From Meaningful Contours to
Discriminative Object Shape

Pradeep Yarlagadda and Bjorn Ommer

Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
{pradeep.yarlagadda,bjoern.ommer}@iwr.uni-heidelberg.de

Abstract. Shape is a natural, highly prominent characteristic of ob-
jects that human vision utilizes everyday. But despite its expressiveness,
shape poses significant challenges for category-level object detection in
cluttered scenes: Object form is an emergent property that cannot be
perceived locally but becomes only available once the whole object has
been detected and segregated from the background. Thus we address the
detection of objects and the assembling of their shape simultaneously.
A dictionary of meaningful contours is obtained by clustering based on
contour co-activation in all training images. We seek a joint, consistent
placement of all contours in an image, since placing them independently
from another is not reliable due to the emergence of shape. Therefore,
the characteristic object shape is learned by discovering spatially con-
sistent configurations of all dictionary contours using maximum margin
multiple instance learning. During recognition, objects are detected and
their shape is explained simultaneously by optimizing a single cost func-
tion. Our approach improves upon the current known best performance
on the standard shape benchmarks.

1 Introduction

Category-level object detection in cluttered scenes requires object models that
can handle the large intra-class variability and, at the same time, accurately
segregate objects from background clutter to avoid distraction by the background
and achieve exact localization. Shape-based models provide an effective approach
for accurately explaining meaningful object pixels in an image. The fundamental
challenge of shape representation is, however, that object form (i.e. the Gestalt)
cannot be perceived locally. Unlike color or texture which can be captured by a
small image region, the prototypical shape of an object like a giraffe cannot be
understood based on local measurements. Shape is an emergent property that
becomes only apparent after all the object boundary contours (or, in dual form,
its regions) have been grouped. At the same time, invariance w.r.t. missing,
occluded parts and intra-class variation require that incomplete Gestalt needs
to be dealt with while inter-class similarity renders it futile to detect objects
based on single contours, e.g., the leg of a giraffe might resemble the outline of
a bottle.

This leads to a fundamental question: how can we represent shape, if it
cannot be measured directly? Although there has been significant progress in
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edge detection and segmentation (e.g. [1,2]), segmentation is an ill-posed prob-
lem and thus bottom-up contour extraction is intrinsically limited [3]. To avoid
the shortcomings of purely image-driven contour extraction, we follow a model-
based approach (e.g. [4]) where we search with model contours that have been
learned during training. Given a set of training images, contours are extracted
and verified against the other training images to make up for the unreliabil-
ity of the contour extraction process. This overcomplete set of contours needs
to be condensed into a feasible sized codebook. However, we do not follow the
standard grouping based on visual similarity plus relative part location (e.g. [4])
as this fails when contours are corrupted by the extraction process. Rather we
propose a clustering based on the activation pattern of contours where contours
are grouped if they are activated similarly in a number of training images.

Although we now have a set of meaningful contours, matching them inde-
pendently to novel query images (e.g. [4,5]) still poses robustness issues due to
the large intra-class variability. Therefore, we optimize the joint placement of all
contours which maximally discriminates objects from non-objects. But how can
we learn meaningful co-placements of contours? During training these optimal
compositions [6,7] are not provided and the placement of individual contours is
noisy. Therefore, we utilize multiple instance learning (MIL) and propose a num-
ber of candidate compositions of contours. Given positive and negative bounding
boxes, MIL then selects a set of joint placements of codebook contours that are
consistent among training images and optimally discriminate objects from non-
objects. In addition each codebook contour receives a weight indicating how
meaningful it is for discrimination.

Consequently, the difficult questions of selecting meaningful contours and
finding consistent co-placements of these contours are shifted to the training
phase. Here they can be addressed by optimization over an ensemble of training
images rather then just a single query image.

In this work, i) we generate a dictionary of contours based on their co-
activation patterns over an ensemble of training images ii) we learn the joint
placement of all codebook contours that maximizes the discrimination between
class and non-class structure using max margin multiple instance learning and
iii) we detect objects and assemble their shape at the same time by optimiz-
ing a single cost function that finds consistent joint placements of all dictionary
contours. The contributions are summarized in Fig. 1.

2 Related Work

The most prominent approach to category-level object detection in cluttered
scenes are currently part-based models using local or semi-local descriptors.
Based on appearance patches [8,9], SIFT [10], geometric blur [11], and other
texton-like features [12] local image information is extracted and then combined
in a spatial model. These models range from no spatial relationships like bag-of-
features [13], conditionally independent parts in voting methods [9, 14, 15] and
pictorial structures [16], over rigid, grid-like structures to joint models of all
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Fig. 1. Overview of the approach. i) Obtaining meaningful contours from a collection
of training images, ii) learning discriminative contour co-occurences and iii) using such
co-occurences in detecting an object and extracting its shape in a query image.

parts [8] like the constellation model. While the less complex models like Hough
voting [15, 17] and bag-of-features can handle large numbers of parts, rich spatial
models like constellation models are typically restricted to only few parts (usu-
ally less than ten). Our goal is to represent the rich spatial structure of object
shape and still utilize a large number of contour parts since this provides for
robustness w.r.t. occlusion or noisy contour information.

At the other end of the modeling spectrum are template methods [18] and
holistic, texton-based object representations like Histogram of Oriented Gradi-
ents combined with complex part-based models that are limited to few parts
[19]. Rather than learning object contours and their joint configuration from
training data, [20] utilize a hand drawn model for each object class to build a
global boundary based shape representation. Detection and segmentation are
then tackled by means of semidefinite programming. [21] learn the model pa-
rameters of a hierarchical configurable deformable template by extending the
Max-Margin learning to AND/OR graphs. Another interesting line of work is
based on hierarchical models for object detection [22] and parsing [23-25]. [26]
represent object form by applying active shape models.

Obviously holistic models face limitations when objects feature significant
articulation and their shape shows high variability. Consequently, the major-
ity of shape-based detection methods are based on spatially flexible matching
algorithms and deformable part configurations. More specifically, [27] present
a shape based approach based on the partial matching of edge fragments. [28]
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utilize a many-to-one matching of contours from query images to a sparse set
of model contours. Both approaches require a bottom-up grouping of edge pix-
els in a query image rather than matching previously learned contours directly
onto the edge image. Moreover, the models of [28] consist only of two contours
and they are matched independently, whereas our approach optimizes the joint
placement of a large number of model contours. [15] learn the discriminative
weights for each codebook entity (a semi-local region represented using a texton
feature, i.e., geometric blur) based on a weighted sum of all potential matches
for each codebook entity. Thus, the codebook co-activation information is lost
in the summation process. We consider multiple placements for each model con-
tour in a training image and treat the most relevant co-activation pattern of all
contours as hidden variable. We learn this hidden variable and the weights for
the codebook co-activations in a max margin MIL framework. In a query im-
age, we optimize the joint placement of all codebook contours to form an object
hypothesis rather than letting them vote independently from another. [4] use a
dictionary of contour fragments in a boosting framework to perform category
level object recognition. Rather than jointly placing all parts, each fragment is
again positioned individually. Therefore, the approach is limited when dealing
with articulated objects like giraffes, where the relative configuration of parts
differs across different instances. In contrast, we directly learn the importance
of each contour based on the joint placement of all of our model contours. In
contrast to [4, 5], we obtain a dictionary of codebook contours based on their co-
activation patterns over all training images rather than using merely the visual
similarity between contours.

3 Learning Object Shape

The goal of object shape models is to capture the characteristic form of all in-
stances of an object category. However, representing the form of ensembles of
boundary pixels so that the resulting shape discriminates class from non-class
structure (i.e. objects from background and other objects) is a challenging prob-
lem. Due to large intra-class variability, partial occlusion, and other influences
from the environment, modeling and searching directly for the holistic object
shape is infeasible. The converse process, a bottom-up edge pixel grouping that
is driven predominantly by the query image is also futile, since image-based con-
tour extraction is fundamentally limited and will not provide the complex holistic
object shape [3]. Moreover, shape becomes only apparent when all object con-
tours have been grouped. Therefore, placing individual local features or contour
fragments independent from another as in [15,5] is not reliable and tends to
produce spurious hypotheses. Rather, contour parts need to influence each other
and so object detection and the joint placement of all boundary contours for
obtaining the overall shape are two intimately related problems that need to be
tackled jointly. The complex, holistic shape of objects is only available once the
object is detected and shape-based detection requires a successful grouping of
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boundary pixels, e.g., by finding a consistent configuration of candidate contours
that captures the characteristic shape of objects.

Extracting meaningful contours from a query image and grouping them con-
sistently to obtain the overall object shape is a notoriously difficult problem.
Therefore, we are shifting this challenge to the training stage where a set of im-
ages are available so that groupings from one image can be verified on the others.
In Sect 3.1, we obtain a codebook of meaningful contours by clustering contour
fragments based on their co-activation on all the training images rather than
merely using their visual similarity. Training images are only annotated with
bounding boxes. Consequently, there is an uncertainty when placing codebook
contours individually. Rather than integrating over spurious matches (e.g. [15]
Eq.11), we present an approach based on multiple instance learning (Sect 3.2)
to group contours and obtain the exact placement for each codebook contour.
Based on discriminative learning, characteristic groupings of contours are then
obtained that separate objects from clutter.

3.1 Learning Meaningful Contours

To obtain a set of meaningful contours from the training images, we first com-
pute the probabilistic edge maps for each image using [1]. We follow the standard
procedure of normalizing the provided object bounding boxes so that they have
the same scale and aspect ratio. Thereafter, we peform edge linking to obtain
lists of connected edge pixels. In a next step, we extract a set of non-disjoint
contours from each linked edge segment by first computing points of high cur-
vature and considering the midpoints between them. Randomly selecting pairs
of these points from an edge and taking the contour segments in between yields
a set of candidate contours. Each contour has a shift vector s® from its centroid
to the center of the bounding box. Combining all the segments from all training
images yields on the order of 10* contours. Many of these are redundant and
the size of this set needs to be reduced to a compact, feasible sized subset of
meaningful contours.

A common approach is to cluster contours based on their visual similarity,
potentially also adding the relative location in the image [4]. However, such
a clustering founded on visual similarity, e.g. based on the chamfer distance
between contours ¢; and c;, has deficits. For instance, contours that are fractured
or corrupted by noise can fall in different clusters although they are matched to
similar locations in the training images.

Therefore, we compute the pairwise dissimilarity matrix A;; for all pairs
¢i,c; not by means of their visual similarity but based on where they match in
an ensemble of training images. We use fast directional chamfer matching [29] for
obtaining matching locations for each candidate contour in each training image.
Let Afmh denote the m-th match of contour ¢; in training bounding box h. £"
denotes the edge map of h. For the m-th match, we record the chamfer score
Ym(ci, £™) and the location of the match in the image I, (c;, E®) (see Sect. 4.1 ),



6 Pradeep Yarlagadda, Bjorn Ommer
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We cluster the contours based on their activation patterns A* over all the
training images.
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We compute the dissimilarity matrix A;; as A;; == 3", @(Ai,m Af,h)~ The
dissimilarity © of both contours on training image h is obtained using maxi-
mum cardinality bipartite matching. For the bipartite matching, the elementary
distance between the m-th match of ¢; and the m’-th match of ¢; is defined as
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where v is the average length of all object bounding box diagonals in the training
data. Given the pairwise dissimilarity matrix A;; we perform pairwise clustering
using Ward’s method and obtain a codebook C that contains on the order of 102
contours. The representative for each cluster is the element that has maximal
average affinity to all elements in this cluster.

3.2 Learning a Discriminative Model for Object Shape

Given the codebook C, we need to learn how to jointly place all the contours so
that the overall configuration optimally discriminates the shape of objects from
non-objects. During the training stage, we are only provided groundtruth for the
bounding box of objects, but obviously not for the placement of contours therein.
As discussed before, relying on chamfer matching to yield an optimal match for
each contour will result in spurious matches due to large intra-class variability
and noise. Therefore, we consider multiple placements for each contour within
the bounding box and learn to jointly place all contours. Therefore, candidate
matches of contours are grouped and a MIL-based procedure [30] is used to find
the group with best joint placement. Failing to learn the best joint placement and
just selecting appropriate matches for all contours independently significantly
degrades the performance—on average we observed a 10% drop on ETHZ shape
dataset compared to the MIL-based procedure we propose in this paper.

Let I'" = (vi(ci, EM),v2(ci, EM),...) denote the matches for ¢; in bounding
box h. For the m-th match of ¢;, we concatenate the chamfer score with the
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spatial consistency to form a 2-d feature vector f,*™ that will be discussed
in Sect. 4. The spatial consistency of a match measures how well the object
hypothesis generated from m-th match of ¢; agrees with the object bounding box
h. Now we concatenate the 2-d feature representations of all contours to represent
the joint placement of all parts. Let m;* be some match for a contour ¢; € C. Then
we obtain a candidate configuration a for the placement of all parts represented
by fo® = (fub™, fa2™2, .., f,/€™iel). We start with a contour ¢; € C and
let each of its matches ~,,(c;, £") predict an object hypothesis. Conditioned on
this hypothesis, we obtain an object representation f;,“ by choosing the spatial
maximally consistent match for each of the other contours. By repeating this
process for all codebook contours, we obtain a bag of candidate configurations
Fu={1"}.

However, not all the configurations in the bag F} are meaningful. If for in-
stance some contour ¢; is providing a spurious match against background clutter
within the bounding box then the resulting feature vectors are also affected.
Therefore, we introduce an indicator variable s(h) € {1,...,|F}|} which selects
the most useful candidate configuration for describing the object bounding box.
For negative bounding boxes which are obtained by randomly sampling boxes
from regions not containing a positive box, all the configurations inside a bag
are used as negative examples. Let Y}, € {—1,1} denote the bag label and let u
be some non-linear function on the co-activation feature vectors f,“. Then we
seek the weights w for each dimension of this transformed feature vector so that
the most representative example (identified by s(h)) of a positive bag h with
Y, = 1 and all the examples of a negative bag h with Y, = —1 have maximum
margin separation. Therefore, for a positive bag, the following constraint has to
be satisfied for the configuration identified by s(h)

<wou(fi ") >+ 216 (4)
And the following constraint has to be satisfied for all the configurations a
in a negative bag.
—<w,u(fn") >-b=1-§ ()
Thus, we have the following max margin multiple instance learning problem.
min min 1||w||2 + pih
s w,b, 2

vh
st VR Y, =—-1 A—<w,u(fn")>-b>1—-&,Yaeh (6)

or V=1 A<w,u(fn*™)>+b>1-¢,
and &, >0
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Equation (6) is expressed in a compact form as

IR ST s(h)
melnrgl,?EHWH + ,0( Z max(0,1— < w, u(fp*") > —b)

i )
+ Y max(0, 1+ b+ max(< w, u(f,") >)))
Yi=—1

Converting (7) into dual form and utilizing a kernel function X(in our imple-
mentation, we use a second degree polynomial kernel) to compute the pairwise
distances between original feature vectors (f,*, fr“?) eliminates the need to
explicitly know the function u. Therefore, equation (7) is optimized in its dual
form by iteratively optimizing the indicator variables s(h) and the usual SVM
parameters i.e., the support vectors Sha, their co-efficients o« and the offset b.
For a positive bag, the dual variable oy, has to satisfy 0 < oy < p. For a
negative bag, the dual variable has to satisfy 0 < > ape < p. Thus the effect of
each configuration in a negative bag is limited to the box constraint p. The mini-
mization starts by choosing s(h) for each bag corresponding to the co-activation
feature vector constructed from best match for each of the contours. After the
optimization, we obtain the parameters «, S, b and use them in cost function ),

Ya,55(f) = Z apsiy K(f, Spsny) — Z apaK(f,Spa) +b.  (8)

h:Y,=1 ah:Yp=-—1

In query images this cost function is applied to find a consistent joint place-
ment f of all codebook contours and the score of 1 is used to rank and classify
the resulting hypotheses.

4 Detecting Objects by Describing their Shape

To detect all instances of an object class in novel query images, their character-
istic shape is to be extracted. To capture object shape, codebook contours need
to be pieced together properly. Therefore, all these contours need to be jointly
matched to a query image so that the grouping of all contours discriminates
between objects from the class and all other structure. As a result, objects are
segregated from background clutter which in turn improves classification and
localization since distracting clutter is suppressed.

4.1 Detecting Meaningful Contours

Let £7 be the edge map of the query image obtained by using [1]. £% denotes
the template edge map created from the codebook contour ¢;. ¢ (E]‘?) denotes
the edge gradient orientation at the pixel 5]‘»1 € R? in the query image.

Given the dictionary C = {ci,...,¢,} of codebook contours for both ob-
jects and non-objects, each contour can be matched to a query image using fast
directional chamfer matching [29].
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As opposed to the training stage, object scale and aspect ratio are obviously
unknown in a query image. Hence, each codebook contour has to be matched at
different scales and aspect ratios to a query image. Applying directional chamfer
matching [29] yields matches with scores v ™™ (¢;, £7). The best match has for
instance the matching score

A7 (e €0 =€ Y min {H{"m e e

L~ giecga 0 o1
£iege
([ a] ) o]}

Matching individual codebook contours to query images as done in [4, 5] is prone
to yield spurious matches due to intra-class variations of contours. We cannot
correctly detect objects by placing each contour individually. Rather, we need to
represent an object hypothesis by jointly matching all contours from C and let-
ting the model learned in Sect. 3.2 propose the right joint placement of contours.
For each contour, we obtain multiple matches per scale and aspect ratio, yield-
ing a set of scores I' = {7 (¢;,E7),...,7.""*(¢;,€7)} and the corresponding
coordinates of the matches £ = {I7""" (¢;,£%), ..., 17" (¢;, 1) }. We chose k em-
pirically based on the distribution of chamfer matching scores for the contours
over the training images. From this shortlist of matches, we need to find the
optimal match for each contour so that the overall configuration is maximally
consistent with the joint placement of all contours from the training. As in Sect.
3.1 s% denotes the shift vector of ¢;. Then a candidate match [7m"™ (¢;, £7) votes
for an object bounding box

4.2 Representing Ensembles of Contours

b, = (e = 607 |7y D ). o)
m

A shortlist B = {b1,ba,...} of potential object hypotheses is created by
collecting the hypotheses b of all contours ¢; in a Hough accumulator [9] and
performing the usual non-max suppression. Subsequently, we represent each can-
didate bounding box by, € B using the co-activation pattern of all codebook con-
tours. Therefore, we need to measure for each bf, its spatial consistency with

an overall object hypothesis by using the standard Pascal VOC criterion.

area(b?, Nby)

B A T AT)

(11)

Let 71(; 1) denote the m-th match of model contour ¢; to query image. For
bi, m-th match has the following directional chamfer and spatial consistency
score
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£ = (o (e, £9),6 (b, b)) . (12)

Thus the overall object hypothesis by, can be represented by concatenating all
the matching scores to obtain their co-activation pattern.

fk = (f'rln(l,k)7 “ee ’f:rL],(n,k)> G RQ”L. (13)

We cannot find the correct match my; y) for each ¢; independently. We thus
need a joint optimization procedure to find a consistent match from the possible
options for each contour. The hypothesis corresponding to the optimal placement
of all the contours is then denoted by (f ! RO e )

(k)T T (k)

4.3 Modeling Shape by Jointly placing all Object Contours

To jointly find the optimal matches for all the codebook contours, we use the
cost function 1) from equation (8). We utilize the second order polynomial kernel
function K(fx,, fe,) = (14 < fr,, fr, >)?. The optimal placement m; , for each
¢; can be computed using (8) conditioned on the placement of the other code-
book contours. Thus, we employ a greedy algorithm to find the optimal place-
ment of each ¢;. We initialize the co-activation feature vector by best matches
for each contour and then update the placement of contours one at a time. We
visit the contours in a random schedule and update the contour placements.
We reach rapid convergence for the cost function within 5 sweeps over all con-
tours. Although techniques such as [31] could be potentially used for solving
the joint placement problem, speed is an issue with such techniques. We found
the sequential greedy approach to converge quickly and to produce competitive
results which are described in the experimental section.

5 Experimental evaluations

We report our experimental evaluations on the standard benchmark datasets
for shape-based detection which have been widely used [15, 28, 27, 20, 32, 33], the
ETHZ shape dataset and INRIA Horses dataset. These datasets feature sig-
nificant intra-class variations, scale variations, different lighting conditions and
articulations. To evaluate detection performance, we use the PASCAL criterion.
Thus the detections are considered correct if the intersection of object hypothesis
and the groundtruth over their corresponding union is greater than 50 %. Note
that this is a stricter criterion than the 20 % overlap criterion used by [29] to re-
port their performance on ETHZ shape classes. For performing our evaluations,
we use the standard protocol described in [33], i.e., use the first half of images
in each class for training, and test on the second half of this class as positive
images plus all images in other classes as negative images. During the training
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Fig. 2. The first row shows the query images in which the object has been detected
(green box). The second row presents the output obtained from our joint placement
of all model contours for the infered best bounding box hypothesis shown in column
one. The last row shows the backprojection into the query image which explains only
relevant object boundaries.

stage, we only utilize the groundtruth bounding box annotations for the objects
and build our shape model from this input.

We use the fast directional chamfer matching code provided by [24] (evalu-
ates 1.05 million hypotheses per image in 0.42 seconds) to obtain matches for
each contour. Our codebook contains on the order of 100 contours. We found
the performance to be robust with respect to small changes in the number of
codebook contours. Each test image needs a total processing time (matching all
codebook contours and evaluating the model for all candidate hypotheses) on
the order of seconds. During the training stage, the multiple instance learning
converges within 10 iterations of alternating between indicator variables and
dual variables (Sec.3.2). The whole training process is on the order of few hours.

During the testing stage, we search over 7 different scales and 3 different as-
pect ratios. We evaluate our approach in terms of detection rate over fppi(false
positives per image) curves. The detection rates are reported in Tab. 1 at the
usual threshold of 0.3/0.4 % fppi and we observe competitive performance com-
pared to the state-of-the-art. The average detection rate is 96.5 % at 0.3 fppi
thereby achieving a gain of 1.3 % over the best performing method so far. Our
detection rates reach peak value before 0.3 fppi and hence the performance stays
same at 0.3/0.4 fppi when comparing with other approaches. We achieve a mean
average precision of 0.882 which is improving the performance of state-of-the-
art methods summarized in Tab. 2). All in all, we observe a comprehensive gain



12 Pradeep Yarlagadda, Bjorn Ommer

= Our approach
= Ma etal (hand drawn-model)

= Srinivasan etal

Lu etal Ko 5

Felz et al. code

Maji etal

— \a etal (clustenng models)

e
SR R

Fig. 3. Performance Comparison in terms of Detection Rate/FPPI and PR Curves for
ETHZ Shape Classes

over the current approaches in terms of various performance measures. Since we
jointly explain each object hypothesis, we do not need a separate verification
stage and we even outperform a two-stage detection system [15].

In Tab. 1 and Tab. 2, we have included the performance achieved by the latest
code release of the popular sliding window based approach [16]. Thus, we are
comparing ourselves not only with the state-of-the-art in shape-based methods
but also against the currently best performing recognition system which utilizes
many other cues besides shape. Compared to [16], we achieve a gain of 0.8 % in
terms of mean average precision. Category-wise, we outperform on 4 categories.
In terms of fppi/detection rate, there is an average gain of 3.2 % at 0.3 fppi.

For INRIA Horses dataset, we compare our approach with results reported
by other current methods at 1 fppi in Tab. 3. We achieve a detection rate of 93.68
% compared to the current state-of-the-art performance of 92.4 % reported in
[20]. [17] and [15] achieve the detection rates of 87.3 and 85.3 % respectively.

6 Conclusion

We have presented an approach that detects objects while, simultaneously, as-
sembling their shape. Meaningful contours are obtained by clustering based on
contour co-activation over the training images. The characteristic object shape
is represented by learning consistent configurations of all model contours in a
maximum margin MIL framework. Rather than placing each contour indepen-
dently, this approach seeks a joint placement of all contours that discriminates
class from non-class structure. In a query image, detection and shape extraction
are tackled jointly by optimizing a single cost function that yields optimal con-
figurations of model contours and a classification. In the experimental validation
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l [Applelogos[ Bottles[ Giraffes [ Mugs [ Swans “ Mean ‘

Ours| 95/95 [100/100[91.3/91.3]96.7/96.7/100/100]96.5/96.5
7] 92/92 [97.9/97.9| 85.4/85.4 | 87.5/87.5 [100,/100]| 92.6/92.6
[28] | 95/95 |100/100]87.2/89.6 | 93.6/93.6 |100/100] 95.2/95.6
[20] [ 100/100 | 96/97 | 86/91 90/91 | 98/100 || 94/96

[15] | 95/95 |92.9/96.4] 89.6/89.6 | 93.6/96.7 88.2/88.2| 91.9/93.2
[19] | 95/95 |100/100] 72.9/72.9 | 83.9/83.9 [58.8/64.7|[ 82.1/83.3
[16] | 95/95 |96.3/100| 84.7/84.7 [96.7/96.7|94.1/94.1]| 93.3/94.1
[32] [ 93.3/93.3 | 97/97 | 79.2/81.9 | 84.6/86.3 [92.6/92.6]| 89.3/90.5
[34] | 95/95 [89.3/89.3]70.5/75.4 | 87.3/90.3 [94.1/94.1|| 87.2/88.8
[33] | 77.7/83.2 |79.8/81.6 39.9/44.5 | 75.1/80 [63.2/70.5|| 67.1/72

Table 1. Comparison of detection rates for 0.3/0.4 fppi on ETHZ Shape Classes

Method Ours | [28] | [27] | [15] | [19] | [16]
Mean Average Precision|0.882|0.872|0.877|0.771|0.712]0.874

Table 2. Comparison of Mean Average Precision (AP) on ETHZ Shape dataset

the approach has shown competitive performance on widely used benchmark

datasets for shape-based detection.
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