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Abstract

In conventional white light interferometry (WLI) surface estimation,
data acquisition is followed by a preprocessing step in which the 3D
(space-time) data is reduced to a 2D surface or height map. Finally,
a postprocessing step eliminates the height outliers that arise from the
preprocessing under ordinary experimental conditions.

We introduce a Bayesian approach that unifies pre- and postprocessing
by considering simultaneously both the full 3D data set and knowledge
concerning the surface smoothness. This knowledge is coded into the prior
probability of local height configurations. The surface is estimated as the
mode of the marginal posterior at each pixel. An adept formulation of
the prior allows for the exact computation of the estimate, obliviating
the need to sample from the posterior using Markov Chain Monte Carlo
(MCMC) methods. A complete surface can thus be obtained in 3 – 30 s.

A quantitative comparison with (adaptive) median filtering shows that
all three approaches decimate outliers, but that the Bayesian estimation
leads to smaller average absolute errors. For slow scanning speeds and
good raw data, this is due to a reduced tendency to oversmooth; while
for poor input data, the enhancement is explained by the more complete
exploitation of the observations.

1 Introduction

1.1 Significance of white light interferometry

White light interferometry (WLI) has become an important visual inspection
tool in fields which require high precision surface height maps. With its short
coherence length, WLI fills the precision gap between mechanical ball testing
devices (>μm scale) and laser interferometers (<μm scale). While mechanical
devices produce 1D height profiles only, interferometers can acquire a 2D height
map in one take, which both opens new analytic possibilities and raises new
questions concerning the standardized characterization of surfaces.
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The development of white light interferometers for industry was first guided
by the requirements of semiconductor wafer inspection. In recent years, espe-
cially in the automotive sector, the precision of mechanical component man-
ufacture has exceeded that of mechanical testers. Machined surfaces that are
to be inspected typically exhibit a roughness with a standard deviation above
λ/2 ≈ 0.4 μm (λ: center wavelength of the interferometer) and can usually be
considered optically rough.

For in-line quality control during the manufacturing process, the require-
ments often include robust data acquisition and processing at high speed, whereas
a height resolution near or beyond the roughness limit is not needed.

In this paper, we propose a new approach for the denoising of WLI data
which, although of general applicability, is particularly well suited for the sce-
nario depicted above.

1.2 Data acquisition

For our purpose, we consider a white light interferometer as a conventional
two-arm Michelson interferometer with a broad-band light source. One arm is
delimited by the surface under investigation, the other by the reference object,
usually a plane mirror. The change of the interference pattern caused by a
systematic variation of the length of one of the optical paths is recorded in
full spatial detail by means of a camera. The recorded dataset consists of a
time series for each camera pixel. Each time series contains noise as well as
an oscillatory signal centered around the surface height at that pixel, which we
aim to detect. WLIs have been proposed as measuring devices in [1], [2] and
[3]. Recent technical developments address curved surfaces of high industrial
relevance [4], [5].

The ideal WLI signal has the following form for each pixel (cf. [1] for details):

I(z) = Ī + A(z − z0) cos(ϕ(z)). (1)

Here, Ī denotes the incoherent intensity at a pixel and A(z) the envelope of
the interference signal. Its width is inversely proportional to the spectral width
of the light source. For commonly used LED sources, it is approximately a
Gaussian centered around z0, the height relative to the reference surface that
is to be estimated. The cosine term with phase ϕ(z) comes from the fast inter-
ference modulation and is sometimes denoted “inner oscillation” of the signal.
Especially for rough surfaces, which the backscattered intensity follows an expo-
nential probability distribution [6], the amplitude is often very low. In addition,
the signal is degraded with photonic and electronics noise, see figure 1.

1.3 Conventional height map estimation

The scanning procedure yields a 3D data set, consisting of a time series for
each pixel in a 2D plane. The task then is to embed a surface into the data,
thus collapsing each pixel’s height dimension into a unique height value. This
surface is subject to restrictions imposed by both the data and prior knowledge
concerning the smoothness.

In conventional WLI processing, the final height map is obtained in three
stages:
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Figure 1: Real (above) and ideal (below, cf. eq. (1)) white light interferogram
in a single pixel. Scanning velocity is 0.56 μm/frame.

1. The interferometer is translated perpendicularly to the surface under in-
vestigation, while its CCD-sensor records the optical interference pattern
in a (time / height) series of frames.

2. In the preprocessing stage, the center of the interference pattern (central
fringe) is estimated, separately, for each pixel’s time series and stored in
a 2D matrix, the height map.

3. In the postprocessing stage, outliers in the height map are detected, and
possibly corrected, using prior knowledge. Most tools available for gray-
value image processing can be adopted for this task.

In this paper, we propose an approach completely different in nature (section
2), and compare it to alternative methods detailed in section 3. Results are
presented in section 4.

2 Bayesian surface estimation

We use a Bayesian approach to amalgamate the last two steps in the scheme
above: We aim to reconcile all locally available evidence (that is, the entire
noisy time series of a pixel, along with those of its neighbors) with our prior
knowledge in a single step. This is in contrast to all previous work, which lets
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a postprocessing stage make do with what reduced information is passed on by
the preprocessing stage.

2.1 Background

Extending the approach by Hartvig and Jensen [7] from spatially resolved binary
to spatially resolved time series data, we aim to accommodate information from
both observations and prior knowledge in a Bayesian framework as follows:

Consider a set S of pixel sites and a pixel index j ∈ S. The possible height
values hj for each pixel in the height map are from a finite, discrete set H̃, which
for convenience we map to H = {1, . . . , hmax}. A 2D height map h = {hj} is a
point in the product space H1 × · · · × H|S|.

During the scan process, the camera acquires a 3D data set composed of
intensities for all pixels and all scan steps / height values. We denote these
3D recording x = {xj} with each xj a 1D time series of hmax intensities.
We assume the scanning process is stable in the sense that the height-to-index
mapping H̃ → H is linear, so that we can calculate height values directly from
the framerate and interframe distance of our interferometer. We will not address
interpolation between height values of two adjacent camera frames, although
especially for higher speeds, interpolation to a finer discretization is a useful
and viable extension (cf. [8], [9] for interpolation strategies in preprocessing).

We look for a 2D height map estimate ĥ, given as the marginal posterior
mode estimate (MPME) of the conditional probability density P(h|x). Accord-
ing to the Bayes paradigm, for each pixel j,

P(hj |xj) ∼ f(xj |hj) P (hj) (2)

P(hj |xj) is the a posteriori probability of a height value hj given the data xj .
The likelihood f(xj |hj) describes the probability of the observations given a
height value and is determined by the technical characteristics of the interfero-
meter. It plays the role of a data term, linking our estimate to the observations.
The a priori probability P (hj) carries our prior knowledge on the surface, e. g.
in the form of local smoothness constraints.

Let C indicate the union of a pixel and its immediate neighborhood. For
convenience, we index the elements of C with 0, . . . , k = |C| − 1, and reserve the
index 0 for the central pixel. Throughout the later examples, k = 8 is used and
C includes the 8 nearest neighbors of the central pixel. We may write:

P(hC |xC) ∼ f(xC |hC) P (hC) (3)

with hC the configuration of height values and xC all observations in C.
To find the marginal posterior probability of a height value for the central

pixel given all observations in the surroundings, we sum over all possible height
configurations of the neighbors:

P(h0|xC) =
hmax∑
h1=1

· · ·
hmax∑
hk=1

P(hC |xC) (4)

If the aperture is chosen such that the subjective speckle size matches the cam-
era’s pixel dimensions, the likelihoods at neighboring pixels are approximately,
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but not entirely, independent. Assuming independence, we can factorize the
likelihood and obtain

P(h0|xC) ∼
hmax∑
h1=1

· · ·
hmax∑
hk=1

f(xC |hC)P (hC) (5)

∼ f(x0|h0)
hmax∑
h1=1

· · ·
hmax∑
hk=1

k∏
j=1

f(xj |hj)P (hC) (6)

The vast number of possible height configurations in the neighborhood is re-
flected in the nested summations above. It is obvious that a direct evaluation
is computationally prohibitive, even for small neighborhoods: for hmax = 1000
height steps in an 8-pixel neighborhood (k = 8), we face of the order of |H|k+1 =
1027 operations to find a height estimate for each pixel, provided the likelihoods
have been precalculated.

However, the estimate can be transferred to the realm of the feasible for a
limited class of prior probabilities, by using a manipulation proposed by Hartvig
and Jensen [7] and detailed below.

In our application, we wish to cast our prior knowledge, that the surfaces
under investigation exhibit smoothness on a macroscopic scale, into a prior
probability. A simple way of expressing this knowledge is to assume that those
configurations, in which no neighbor has a vertical distance larger than δ from
the central height value, have a larger probability than the others:

P (hC) =
{

q1 if h1, . . . , hk ∈ [−δ + h0, δ + h0]
q0 otherwise (7)

q0 and q1 obey the following normalization condition (which neglects minor
boundary effects):

1 = q1(2δ + 1)k · hmax + q0(hmax
k+1 − (2δ + 1)k · hmax) (8)

The enormity of the configuration space leads to small and very small numerical
values for q1 and q0. Since we are only interested in the mode and to avoid
numerical instabilities, both can be rescaled.

The algorithm proposed thus far depends on two parameters, δ and the ratio
q0/q1. We suggest choosing δ to be of the same order as the surface roughness.
The best retio q0/q1 can be found through screening a small range of values
typical for the specific surface. See section 4 and table 1 for the appropriate
values for the sample piece depicted in figure 2.

Using the prior in eq. (7), we can write

P(h0|xC) ∼ f(x0|h0)

⎛
⎝hmax∑

h1=1

· · ·
hmax∑
hk=1

k∏
j=1

f(xj |hj) q0

+
h0+δ∑

h1=h0−δ

· · ·
h0+δ∑

hk=h0−δ

k∏
j=1

f(xj |hj) (q1 − q0)

⎞
⎠

(9)

It is now possible to make use of the following equality:

∑
h1

· · ·
∑
hk

k∏
j=1

f(xj |hj) =
k∏

j=1

∑
h

f(xj |h), (10)
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which can be proven easily via induction over k.
We can now rearrange P(h0|xC) to obtain a computable formula:

P(h0|xC) ∼ f(x0|h0)

⎛
⎝q0

k∏
j=1

hmax∑
h=1

f(xj |h)

+ (q1 − q0)
k∏

j=1

h0+δ∑
h=h0−δ

f(xj |h)

⎞
⎠

(11)

The number of operations required for each pixel is significantly reduced to the
order of k · hmax = 8000 in our example. The simple a priori density of eq.
(7) allows further speed-up by implementing a sliding summation and other
efficient routines. Our final implementation reaches practicable execution times
(see section 4).

Note that any prior that reduces to a fixed number of constants independent
of the likelihood, can be used to transform the nested a posteriori expression.
While less restrictive priors from this class, investigated in [7], may better re-
flect our prior knowledge on the surface, they also reduce the achievable com-
putational simplification. Also note that we can compute our estimate exactly,
avoiding the sampling of the posterior by means of Gibbs or Metropolis sampling
that is customary in spatial Bayesian inference [10], [11].

Likelihood functions There are two major paths to a likelihood function
f(xj |hj):

On one hand, the likelihood can be obtained from a physical modeling of the
WLI signal formation process. This strategy is the most accurate, but is ham-
pered by our restricted knowledge on the optical scattering processes and the
technical inaccuracies of the interferometer’s components. In addition, a proper
modeling will take into account the unknown phase of the inner oscillation,
which leads to a large computational burden.

On the other hand, there is the empirical route to a likelihood function.
This phenomenological approach mimics the characteristics of a properly derived
likelihood function. An ideal function would feature a strong response in the
vicinity of the true height value and a weak response to the noise elsewhere
in the time series. The methods proposed and established by various authors
(an overview is given by [12], [13]) for interferogram preprocessing are a good
approximation.

For the results presented in the next sections, we chose the second path and
used a quasi-likelihood obtained from low-pass filtered finite differences of the
time series in a pixel.

3 Methods

3.1 Data acquisition

We recorded interference patterns of a part of a turned steel piece, 19.5 mm in
diameter, that features three circular steps of 20μm height difference each, pro-
duced using a new tool, and additionally smaller tracks, obtained using a worn
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Figure 2: Photograph (full view) of the piece (diameter: 19.5 mm) used in the
subsequent analyses.

turning tool (see picture, figure 2). This surface exhibits various characteristics
that are typically found in the industrial application of WLI.

To challenge the algorithms, we recorded interferograms at scan speeds of
14 μm/s (which, at a framerate of 50 Hz, corresponds to the Nyquist frequency
of the inner oscillation of the interferogram), 28 μm/s, 56 μm/s, 84 μm/s and
112μm/s (which corresponds to an 8-fold subsampling). Two exemplary results
are shown in figures 3 and 4.

These results were obtained with a C++ implementation of the algorithm.
On a 1.2 GHz P IIIm machine, the processing time varied between 31s for 14μm/s
and 2.8 s for 112 μm/s, including the raw data input from hard disk.

3.2 Height map estimation

We compare the Bayesian method introduced here with other established ap-
proaches detailed in the following. For all evaluations, a 3×3 pixel neighborhood
or filter mask was chosen.

Preprocessing only A pixelwise detection of interference patterns with no
postprocessing yields, in the case of rough surfaces, a height map which is heavily
contaminated by outliers that render further analysis difficult or impossible.
These results are included only to allow for an unbiased comparison of the
remaining methods.

Median filter mask Filtering the noisy height map obtained from prepro-
cessing with a median filter mask is simple and a common approach. As we are
dealing mainly with high amplitude outliers, the median filter seems appropri-
ate. The rank order filter provides optimal robustness against outliers (see e. g.
[14]) and preserves edges well. On the other hand, this filter does not adapt
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Figure 3: A height map of the sample piece obtained with the Bayesian algo-
rithm at 14 μm/s. Scale: 0.28 μm/frame.

to the quality of the original data and so tends to oversmoothing in areas with
little or no outliers.

Outlier-sensitive median filter The basic idea is to replace only suspected
outliers with the median of the neighborhood, and to leave all other height
values unscathed.

The median filter itself provides a way of detecting outliers: if applied to
a central pixel of height h0, it yields h̃0 = med{h0, . . . , hk}. For an outlying
central height h0, the difference |h0−h̃0| is outside the usual range which reflects
the height variations of a rough surface. An optimum distinction requires a
threshold that adapts locally to the fraction of outliers.

In a study on breakdown points, Hampel [15] proposed to identify outliers
by their larger-than-normal variability, based on

|h0 − h̃0| ≥ c mad{h0, . . . , hk}. (12)

Here, mad{} denotes the median of absolute deviations (MAD) of the sample.
The parameter c can be optimized by simulation [16]. We chose c to minimize
the average absolute error of the estimate (see section 4).
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Figure 4: A height map of the sample piece obtained with the Bayesian algo-
rithm at 112 μm/s. Scale: 2.24 μm/frame. Note the coarse height steps here.

3.3 Reference height map

No other measurement method delivers height maps that are directly compa-
rable to those from WLI. In spite of first efforts to establish a correspondence
between results from WLI and tactile devices [17], their relation is as yet un-
resolved for real-world surfaces. Instead, we recurred to a partially recursive
argument by constructing a reference height map from repeated high-quality
WLI measurements. To this end, we performed a series of 25 measurements un-
der optimum conditions (balanced illumination, minimal vibrations, constant
temperature and a slower scan speed of 2 μm/s). The data of one recording
was spoilt and had to be removed. The remaining time series were free of
deterioration, according to visual inspection of the raw data.

We applied the sliding average of absolute finite differences as preprocessing
algorithm, which is a recommended linear filtering algorithm [13], to produce
height maps ĥl. Overall shifts of the maps were detected with the image-wise
median value and then corrected by moving the height maps to a common refer-
ence height. Tilts and potential higher order deformations were not accounted
for.

The pixelwise median height map hmed

hmed = med{ĥ1, . . . , ĥ24} (13)

exhibits a small number of invalid pixels, as expected for rough surfaces. These

9



Figure 5: The reference height map.

sites could easily be detected by the large variation of height values reported
from preprocessing. The median absolute deviation over 24 recordings gives a
robust estimate of this variation:

mad{hmed} = med{|ĥ1 − hmed|, . . . , |ĥ24 − hmed|} (14)

By heuristics, we marked those sited having a mad ≥ 30 as defective and re-
placed their values by the median of the immediate neighborhood:

href =
{

med3×3 hmed for mad{hmed} ≥ 30 fr.
hmed otherwise (15)

The reference map href is depicted in figure 5.

4 Results

Four algorithms were compared in the benchmarking:

1. Sliding average of absolute finite differences, the standard preprocessing
for rough surface WLI,

2. the same sliding average, followed by a 3 × 3 median filter mask post-
processing,

3. the sliding average followed by the adaptive 3 × 3 median filter mask
(section 3.2), and

10



Table 1: Optimum parameters for the algorithms under comparison by the
measure of eq. (16). The median filter has no parameter other than the mask
size.

scanning pre- adaptive Bayesian

speed hmax processing median estimation

window size threshold c δ q0/q1

14 μm/s 289 fr 9 fr 15.4 6 fr 10−2

28 μm/s 144 fr 5 fr 10.7 4 fr 10−2

56 μm/s 72 fr 3 fr 0.5 4 fr 10−4

84 μm/s 49 fr 2 fr 0 5 fr 10−4

112 μm/s 37 fr 2 fr 0 3 fr 10−4

Table 2: Absolute error per pixel (Epp) for the algorithms under comparison.
For the reasons given in section 4, the signal to noise ratio of the raw data is
lowest for 84 μm/s.

scanning preproces- median adaptive Bayesian

speed sing only filter median estimation

14 μm/s 0.55 μm 0.69 μm 0.56 μm 0.45 μm

28 μm/s 0.71 μm 0.78 μm 0.72 μm 0.68 μm

56 μm/s 1.27 μm 1.02 μm 1.02 μm 0.89 μm

84 μm/s 4.84 μm 2.43 μm 2.43 μm 1.59 μm

112 μm/s 2.69 μm 1.64 μm 1.64 μm 1.17 μm

4. the Bayesian algorithm with a 3×3 neighborhood, as described in section 2.

The implementation of the sliding average algorithm and the setting for its
parameter (size of sliding mean window) follows ref. [13].

The benchmarking data (see section 3.1) were obtained under real-world
conditions with a suboptimal illumination, and sequences of 25 recordings were
acquired during normal business hours in our laboratory.

We computed a scalar error estimate to optimize the respective parameters
of all algorithms, which can be found in table 1, and to provide a coarse quality
measure. The 25 height maps calculated with each algorithm were rescaled
to the scale of the reference map and any overall height shift was removed by
comparison of the image-wise median value with that of the reference map. The
mean absolute difference per pixel Epp between the 25 estimated height maps
and the reference map is not a robust estimator and thus penalizes left-over
outliers:

Epp =
1
25

· 1
|S| ·

25∑
l=1

|S|∑
j=1

|hj
ref − ĥj

l | (16)

Table 2 gives the results for optimized parameters. For 84 and 112 μm/s,
the optimal adaptive median filter is not adaptive, the reasons being that over-
smoothing does not occur with large interframe distances and that outliers be-
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Figure 6: Distribution of errors in a height map obtained from preprocessing
(see section 3) of interferograms acquired at 0.56 μm/frame. Logarithmized
occupancies of the histogram are plotted as a function of estimation error and
variability of a height estimate in repeated trials, see text for details.

come frequent. Not surprisingly, the error generally increases with higher scan
speeds, both due to the more difficult localization of the interference pattern
in the subsampled signals, and the coarser discretization of permissible height
values. Also, the higher density of erroneous pixels leads to more and larger
clusters that cannot be corrected with the 3 × 3 filter masks used here.

The results for 84 μm/s are, however, particularly inaccurate. The reason
is that this sampling rate corresponds almost exactly to four entire periods of
the interferogram, thus leading to a weak response in a preprocessing based on
finite differences. This is not the case with the data obtained at 112μm/s, which
therefore leads to better height estimates.

For a more detailed analysis of the estimation error, we present 2D his-
tograms in which the distribution of estimation errors is given as a function of
error magnitude and the difficulty of obtaining a correct estimate for a pixel.
The latter was measured by the pixelwise spread of the estimates ĥl obtained by
preprocessing only. This spread was, in turn, quantified by the median absolute
deviation (MAD, see section 3.2) of the estimates.

These histograms can be computed for each estimator, and we will refer to
those as histogram(preprocessing only), histogram(median filter), etc.

Figure 6 shows histogram(preprocessing only). The strong peak in the lower
left corner indicates that the vast majority of pixels has a variability of about

12



5-10 frames and is estimated with an absolute error of 5-10 frames. The hori-
zontal ridge contains all pixels of high MAD, which are nonetheless estimated
accurately sometimes. The vertical ridge stems from pixels which give outlying
height estimates in a number of measurements smaller than the break-point of
the MAD-estimator.

For a direct comparison of the different methods we propose to inspect the
difference of two histograms.

Figure 7 shows the small-error range of histogram(median filter) – histo-
gram(preprocessing only). The median filter eliminates outliers; however, these
are outnumbered by far by the remaining pixels and do not contribute signif-
icantly to the distribution shown. Instead, the figure shows the impact of the
median filter on “ordinary” pixels, most of which are affected by the filtering
operation, and mostly adversely: excessive smoothing leads to a deterioration
of height estimates from the preprocessing, as manifested by the large depletion
and accumulation, respectively, in the absolute error ranges around 4 and 9
frames. In summary, the median filter smoothes in regions in which it is not
necessary and thus “destroys” the microstructure of the surface.

Inspection of histogram(median) (not shown) reveals that the bulk of the
distribution resides in an error range of 3 − 5 frames, which hints at a surface
roughness of the magnitude of 1.5 − 3 μm on the scale of 3 × 3 pixels, that is,
on a horizontal scale of about 100 μm.

The adaptive median filter based on Hampel’s outlier detector reduces over-
smoothing; the effect is already visible in table 2 for slow scanning speeds, and is
also pronounced in histogram(adaptive median filter) – histogram(preprocessing),
see figure 8.

Note that the color scales in figures 7 through 9 are different: the adaptive
median filter changes less height values than the median filter.

Figure 9 shows that Bayesian surface estimation introduces the least bias.
Since the histograms are sparsely populated for large MAD-values, only a sum-
mary analysis is reasonable:

Figure 10 shows the (cumulative) “marginal distribution” for MAD ≥ 20
frames (it is not a proper distribution since the histogram difference images
attain values below zero and integrate to zero). The profiles show that Bayesian
denoising reduces errors also in the high-variability regime.

5 Conclusion

Bayesian inference can accommodate both experimental observations and smooth-
ness assumptions in the estimation process, without imposing a pipeline struc-
ture in which the postprocessing loses sight of the original data. If the smooth-
ness assumptions can be expressed in a simple prior on the local height con-
figurations, full Bayesian inference without recourse to stochastic sampling is
possible.

The procedure introduced in section 2 gives estimates that are more accurate
than the (adaptive) median filtering we compare to, in the sense of minimizing
the average absolute error. The difference in accuracy is more pronounced in
the case of weak signal to noise ratios and fast scanning speeds, cf. the last two
lines in table 2. The computational cost of the method presented here is of the
order of seconds and increases with the scan length hmax.
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Figure 7: Error histogram of height maps obtained from standard median fil-
tering minus error histogram of height maps obtained from preprocessing. In
short: histogram(median filter) – histogram(preprocessing).
Scale: 0.56 μm/frame.
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Figure 8: Histogram(adaptive median filter) – histogram(preprocessing).
Scale: 0.56 μm/frame.

In summary, if the measurements are of high quality and a simple post-
processing is desired, we recommend the adaptive median filter. For a more
accurate description of the microtopology, of if the input data is of low quality,
Bayesian surface estimation appears a better choice.
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Figure 10: Horizontal integration (sum and cumulative sum) of histogram figure
9 for MAD > 20 frames. Scale: 0.56 μm/frame.
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Erlangen-Nürnberg, 2000.

[14] David L. Donoho and Peter J. Huber. The Notion of Breakdown Point,
pages 157–184. Wadsworth Intl., Belmont, Cal., 1983.

[15] Frank R. Hampel. The breakdown points of the mean combined with some
rejection rules. Technometrics, 27(2):95–107, 1985.

[16] Laurie Davies and Ursula Gather. The identification of multiple outliers.
J. Amer. Statist. Assoc., 88(423):782–801, 1993.

[17] Robert Windecker and Hans J. Tiziani. Optical roughness measurements
using extended white-light interferometry. Opt. Eng., 38(6):1081–1087,
1999.

18


