
Chapter 19

Pattern recognition

19.1 Highlights

Recognizing objects in images as members of a certain class is – as many other
aspects of image processing and analysis – a truly interdisciplinary problem.
On one hand, it requires solid knowledge concerning the application area.
The reason is that images are very high-dimensional objects (an N × M
image can be considered a point in an N ·M -dimensional feature space) and
do not lend themselves to direct classification, without any preprocessing or
feature extraction reducing noise and dimensionality.

On the other hand, predicting class membership from measured features
is a problem that has surfaced in many different disciplines, ranging from
speech recognition (which word was uttered?) to industrial quality control
(part intact or defect?).

This chapter presents algorithms which “learn” automatically how to pre-
dict the true class membership from previously extracted features. This pro-
cess is known as pattern recognition, discriminant analysis, classification or
supervised learning.

Another family of techniques which seek to detect inherent structure in
a data set with no class labels goes by the name of unsupervised learning or
cluster analysis (or, unfortunately, also by the name of classification). These
methods, though sometimes subsumed under the title of pattern recognition,
are not treated here.

19.2 Task

In this chapter, we assume that the goal is to predict as well as possible
the origin, or the type, or the class membership of an object in an image.
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Previous chapters have dealt with the extraction of appropriate features de-
scribing, for instance, shape, geometrical or chromatic properties of an object.
We further assume that the user has access to a historical database or train-

ing set of objects and their features, along with their true origin, or type, or
class membership.

The following sections discuss a quality criterion for classification, and
how a model is validated. In section 19.4, we introduce a very stiff classifier
(19.4.1) and a generalization thereof (19.4.2), as well as an extremely flexible
classifier (19.4.3), and we discuss their respective merits. Section 19.4.4 gives
guidance on the informed choice of features or classification methods.

19.3 Concepts

Objects can be characterized in many ways; in particular, their features can
be measured on the nominal scale, the ordinal scale or the interval scale [1].
For simplicity, we will assume that a total of P features have been measured
on the continuous scale. Assuming that our training set contains a total of
N objects, we can interpret these as N points in a P -dimensional feature
space. If P is two or three, it is easy to visualize the data in a scatter plot.
The class membership could then be illustrated using, for instance, different
colors; in a quality control problem, one might choose to color those parts
that have passed a test green and the others red.

We now seek to parametrize an algorithm such that it takes the measured
features of an object as input and gives an estimate or prediction of the
true class membership as output. Such an algorithm is a classifier. The
more modest term “estimate” already indicates that this may not always be
possible without error. The frequency of false predictions depends on the
degree of overlap of the two classes in feature space: if the two classes from
the training set are clearly separated, and if the examples in the training set
are representative for the process under investigation, a prediction with no
or little error can be expected.

If, on the other hand, the two classes overlap severely, and if the algorithm
does not have access to information other than the objects’ position in feature
space, it cannot be expected to make accurate predictions.

In a region of feature space in which two or more classes overlap, the
algorithm’s estimate should depend on the relative seriousness of the con-
sequences of a wrong prediction. For argument’s sake, assume you need to
set up an automatic quality control for a small but vital part; assume, in
addition, that the costs incurred by delivering a faulty part are very high. In
this case, the algorithm should take a “conservative” stance: if there is only
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a trace of doubt, that is, if an object lies in a part of feature space in which
the faulty class has some density (i.e., the training set contained a few faulty
objects lying in that region of feature space), it is safer to assume the part
is faulty and either discard it or subject it to closer scrutiny.

pos. prediction neg. prediction
truth: pos. true positive false negative
truth: neg. false positive true negative

Table 19.1: Loss matrix: diagonal elements are typically set to zero, off-
diagonal elements to positive constants which can differ. An optimal classifier
minimizes the expected loss.

The relative costs incurred by the decision process can be coded in a
loss matrix. Typically, correct predictions (true positives, true negatives)
incur zero loss, whereas false predictions (false positives, false negatives) are
undesirable; as was illustrated above, the seriousness of wrong decisions can
be unequal, and the off-diagonal elements in the loss matrix can be chosen
to reflect this imbalance.

We stated above that the aim of classification was to “predict as well
as possible” the class of an object. We can now sharpen this concept, by
choosing to minimize the expected loss of a classifier. The idea is to choose
the parameters in an algorithm such that, when an infinite number of train-
ing samples are drawn randomly and classified and the loss of each single
prediction is looked up in the loss matrix and added up, the sum of all these
losses becomes minimal.

The resultant classifier will be the best possible for this choice of prob-
lem and loss matrix. It is also called the Bayes classifier. Details can be
found e.g. in [2]. In the following and for simplicity, we will assume that
false positive and false negative predictions are equally bad, and that correct
predictions incur no loss; in short, we choose the loss matrix to be of the

form

[

0 1
1 0

]

. We state here without proof that for this specific choice of

loss function, the best possible or Bayes classifier is the one which predicts,
at each point in feature space, that class which has the highest density at
that point [2]. Unfortunately, this statements shifts our problem without
solving it; for we do not know the true class densities. We will, in the proce-
dures section, introduce two methods: linear discriminant analysis, discussed
in section 19.4.1, seeks to estimate the densities and relative frequencies of
the classes; whereas k-nearest neighbors, discussed in 19.4.3, aims to directly
predict the locally dominant class.
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19.3.1 Model optimization and validation

The solution of a classification problem requires a number of choices. The
first of these is the proper choice of features, and this is of paramount im-
portance! For what information is lost in the feature extraction can never be
compensated for later on, no matter how sophisticated the machinery. We
stated above that classification results are best if two classes have little or no
overlap in feature space. Accordingly, it makes sense to include (combina-
tions of) features that separate the classes as well as possible. Note that this
separation need not be linear, all that is required is that a scatter plot would
reveal, say, the “green” and the “red” areas to be as distinct as possible.
“Then why”, may you ask, “not include all possible features, just to be on
the safe side?” The reason is that the effective number of parameters that
need be determined in an algorithm grows with the dimensionality of the
feature space. When the training set is small, there may not be enough data
to reliably determine all these extra parameters. As a consequence, it is best
to choose a small subset of all conceivable features, that subset which allows
for the best discrimination. If subsets with only two members are sought,
it is possible to produce scatter plots of the training set in this representa-
tion. While this may become tedious if the set of candidate features is large
(for P candidate features, you would need to consider P (P − 1)/2 scatter
plots), it becomes outright impossible if the subset sought should comprise
more than three features: straightforward visualization in a scatter plot is no
longer feasible. In this case, an automatic selection is desirable, which will
be discussed below.

Another choice required is that of the capacity, complexity, or flexibility of
the classifier. Some classifiers allow for an explicit tuning of their complexity,
e.g. neural nets with their variable number of units in the hidden layer.
Finally, there is the choice between different classifiers; modern software
packages for the statistical analysis of data (such as [3]) offer a wide range
of classification methods and it is, unfortunately, impossible to ascertain the
general superiority of a specific method.

In summary, there is a number of choices which it would be desirable
to automate and render more objective. If no additional constraints such
as easy interpretability of the algorithm or meagre computational resources
exist, one possibility is to take the expected loss (see above) as only criterion.

Now, in practice, we do not have an infinite training set. One way for-
ward is to split the available training set as indicated in figure 19.1. The
performance on the validation set serves as guide in the parametrization of
the algorithm; whereas the classification performance on the test set gives
an estimate for the method’s performance on unknown data.
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Figure 19.1: If the database is sufficiently large, it can be split into training,
validation and test sets. The latter should be used only once, for a final
evaluation before the algorithm is deployed.

While honest, this method makes poor use of the data; frequently, exper-
iments are so expensive or tedious that the historical dataset is small, and
it would be wasteful not to use all of the data to improve the method. On
the other hand, it is a very bad idea to use all of the data for training with
no external check; the 1-nearest neighbor method discussed below will make
zero errors no matter how large or complex the training set, i.e., it is a perfect
fit to the data. However, due to overfitting, generalization performance on
unseen data can be poor. Generally speaking, the performance on the train-
ing set is better than the true performance, because the method is optimized
to do as well as possible on the training set. The difference between the
empirical error on the training set and the true error can be called optimism,
and it grows with the flexibility of a classifier.

Besides certain analytical schemes (such as Akaike’s Information Crite-
rion, AIC [2]) which seek to avoid overfitting, there are a number of re-

sampling techniques, such as cross-validation or bootstrapping [4]. In these
schemes, the data is repeatedly partitioned into training and test sets, see
section 19.4.4.

19.4 Procedures

19.4.1 Linear discriminant analysis (LDA)

In this approach, each class is modeled using a multivariate normal (i.e.,
P -dimensional Gaussian) distribution. Formally, each class k is assumed to
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have density p at position x in feature space:

p(x|k) =
1

((2π)P |Σk|)
1

2

× exp
{

−
1

2
(x − µk)

T Σ−1

k
(x − µk)

}

In this expression, Σ is the covariance matrix describing the shape of a normal
distribution, and µ is its center of mass. The diagonal elements of the covari-
ance matrix (see section ??) are the variances. These indicate the spread of
the distribution along the various coordinate axes. The off-diagonal elements
indicate the amount of correlation: a spherically symmetric distribution has
zero covariances; whereas one which is extended and “points” in a direction
other than one of the coordinate axes is characterized by positive or negative
correlations, see figure 19.2.

We stated that the best possible classifier is the one predicting the locally
most dominant class. Assuming that we seek to solve a two-class problem
(k ∈ {1, 2}), the discrimination surface separating these two classes must
then be the set of all points at which the classes have the same probability.
In other words, the discrimination surface is the solution x of

p(1|x) = p(2|x) (19.1)

p(x|1)π(1)

p(x)
=

p(x|2)π(2)

p(x)
(19.2)

where the transition from the first equation to the second is by Bayes the-
orem, p(k|x) is the posterior density of class k at location x, p(x|k) is the
density of class k at x and π(k) is the prior probability, or relative frequency
of occurrence of class k, with

∑

k π(k) = 1.
If the two classes are described by the same covariance matrix Σ1 = Σ2,

then the quadratic terms in x cancel and what remains is a (hyper-) plane,
that is, a straight line in two dimensions, a plane in three dimensions, etc.
This property has inspired the name of linear discriminant analysis.

The estimation of the paramaters involved is simple: the vectors µk are
given by the arithmetic mean or center of mass of all the samples from class
k

µk =
1

Nk

Nk
∑

i=1

xk

i
(19.3)

where xk

i
is the ith sample out of a total of Nk examples of class k in the

training set. The relative frequencies are simply given by πk = Nk/(N1+N2).
The pooled covariance matrix is computed by

Σ =
1

N1 + N2





N1
∑

i=1

(

x1

i
− µ1

) (

x1

i
− µ1

)T

+
N2
∑

i=1

(

x2

i
− µ2

) (

x2

i
− µ2

)T



(19.4)
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Figure 19.2: Contour plots of the densities of two-dimensional normal distri-
butions along with their covariance matrices. The first density is spherical or
isotropic, the second has a diagonal covariance matrix, and the third shows
some anti-correlation: a positive value of the first component tends to go
together with a negative value of the second component and vice versa.

where the superscripts on x again indicate class membership.

We now illustrate linear discriminant analysis on two training sets: figure
19.3 shows what kind of data LDA is suitable for (in fact, the data has in
this case been sampled from the model), while figure 19.4 illustrates a case
for which LDA is not appropriate.

Starting with figure 19.3, panels c) and g) give two isotropic class den-
sities; these are identical except for their location. Panels b) and f) show
these densities multiplied by their prior probabilities which were chosen as
π(1) = π(2) = 0.5. Panel a) illustrates the total density p(x) = p(x|1)π(1) +
p(x|2)π(2). Panels d) and h) give the posterior probabilities of the classes at
each point in this two-dimensional feature space; they can be computed from
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Figure 19.3: Linear discriminant analysis as a generative model: data has
been sampled from the model. See text for a detailed description of the
panels.

the information in the other panels by application of Bayes’ theorem, equa-
tions 19.1, 19.2. The set of all points at which the two posterior probabilities
are equally large is indicated by the straight line in panels a) and e). This
is the linear discriminant function. Since it was computed from the exact
densities, it is in this case the best possible or Bayes classifier. Finally, panel
e) shows a set of points which have been sampled from this model. Note that
there is significant overlap of the two classes and thus a significant number
of prediction errors even for the best possible classifier. On an intuitive level,
the discriminant function seems appropriate for the data.

Figure 19.4 shows a training set in panel e), along with the linear dis-
criminant model obtained by estimating parameters according to equations
19.3, 19.4. In this example, the assumptions inherent in linear discriminant
analysis do not match the data: one of the classes is much more compact,
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Figure 19.4: Panel e) shows a given training set, and the LDA classifier fit
to it. Other panels show the estimated class densities, total density, and
posterior densities, cf. description of figure 19.3 in text. Clearly, the linear
classifier does not do the data justice in this example.

such that one covariance matrix Σ cannot adequately describe both classes.
The discriminant function obtained is non-sensical. Apparently, we need to
relax some of our assumptions in order to give the model more flexibility and
allow for nonlinear classifiers.

19.4.2 Quadratic discriminant analysis (QDA)

As in linear discriminant analysis, each class is assumed to follow a multi-
variate normal distribution. The important difference is that the classes are
now allowed to have different covariance matrices, and these are estimated
separately for each class. As a consequence, the term quadratic in x does not
cancel anymore in equation 19.2 and the resultant discriminant functions are
quadrics, i.e. parabolas, hyperbolas, etc. Figure 19.5 shows an example.

Since QDA offers added flexibility and contains LDA as a special case,
why not use it always? We had asked a similar question in section 19.3.1, and
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Figure 19.5: Panel e) shows the same training set as in figure 19.4, and the
QDA classifier fit to it. Other panels show the estimated class densities,
total density, and posterior densities. This non-linear classifier offers a much
improved fit to the data, and promises superior classification performance.

our answer here is similar: QDA requires determination of more parameters,
and this endeavor becomes difficult if the training set is small compared to
the dimensionality P of the feature space. Which of these two should then
be used? As always, cross-validation (see section 19.4.4) offers a convenient
answer. Let us add that it is possible to “compromise” [4] between LDA
and QDA by using a covariance matrix of the form Σmod

k
(α) = αΣk + (1 −

α)Σ, 0 ≤ alpha ≤ 1 where Σk are estimates of the class-covariance matrices
and Σ is an estimate of the pooled covariance matrix, cf. equation 19.4.

If even linear discriminant analysis has too many parameters compared
to the size of the training set, further simplifications are possible: all off-
diagonal elements of the covariance matrix may be set to zero, or the entire
covariance matrix may be biased towards sphericity using Σmod(β) = βΣ +
σ2(1 − β)I, 0 ≤ β ≤ 1 with I the unit matrix and σ2 the variance of the
data [4]. Again, an optimal value of β can be found using cross-validation.
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This modification of the estimated covariance may be necessary in the case
of very high-dimensional data. For the sake of argument, assume that you
compute a large number P of features which are thought to be relevant. N
examples in feature space can only span an (N −1)-dimensional subspace. If
N − 1 < P , then the covariance matrix becomes singular and a stabilization
is required.

19.4.3 k-nearest neighbors (k-NN)

The methods discussed above make strong assumptions concerning the dis-
tribution of the data, and yield succinctly formulated models. k-nearest
neighbor methods lie at the other extreme in that they make very little as-
sumptions, but are difficult to formulate in a concise manner: these memory-
based methods “grow” with the size of the training set.

The basic idea is simple: for each new sample which should be classified,
find that example from the training set which lies closest in feature space.
Give the label of that closest sample as prediction.

An obvious generalization is to search not only for the closest sample, but
for the closest k1 , k uneven, samples from the training set. A “democratic
vote” then reveals the locally dominant class which is given as prediction.
Taking this vote with a larger number of neighbors gives the result with
greater certainty (the change in the classifier when going from one training
set to another will be smaller), but it also involves averaging over a larger
region, making the discrimination surface smoother, and maybe overly so. A
suitable value of k can again be found by cross-validation, see section 19.4.4.

It may appear as if the method had only one parameter, k. This is far
from the truth: the effective number of parameters is much larger, up to
N/k [4]. One justification of this view is to consider 1-NN: the training set
partitions the feature space into influence regions of each sample (these are
the Voronoi regions). Each sample transmits its class membership to that
region, thus each individual region has one parameter.

Since Euclidean distance (or its square, which is computationally cheaper)
is used for identifying the k nearest neighbors, proper scaling of the feature
axes is vital: if the units on one axis are converted, say, from meters to mil-
limeters, the classification results may change drastically. This is in contrast
to LDA which can correct affine distortions of the entire training set, such
as scaling, “by itself” through the estimation of the covariance structure.

An advantage of k-NN is its flexibility and ease of use, disadvantages are

1In previous sections, k was a class index; now it has become an integer denoting the

number of nearest neighbors that are used for prediction.
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the computational burden in routine use if the available training set is large,
and the difficult interpretation of this “model”.
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Figure 19.6: The left panel shows the same training set as in figures 19.4,
19.5. The right panel shows another training set which was sampled from the
same underlying distribution. The ellipses are from a quadratic discriminant
analysis on these data sets, the contours come from a 1-NN analysis. The two
ellipses are quite similar, whereas the 1-NN classifier varies quite a lot from
one training set to the next. This is what statisticians call the variance, and
the severity of this undesirable feature generally increases with the flexibility
of a classifer. In turn, overly stiff classifiers as illustrated in figure 19.4 cannot
always do the data justice, leading to large bias [4].

Overall, the classification schemes presented here, though simple, are
among the most performant [5]. If results prove unsatisfactory, advanced
methods such as support vector machines [6, 7] may be applied, but gener-
ally speaking, no quantum leap in performance should be expected. In many
practical situations, improper selection, evaluation or transformation (taking
the logarithm, the inverse, etc.) of features is the weakest link in the chain
and should be amended first.

19.4.4 Cross-validation

Cross-validation can be used to estimate the predictive power of different
methods when there is not enough data to split it in the way indicated in
figure 19.1. In this context, LDA, QDA, 5-NN and 7-NN would all qualify
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as “different methods”, and so would LDA based on two different sets of
features (one of which may be a subset of the other). The complete available
database is split randomly2 into K fractions of equal size. A specific method
is then parametrized using all but one of these fractions as the training set.
The classifier is then used to predict the labels of the samples in the fraction
that had been left out, and the predicted labels are compared to the true
ones. The error rate is stored. This procedure of taking one subset out while
training on all others is repeated for each of the K fractions, and the mean
error rate is computed. The method with the smallest mean error rate can
be expected to yield the greatest prediction performance.

There is a trade-off concerning the size of the fractions: on one hand, the
smallest possible amount of data should be left out in order not to “waste”
it; on the other hand, leaving out a small number of samples corresponds to
a small perturbation of the complete training set only. This in turn means
that results may differ if a totally different training set from the same process
is used. A good compromise seems to be to choose K of the order 5, . . . , 10.
Another frequent choice is K = N , the number of samples, which is also
called “leave-one-out-cross-validation”.

There are many variations on this theme, summarized under the term
resampling methods. One enjoying much popularity recently is the bootstrap

[4] in which the fractions are chosen by sampling from the complete training
set with replacement.

In summary, cross-validation has a number of beneficial properties which
were not discussed here, and is easy to implement and use. While often com-
putationally prohibitive in the past, it is a method that merits its popularity
nowadays.

19.5 Advanced Reference Material

There are a number of very accessible textbooks today, two of which we
would like to single out. [8] is a bit more verbose and possibly more rec-
ommendable for absolute beginners; it also features a very well-structured
introduction to clustering methods. [4] puts more emphasis on recent de-
velopments, though its derivations are sometimes not very detailed. [2] is
a fine introduction to the statistical foundations of pattern recognition, but
requires more background knowledge than the other two.

Throughout this chapter, reference has been made to these three text-
books where appropriate, rather than to the original articles which are mostly
more difficult.

2It is important to really choose samples randomly to avoid biasing by temporal trends.
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