditional contains all pixels in the field of view and therefore yields zero information gain
(assuming that all objects fit inside of the network’s field of view). Thus, RIG(i|M)≈ const
for pixels far away from the boundary between M and M.

In conclusion, limiting the computation of IGM to a specified region N close to the
boundary combined with the approximate RIGN leads to the following approximation:

IGMN(M) = ∑
i∈M∩N

RIGN(i|M)− ∑
i∈M∩N

RIGN(i|M)≈ IGM(M)+ const (6)
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Figure 2: Details of the hierarchical segmentation of an image patch from an inpainting
network. Given an image patch (top left), we recursively find optimal splits (shown in orange
and purple) by evolving a randomly chosen horizontal or vertical split over T iterations
(black box). For each step (illustrated in the green box), we evolve the boundary of the
split by consulting a probabilistic inpainting network to predict the intensity of pixels in a
region N around the boundary, once given only the information contained in M and once in
its complement M. We then measure the relative information gain RIGN in the inpainting
region to determine which component (orange or purple) provided more information about
the pixels in N and reassign M accordingly.

3.4 Segmentation from Maximally Independent Regions

Although the approximation IGMN introduced above reduces the computational burden of
evaluating IGM, finding an optimal mask M∗= argminM IGMN(M) still remains intractable
in general due to the combinatorial number of possible masks. To understand which image
regions are reconstructed independently by the inpainting network, we propose to solve this
optimization problem by following a greedy optimization strategy that generates a sequence
of masks Mt for t ∈ {0, . . . ,T} such that IGMN(Mt+1)≤ IGMN(Mt), illustrated in Fig. 2.

To this end, we first separate Ω into two equally sized components M0 and M0 by ran-
domly splitting them horizontally or vertically. We then evolve the boundary of the split by
evaluating RIGN(i|Mt) for all pixels i∈N in close proximity to the current boundary between
Mt and Mt . The sign of RIGN(i|Mt) indicates whether Mt or Mt provide more information
about the pixel i. We update M accordingly, i.e., Mt+1 = (Mt \N)∪{i ∈ N | RIGN(i|Mt)>
0}, which, by definition of (6), monotonically decreases IGMN .

Finally, in order to obtain a decomposition of an image into arbitrarily many maximally
independent regions, we apply the minimization recursively to already identified regions, i.e.,
we repeat the optimization procedure described above on regions M∗ and M∗, until either M∗

or M∗ are empty. Further implementation details on our neighborhood selection can be found
in the Supplement.
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(a) INPAINTAFF (b) INPAINTAFF +TRUEFG

(c) INPAINTAFF (d) INPAINTAFF +TRUEFG

Figure 3: Instance separation results assuming an accurate foreground detection TRUEFG
on the PANC dataset (top row) and the HELA dataset (bottom row). A foreground detec-
tion alone is not sufficient to segment touching cells (a, d). INPAINTAFF extracted from an
inpainting network find non-trivial splits between instances (b, e).

4 Experiments on Cell Segmentation
To quantitatively answer our question if predictability of image regions can be used to seg-
ment or separate objects, we apply our method to microscopy images of cells. In those
images, ggcells move freely in a substrate and can thus be considered as many independent
instances of the same kind, which makes them suitable for the independence assumption we
made in (2). Nevertheless, due to their high density, they pose a challenging segmentation
problem to evaluate the intrinsic knowledge of inpainting networks by measuring the sepa-
ration/segmentation accuracy. In the following, we will refer to the affinities extracted using
our method as INPAINTAFF.

4.1 Cell Segmentation Benchmark Dataset
We evaluate INPAINTAFF on a subset of the ISBI Cell Segmentation Benchmark, which in-
cludes a diverse set of 2D microscopy videos covering a wide range of cell types and imaging
quality. In particular, we selected two datasets that contain cells of irregular shape in close
proximity for which instance separation is needed to obtain a correct segmentation:
(1) HELA contains cervical cancer cells expressing H2b-GFP and (2) PANC contains pan-
creatic stem cells on a polystyrene substrate (see the CTC website for further information
about the datasets). Both datasets belongs to the most dense datasets of the ISBI Cell Seg-
mentation Benchmark1. Therefore, a mere foreground segmentation is ineffective for the

1The PANC and HELA cell density is 2 s.d. higher than the average CTC cell density.

http://celltrackingchallenge.net/2d-datasets/
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detection of individual cells. Additionally, both datasets contain only little labeled training
data (815 instances2 for HELA and 514 for PANC in fully labeled frames), which challenges
fully supervised segmentation approaches.

4.2 Results

As argued earlier, segmentation without supervision is an under-constrained problem. As
such, INPAINTAFF alone is unlikely to give rise to a segmentation capturing the intuition
of a human annotator. We recall that the main guiding principle for INPAINTAFF is pre-
dictability of pixel intensities. Depending on the distribution of cells in images used to train
the inpainting network, this predictability might equally well apply to a background region
around each cell. This effect is visible in both datasets (compare Fig. 3 and further images
in the supplement Fig. 5 and Fig. 6) and demonstrates that the method is agnostic about the
intensity of pixels and merely clusters pixels that are mutually predictable.

We investigate first how well inpainting networks understand image composition by
measuring how well INPAINTAFF separates instances. For our quantitative analysis, we
decompose the problem of cell segmentation into a foreground/background classification
and an instance separation task with affinities. We solve the separation task fully self-
supervised and evaluate it given a) ideal ground truth (see Instance Separation) and b) a
foreground/background classifier with minimal supervision (see Instance Segmentation from
Foreground Prediction).

Method HELA PANC

Conn. Comp. + TRUEFG 0.785 0.748
INPAINTAFF + TRUEFG 0.858 0.914
INPAINTAFF + FGNET50 0.766 0.666
Top Entries of the CTC HELA PANC

HIT-CN∗ MU-Lux-CZ∗ 0.919 0.715
FR-Ro-GE∗ CVUT-CZ∗ 0.903 0.682
PURD-US∗ HD-Hau-GE∗ 0.902 0.665

Table 1: Segmentation scores assuming an
accurate foreground detection TRUEFG and
FGNET50 (trained with 52/49 labeled instances
for HELA/PANC). For reference, we include the
official challenge scores of supervised methods on
the same datasets (marked with a star), which have
been trained on more labeled instances and evalu-
ated on a different testing dataset then our method.

We report results using the ISBI
Cell Segmentation Benchmark segmen-
tation accuracy (SEG score), a metric
that is based on the Jaccard similar-
ity index and measures average IoU of
all segments that overlap at least 50%
with the ground truth (further details
are given on the challenge website).
The detection score is the percentage of
matches that surpass a set IoU thresh-
old.

Instance Separation We investigate
how well INPAINTAFF separates in-
stances, assuming that an accurate fore-
ground segmentation is already avail-
able. For that, we use the ground-truth
segmentation provided in the datasets
and convert it into a binary foreground segmentation TRUEFG.

As we show in Table 1 (and qualitatively in Fig. 3), connected component analysis on
TRUEFG alone is not sufficient to achieve an accurate instance segmentation, due to merges
of cells in close proximity. Separating those cells using INPAINTAFF, however, results in
an almost perfect instance segmentation, in the case of PANC even significantly exceeding

2HELA has 571 additional instances. In partially labeled frames, which can not trivially be used to train neural
networks.

http://public.celltrackingchallenge.net/documents/SEG.pdf
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Figure 4: Segmentation score on the test data of datasets PANC and HELA, for varying
amounts of labeled instances used to train FGNET and AFFNET.

the scores of the best performing methods of 0.715 (albeit on different testing data and con-
strained to the ground-truth foreground). Those results suggest that (1) INPAINTAFF is ac-
curately separating instances, and (2) a foreground segmentation is necessary and sufficient
to constrain the boundaries of found objects to obtain a competitive segmentation.

Instance Segmentation from Foreground Prediction Since a foreground segmentation
is crucial to capture the application specific notion of what constitutes an object, we next
investigate the segmentation accuracy of our method when combined with a foreground pre-
diction network trained on few instances only, which we will refer to as FGNET (details in
Section 4.3). We train FGNET on varying amounts of labeled instances to predict a binary
foreground mask and use this prediction in combination with our INPAINTAFF to obtain an
instance segmentation. As a baseline, we also train a second network AFFNET to predict
affinities directly from the same labeled instances used to train the foreground network.

The segmentation scores for either approach on the test dataset are shown in Fig. 4, for
varying amounts of labeled instances used for training. Remarkably, INPAINTAFF consis-
tently outperform trained affinities in terms of the SEG score. This effect is most visible in
dataset PANC, where cells tend to cluster more compactly and the separation of individual
cells is therefore more challenging. In particular, INPAINTAFF on this dataset in combina-
tion with FGNET trained on as few as 24 labeled cells produces a segmentation that out-
performs the fully supervised AFFNET using one order of magnitude more training data.
As shown in the supplement Fig. 7, this observation also holds in terms of the detection
score over varying IoU thresholds. Furthermore, the obtained segmentation score on the
PANC dataset using only around 50 labeled instances for the foreground prediction together
with self-supervised affinities is on par with the third leading submissions to the ISBI Cell
Segmentation Benchmark, which have been trained on 514 instances (albeit evaluated on a
different testing dataset than used here).

4.3 Experiment Details

Training and Testing Split We use the inpainting network architecture and training pro-
cedure of [19].
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Since INPAINTAFF requires a considerable amount of computational resources (see dis-
cussion in Section 5) a direct evaluation on the CTC servers on the official testing data is
not possible. Therefore, we split the publicly available data for each dataset into a train and
testing dataset, each containing one video of sparsely labeled cells. Further details about the
network architecture, training and segmentation inference can be found in the supplement.

Affinity-Based Segmentation A segmentation can be derived directly from the affinities
with an agglomorative clustering algorithm. We use the MUTEXWATERSHED [30] in our
experiments, but other clustering algorithms (e.g. GAEC[11] and GF[18]) are equally viable.

We further introduce a single parameter α to control for over- and undersegmentation by
multiplying all long range affinities (that are used to split) with α . The optimal α for each
evaluated method was determined on the validation dataset. Further details can be found in
the supplement.

5 Discussion

It remains an open question as to how far segmentation based on image statistics alone (with-
out any supervision) will find real world applications. As we already observed on the seg-
mentation of cells in microscopy images studied here, an experimentalist’s intention of what
constitutes a good cell segmentation does not necessarily match the clustering of pixels based
on information content. Only at least partially supervised methods with application specific
losses can ultimately produce predictions tailored to a specific application, provided enough
labeled training data is available.

We see the contribution of this work therefore primarily as a demonstration of the ca-
pabilities of inpainting networks to implicitly group pixels of an object without explicit su-
pervision. We observe that this is an especially challenging tasks in microscopy images
without obvious cues like color to separate instances: the unsupervised method ReDO [4],
which demonstrated impressive results in segmenting flowers of different colors in RGB im-
ages, did not converge to produce foreground masks in our experiments3. Furthermore, with
minimal supervision, our method yields accurate segmentations which is relevant in bioim-
age analysis scenarios in which labeled training data is scarce. A current limitation of our
method is the runtime: INPAINTAFF requires around 48h to process a 700x1100 image on
a single GPU. Although inference can be trivially parallelized, the current implementation
might be prohibitively slow for many applications. We observed another minor limitation in
the early phases of our experiments: Less accurate inpainting networks indeed yield a sig-
nificantly worse segmentation result. We solved this by adapting the training procedure of
[19], training on a variety of random masks. Crucially this network should not be finetuned
on the maximally independent regions, since their shape alone suggests the position of other
instances.

The goal of our future work is to transfer the segmentation capability, measured in this
paper, to networks that directly predict image segments.

3All pixels were assigned to background (data not shown). ReDO was trained with default parameters on random
crops of our dataset.
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