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Abstract. The search for specific objects or motifs is essential to art
history as both assist in decoding the meaning of artworks. Digitiza-
tion has produced large art collections, but manual methods prove to
be insufficient to analyze them. In the following, we introduce an algo-
rithm that allows users to search for image regions containing specific
motifs or objects and find similar regions in an extensive dataset, help-
ing art historians to analyze large digitized art collections. Computer
vision has presented efficient methods for visual instance retrieval across
photographs. However, applied to art collections, they reveal severe defi-
ciencies because of diverse motifs and massive domain shifts induced by
differences in techniques, materials, and styles. In this paper, we present a
multi-style feature fusion approach that successfully reduces the domain
gap and improves retrieval results without labelled data or curated im-
age collections. Our region-based voting with GPU-accelerated approx-
imate nearest-neighbour search [29] allows us to find and localize even
small motifs within an extensive dataset in a few seconds. We obtain
state-of-the-art results on the Brueghel dataset [2, 53] and demonstrate
its generalization to inhomogeneous collections with a large number of
distractors.
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1 Introduction

For art history, it is crucial to analyze the relationship between artworks to
understand individual works, their reception process, and to find connections
between them and the artists [28, 22, 23]. Hereby, the investigation of motifs and
objects across different images is of particular importance since it allows more
detailed analyses and is essential for iconographic questions. Digitization has
produced large image corpora [4, 1, 3, 59], but manual methods are inadequate
to analyze them since this would take days or even months. Computer-assisted
approaches can dramatically accelerate and simplify this work. However, most
of them consist of a simple text search through metadata and are not suffi-
cient since text cannot capture the visual variety, and labels are often either
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missing, incomplete, or not standardized. Therefore, there is a need for efficient
algorithms, capable of searching through visual art collections not only based
on textual metadata but also directly through visual queries. In this paper, we
present a novel search algorithm that allows users to select image regions con-
taining specific motifs or objects and find similar regions in an extensive image
dataset.

While computer vision successfully developed deep learning-based approaches
for visual instance retrieval in photographs [42, 43], artworks present new chal-
lenges. This includes a domain shift from real photos to artworks, unique and
unknown search motifs, and a large variation within art collections due to dif-
ferent digitization processes, artistic media, and styles. This strongly highlights
the need for specifically tailored algorithms for the arts [50, 53]. Solving visual
instance retrieval across artworks is difficult and requires local descriptors, which
are both highly discriminative to find matching regions and invariant regarding
typical variations in art collections. Learning such descriptors in a supervised
fashion is extremely time-consuming and requires annotating thousands of cor-
responding images [51]. Besides, the learned descriptors improve retrieval results
only for very similar datasets. Alternative approaches based on self-supervision
[53] show promising results. However, they are not stable against images without
any repetitions in the dataset, and are very slow in large-scale scenarios since
they require a pairwise comparison between all images. We circumvent these
issues and present a new multi-style feature fusion, where we utilize generic pre-
trained features and current style transfer models to improve their style invari-
ance without any additional supervision. Given a dataset, we stylize all images
according to a set of fixed style templates, and by mixing their feature represen-
tations, we project them into the same averaged style domain. This massively
reduces the domain gap across artworks and improves overall retrieval results.

Contributions. Our main contributions are threefold. (1) We present an
unsupervised multi-style feature fusion, which successfully reduces the domain
gap and improves overall retrieval results in art collections. (2) The introduced
iterative voting in combination with GPU-accelerated nearest-neighbour search
[29] enables us to localize and find small regions in large datasets within a few
seconds. (3) We demonstrate that the proposed method significantly outperforms
current methods in terms of retrieval time and accuracy for object retrieval and
localization in art collections.

2 Related work

In the following, we present the most relevant research related to our work and
put our contributions in context.

Computer vision in the arts. For quite some time, there has been a
mutual exchange between computer vision and the arts. This exchange ranges
from the analysis of artworks using computer vision [6, 9, 51, 18] to the devel-
opment of new methods in collaboration with the art community [48, 65, 60,
54] to generative algorithms that transfer normal photos into artworks [21, 16,
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47] or direct attempts to create art [13, 20]. Concerning the analysis of art-
works, collaborations are very natural because computer vision and art history
are both concerned with the visuality and ask similar questions. In this context,
researchers have transformed successful object detection and classification meth-
ods for photos to artworks [48, 9, 30, 58]. Some of these works detect gestures,
people, or iconographic elements in paintings [48, 17, 67, 70, 18, 26], recognize ob-
ject categories occurring in natural images [9, 10, 68], classify paintings in terms
of their style, genre, material, or artist [30, 36, 46, 45, 61, 68, 59], or investigate
the aesthetics of paintings [58, 5, 12]. Some approaches directly try to find visual
relationships within art collections automatically [52, 53, 15] to relieve as much
work as possible from art historians. However, these are very time-consuming
since they compare all possible image pairs within the dataset. Therefore, they
are limited to small collections, which could also be manually analyzed. In this
work, we focus on large-scale instance retrieval and localization in the arts. We
are convinced, with an efficient search system, art historians can find relevant
visual links through several searches faster and more targeted compared to fully
automated approaches.

Visual instance retrieval. Visual instance retrieval deals with the task of
identifying matching regions in other images within a dataset, given a query
region or image. This is a well-established research field in computer vision
with successful classical [24, 9], as well as deep learning-based [62, 69, 38] ap-
proaches. Early methods were based on classical feature point descriptors like
SIFT [33] combined with a Bag-of-Words approach [24, 9]. Over the years, nu-
merous improvements have been made for different parts of this approach [55].
More recently, Convolutional Neural Networks (CNN) showed remarkable results
in many areas of computer vision, including visual instance retrieval [7]. However,
the primary retrieval research was always focused on photographs, either of the
same place [39, 40] or the same object [37]. If researchers dealt with art databases,
then often only on an image level without allowing to search for regions [56, 60,
41, 8, 35], which is a central requirement to find similar motifs and objects in art
collections. Just recently, Shen et al. [53] introduced the first benchmark with
annotations for finding and localizing objects and motifs in artworks on a region
level, which is also the primary dataset we use for our evaluation. Most closely
related to our work is Shen et al. [53] and Seguin et al. [50], which also deal with
instance retrieval and finding visual relationships in art collections. In contrast
to our work, Seguin et al. [50] use off-the-shelf CNNs that have been fine-tuned in
a supervised fashion and thus does not apply to other datasets. The approach of
Shen et al. [53] learns dataset-dependent features in a self-supervised manner by
mining correspondences between image pairs, similar to [63, 64]. However, their
approach does not generalize to inhomogeneous collections with many distrac-
tors, and their retrieval system is intractable in large-scale scenarios. In contrast,
our method improves retrieval results by successfully reducing the domain gap
without labelled data or curated image collections and enables us to find even
small motifs within an extensive dataset in a few seconds.
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Fig. 1. Overview of our multi-style feature fusion. It consists of three main steps:
First, we extract image level features of all dataset images, apply K-means and select
the cluster centers as style templates. Given an input image and region proposals,
the input image is stylized based on the style templates and features are generated
using the pre-trained feature extraction and style transfer network. The image features
are fused to create a final image representation, and through ROI pooling, we obtain
region descriptors for all proposals with a fixed dimension. Finally, we apply principle-
component analysis (PCA) and whitening to reduce the feature dimension.

Method

The following requirements on the image representation and the retrieval system
are essential. First, it should be possible to search for any motif in a diverse art
collection. This poses particular challenges to the underlying feature descriptors
since off-the-shelf models are trained on photographs and are not invariant to
colours and artistic styles. We address this problem in the first part of this section
and introduce a new multi-style feature fusion, which considerably reduces the
domain gap. Second, it should be possible to search for any image region with
an arbitrary size across a large dataset, and the search should take only a few
seconds and deliver exact retrieval results. These are challenging demands since
a single feature descriptor is not capable of capturing multiple objects or motifs
in an image accurately, and encoding all regions is not tractable due to memory
constraints. We address this problem in the second part of this section. For the
query region and all images in the dataset, we extract a moderate number of
local descriptors and formulate the search as a voting procedure of local patches
within the query region.

Multi-style feature fusion

Our multi-style feature fusion is based on the following hypothesis. The dataset
contains images or regions that are similar to each other but are depicted in
different styles. Generic pre-trained descriptors are capable of finding similar
regions if the style differences are small. Based on this assumption, our main
idea is to use current style transfer models to project all images into the same
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averaged style domain to reduce the domain gap and simplify the retrieval task.
Therefore, we stylize each image based on multiple fixed style instances and fuse
their extracted features to generate a single robust representation. The approach
consists of three main steps, which we describe in the following. See Fig. 1 for
an overview.

Finding style template. To find a diverse set of style templates, we proceed
as follows. We denote the collection of images as I = {Ii|1 ≤ i ≤ N} and
assume that an ImageNet pre-trained CNN, which maps images into an m-
dimensional deep feature space, i.e. φ : X → R

m, is given. We group all images
into ks clusters according to their pairwise distance in the embedding space using
K-means. Since the CNN φ is trained on real photos, it is not invariant with
respect to styles, and hence different clusters contain different content depicted
in different artistic styles. We select ks images which are closest to the cluster
centers in the feature space and obtain a diverse set, which serves as our style
templates S = {Is|1 ≤ s ≤ ks}. This selection is sufficient because our style
transfer method is independent of the image content, and only the depicted
style is important. In our experiments, we set ks = 3 since this has proven to be
a good trade-off between performance and computational cost.

Style transfer. Our style transfer module is a CNN, G : X × X → X ,
which takes a content image Ic and style image Is as input to synthesize a new
image G(Ic, Is) with the content from the former and style from the latter. It
is based on the network architecture of Li et al. [31] and consists of three main
parts: an encoder-decoder, a transformation, and a loss module. The encoder
consists of the first layers of the ImageNet pre-trained VGG-19 model [11, 57]
and the decoder comprises of its symmetrical counterpart. The transformation
module consists of two small CNNs which receive the encoded feature maps of
the content and style image as input, and provide a transformation matrix as
output, respectively. Given a content and style image, the style is transferred by
multiplying the encoder’s content feature with the two transformation matrices
and applying the decoder on the output, which produces the stylized image.
Since the network is a pure feed-forward convolution neural network, it allows
converting an image into an arbitrary style in milliseconds.

Feature fusion. Based on the style transfer module G and style templates
S, we obtain the multi-style feature representation as follows. Given an input
image I and a set of proposals, we stylize the image with respect to all style
templates S, and fuse them by taking their mean, i.e.

φms (I,S) =
1

1 + |S|

(

φ(I) +
∑

Is∈S

φ (G(I, Is))

)

. (1)

Here we also take the original image feature into account since it contains fine-
grained information that can be useful for the retrieval task but are lost during
the transformation process. Given the proposals and the new image representa-
tion, we apply Precise ROI Pooling [27] to obtain local feature descriptors for all
proposals with a fixed feature dimension. Finally, we apply principle-component
analysis (PCA) and whitening to reduce their feature dimension.
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Fig. 2. Overview of our retrieval system. The retrieval system consists of an offline
and an online stage. During the offline stage, the search index is initialized before the
actual search. For each image, discriminative local patches are determined, and their
feature descriptors are extracted, compressed, and stored in the search index. During
the online stage, most discriminative local patch descriptors within the marked query
region are extracted, and their k-nearest neighbours are determined using the search
index. Our voting procedure aggregates these local matches and predicts well-localized
retrieval bounding boxes for the whole query. The results are further improved using
local query expansion and re-voting.

Retrieval system using iterative voting

To find and localize objects and motifs of arbitrary size in an extensive art collec-
tion, we introduce an iterative voting approach based on local patch descriptors.
Therefore, we decompose all images into a set of quadratic patches on multiple
scales in a sliding-window manner, which are encoded by the multi-style feature
extraction network described previously. The actual search consists of finding
k-nearest neighbours of local patches within the selected query region across
the whole dataset, which are afterwards aggregated to well-localized retrieval
bounding boxes. This approach has three main advantages. First, the search is
performed on a region level and enables searching for small motifs that cannot
be found when images are represented with a single feature descriptor. Second,
it allows us to predict well-localized retrieval bounding boxes independent of the
local patches we use for the image encoding. Third, we combine several search
queries in combination with a spatial verification, which provides better search
results.

Our retrieval system consists of an offline and online stage. In the offline stage,
the search index is initialized. Therefore, local image descriptors are extracted,
compressed, and stored in the index. This step only needs to be done once. In the
online stage, most discriminative local feature descriptors within the query region
are extracted, and our voting procedure is applied to their k-nearest neighbours
to obtain the first search results. Through local query expansion and re-voting,
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the retrievals results are further improved. In the following, we describe each
step in more details. We also provide an overview in Fig. 2.

Image encoding using local patch descriptors. In our experiments clas-
sic region proposal algorithms [34, 66, 71] and networks [44] showed insufficient
results for artworks. Our strategy for finding suitable regions to extract local
patch descriptors consists of two steps. First, we generate a broad set of local
patches by dividing the space into quadratic regions on multiple scales in a slid-
ing window manner. Second, we filter them for selecting the most discriminative
as follows. We sample a subset of all local patches and assign them into ke groups
using the L2 distance in the multi-style feature space and K-means. We store the
ke cluster centers, compute the distance of all local patches to these centers, and
select those with the highest mean distance. By this, we obtain local patches on
different scales that are more discriminative and more suitable for the retrieval
task than others. We generate a maximum of 4000 local patches for each image
I in this way and extract their multi-style feature descriptors D(I) as described
previously. To keep the search index compact, we reduce the number of extracted
proposals per image linearly with the dataset size.

Search index. We build a search index containing all local patch descriptors
of all images D for fast approximate nearest neighbor search. For the search
index, we use the Inverted File Index (IVF) and the Product Quantization (PQ)
algorithm from [29]. They provide a high-speed GPU-parallelized variant that
allows to search for multiple queries in an extensive database in seconds. The
IVF algorithm [25] clusters the feature vectors into groups and calculates their
centroids using K-means. Now, given a query vector, the distances to all centroids
are determined, and only the feature vectors assigned to the closest centroids
are considered for the k-nearest neighbor search, which massively accelerates the
search. The actual search uses product quantization. Here the feature vectors are
sliced into subvectors, and a codebook for each of these slices is learned. Based
on these codebooks, the feature vectors can be stored efficiently using their ids,
and a look-up table containing all codebook centroids distances allows a fast
approximated nearest neighbor search with a query vector. We calculate the
IVF clustering and PQ codebooks for each dataset separately. Therefore, we
take all regions from 1000 randomly selected images and train on their multi-
style features.

Query reformulation using local patch descriptors. In the online stage,
the user selects an image and marks a rectangle q as the query region. Besides the
selected region itself, we additionally use the most discriminative local patches
within the query region for the actual search. We find these local query patches
as follows. We extract local patches on multiple scales and select the most dis-
criminative using two criteria. First, we filter all local patches with less than 90
percent overlap with the query region. Second, we apply non-maximum suppres-
sion concerning their feature activation, which we obtain by summing over the
feature channel and taking the mean within the proposal region. For the selected
patches, we extract their features and store their voting vectors. This set of local
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query patch descriptors D(q) for a given query region q are used in the following
for our voting strategy.

Voting based on local matches. As described previously, we encode each
dataset image I ∈ I with a set of local patch descriptors D(I), where we denote
the set of all descriptors in the dataset by D. For a given query rectangle q,
we also extract a set of local patch descriptor D(q). In the following, we do not
distinguish between the local patches itself and their feature descriptors, but it
should always be clear what is meant from the context. Our voting consist of
the following two main steps.

In the first step, we determine the k-nearest neighbours NNk(f,D) for each
local query patch f ∈ D(q) using the search index with L2 distances, where we
denote a local query patch with one of its k-nearest neighbours as a local match.
Based on the L2 distances, we define a local matching score via

sf (g) = exp
(

− ‖g − f‖22 / ‖ĝ − f‖22
)

, (2)

where ĝ ∈ NNk(f,D) with a fixed rank and provides a reference distance. For
the image ranking, we utilize a majority based voting, where we determine the
most promising images. To do this, for a given image I, we look at its local
matches and sum their local matching scores, where we consider at most one hit
for each local query feature. We select the images with the highest scores and
restrict the following voting based on local matches on this subset. Due to this
pre-selection, the computational costs of the following steps are independent of
the dataset size. However, in contrast to other approaches [49], the pre-selection
is conducted on a part, not image level, and hence we do not miss similar small
regions in the final search results.

In the second step, we apply our voting scheme on the local matches of the
most promising images to predict well-localized retrieval bounding boxes. For
the voting, we assume persistent aspect ratios and neglect object rotations to
reduce the voting space and accelerate the search. Let us consider a local match
(f, g), i.e. g ∈ NNk(f,D) ∩ D(I) for a local query patch f ∈ D(q), then this
match is voting for a specific location and scale of a rectangle r in image I.
If we denote v(f) = cq − cf as the vector from the center of the local query
patch cf to the query rectangle cq and df , dg and dq are the diagonal lengths
of f , g and q, respectively. Then this match votes for a rectangle with center
cr = cg + v(f) · dg/df and diagonal dd = dq · dg/df . We aggregate these votes
and create a voting map in which each point votes for the center of a box at
the corresponding position similar to [55]. To keep the voting map compact, we
quantize the image space so that the voting map is much smaller than the actual
image. Here, we reduce quantization errors by voting for a 5 × 5 window with
a Gaussian kernel for each local match. For the voting score, we use the local
matching similarity defined in Equ. 2. To find the correct diagonal lengths for
the retrievals, we do not increase the voting space by an additional dimension
but average the diagonals of all votes pointing to the same center. This keeps
the voting space compact and accelerates the search. For determining the center
and diagonal of the best retrieval box in the image I, we take the position of
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the maximum in the voting map and the corresponding averaged diagonal. This
voting approach allows object retrieval and localization at the same time without
an exhaustive sliding-window search as a post-processing step, like in [50, 53].

Local query expansion and re-voting. After finding our first retrievals
across the dataset, we improve our search results using local query expansion
and re-voting. Concerning the local query expansion, we consider the first ten
nearest neighbours in different images for each local query patch and fuse their
feature descriptors by taking their mean and L2 normalization over the feature
channels. By this, we obtain new and more generalized local patch descriptors,
containing more diverse information by including multiple instances. The aggre-
gated patches no longer have the same coordinates in the query image because of
the combination of local patch descriptors and possible shifts in local matches.
Therefore, we also update the voting vectors based on the new patch represen-
tations. We do this by determining their nearest neighbours in the query image
and measuring the voting vector to the query bounding box center. The gener-
alized local patch queries and updated voting vectors have the same structure
as in the first voting stage, and we can apply the previously described voting
procedure again, which leads to better search results.

Implementation details

Concerning the multi-style feature fusion, we use VGG16 with batch normaliza-
tion [57], pre-trained on ImageNet [11], and truncated after the fourth layers’
RELU as backbone architecture. We rescale images to 640 pixels concerning the
smallest image side and pad them by 20 pixels on each side. We add a max-
pooling layer and hence obtain a ratio of 16 between image and feature space.
For the style transfer model, we use the pre-trained model of Li et al. [31], which
was trained on the MS-COCO [32] dataset. We also experimented with training
on each target dataset separately, but this did not improve the performance and
heavily increased the initialization time. We generate the stylized images during
the offline stage so they only need to be loaded for the feature extraction.

Concerning the iterative voting, our proposal algorithm uses six different
scales with a scaling factor of 2−1/2. The patch size ranges from 1/12 up to 1/2,
where we use a stride of 1/50 regarding the largest image side. For the selection
of discriminative patches, we set ke = 200. To keep the search index compact,
we linearly decrease the number of proposals per image with increasing dataset
size. First, we extract 4000 proposals and reduce the number by 375 for each
additional 20k images, starting with a dataset size of 20k images. The OPQ
algorithm utilizes 96 sub-quantizers with 8 bits allocated for each sub-quantizer.
For the IVF algorithm, we generate 1024 clusters and use 30 for the nearest
neighbor search.

Experiments

In this section, we present comparative evaluations on challenging benchmark
datasets and diagnostic experiments.
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Datasets

To show the efficiency and generalization capability of our system, we evaluate
on five different benchmark datasets.

Brueghel. Our main evaluation is based on a collection of Brueghel paintings
[2] with annotations from Shen et al. [53]. To the best of our knowledge, no
other dataset for instance retrieval and localization in the arts with annotations
is available at the moment. The dataset consists of 1,587 paintings, including
a variety of different techniques, materials, and depicted scenes. It includes ten
annotated motifs with 11 up to 57 instances of each motif, which results in
273 annotations overall. We follow the evaluation protocol of [53], and count
retrievals as correct, if the intersection over union (IoU) of predicted with ground-
truth bounding boxes is larger than 0.3. For each query, we compute the Average
Precision (AP), average these values per class, and report the class level mean
Average Precision (mAP).

Brueghel5K and Brueghel101K. We are particularly interested in the
large-scale scenario, where the algorithm has to deal with an extensive and in-
homogenous image collection. This is a much more common use case for art
historians. For this purpose, we introduce the Brueghel5K and Brueghel101K
dataset, where we extend the previously described dataset with an additional
3,500 and 100,000 randomly selected images from the Wikiart dataset [4] as
distractors, respectively. To avoid false negatives, we used the annotations from
Wikiart and excluded all Brueghel paintings from the selection. The evaluation
uses the same annotations and evaluation protocol as the Brueghel dataset.

LTLL. We also evaluate our algorithm on the Large Time Lags Location
(LTLL) dataset, which was collected by Fernando et al. [14]. It consists of his-
torical and current photos of 25 cities and towns spanning over a range of more
than 150 years. The main goal is to recognize the location of an old image using
annotated modern photographs, where the old and new images can be consid-
ered as belonging to two different domains. In total, the dataset contains 225
historical and 275 modern images. Since our retrieval system assumes that users
mark image regions he is interested in, we provide and utilize additional query
bounding boxes for our and all baseline models. Analogously to the evaluation
protocol [14] we report the accuracy of the first retrieval.

Oxford5K. We also evaluate our approach on the Oxford5K datasets, which
was collected by Philbin et al. [39]. It consists of 5,062 photos with 11 different
landmarks from Oxford and five different query regions for each location. The
occurrence of each landmark ranges from 7 up to 220. We follow the evaluation
protocol of [39] and compute the Average Precision (AP) for each query, average
them per landmark and report the mean Average Precision (mAP).

Effect of multi-style feature fusion

To validate our multi-style feature fusion, we compare the performance of our
algorithm with different feature representations. As baselines, we use VGG16 fea-
tures truncated after the conv-4 layer, which are either pre-trained on ImageNet
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Table 1. Retrieval performance comparison of our multi-style feature fusion (Ours)
and features generated from VGG16, which are either pre-trained on ImageNet [11]
(ImageNet pre-training) or additionally fine-tuned using [53] (Artminer)

Features Brueghel Brueghel5K Brueghel101K LTLL Oxford5K

ImageNet pre-training 79.1 76.7 67.3 88.1 87.9
Artminer [53] 80.6 37.9 34.5 89.0 79.4
Ours 85.7 84.1 76.9 90.9 89.8

Table 2. Ablation study of our voting approach. We measure the performance for
searching only with the selected query region (wo/voting), and for restricting ourselves
to the first round of voting (wo/it.voting) and our full system. We also report the
performance on the Brueghel dataset for different IoU thresholds

Methods
Brueghel

LTLL Oxford5K
IoU@0.3 IoU@0.5 IoU@0.7

Ours wo/voting 72.3 48.5 5.9 73.2 72.7
Ours wo/it.voting 74.1 54.4 19.1 90.4 87.8
Ours 85.7 63.3 21.7 90.9 89.8

[11] (ImageNet pre-training) or additionally fined-tuned with the self-supervised
approach of Shen et al. [53] (Artminer).

From Tab. 1 it can be seen that our approach improves the results on all
benchmarks. The improvement compared to pre-trained features is especially
high for the art datasets since there is a particular large domain gap due to
differences in styles between queries and targets. Even for datasets without any
domain shift, like Oxford5K, our algorithm improves the search results due to
the aggregation of diverse feature representations. We also achieve significantly
better results compared to the Artminer [53] fine-tuned variants. Their method
has particular problems for image collections containing many distractors as well
as on the Oxford5K dataset.

Effect of iterative voting

We analyze the impact of our voting procedure on the visual search. For this
purpose, we measure the performance of our method for searching only with
the selected query region (wo/voting), restricting ourselves to the first round of
voting (wo/it.voting) and our full system. To better understand the impact on
the localization of retrievals, we also report the performance for different IoU
thresholds on the Brueghel dataset.

The results are summarized in Tab. 2. We see that the first round of vot-
ing especially improves the results on the LTLL and the Oxford5K dataset, the
performance gain on the Brueghel dataset for the IoU of 0.3 is smaller. The
reason is that the query regions for the Brueghel dataset are, on average, much
smaller. Therefore, there are fewer voting regions, and the effect of voting be-
creases. However, the results for higher IoU thresholds show that the localization
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Table 3. Comparison of the retrieval time of our method (Ours) and [53] (Artminer)
for different dataset sizes, where we also report the size of our search index (last row)

Method 5K 20K 40K 60K 80K 100K

Artminer [53] 12.9 min 50.4 min 1.7 h 2.8 h 3.8 h 4.6 h
Ours 8.5 s 9.0 s 9.3 s 9.7 s 10.1 s 10.5 s

Ours 1.7 GB 6.8 GB 13.7 GB 20.6 GB 27.4 GB 34.2 GB

Table 4. Retrieval results of our method and state-of-the-art methods on the Brueghel
[2, 53], Brueghel5K, Brueghel101K, LTLL [14] and Oxford5K [39] dataset. We also
report the underlying network architecture (Net), and what dimension the underlying
features have (Dim)

Methods Net Dim
Brueghel

LTLL Oxford
[2, 53] 5K 101K

ImageNet, image level VGG16 512 24.0 22.5 17.7 47.8 25.6
Radenović et al. [43], wo/ft VGG16 512 15.5 12.7 5.9 59.3 53.4
Radenović et al. [43] VGG16 512 15.8 12.8 5.7 76.1 87.8
Artminer [53], wo/ft ResNet18 256 58.1 56.0 50.2 78.9 84.9
Artminer [53] ResNet18 256 76.4 46.5 37.4 88.5 85.7
Artminer [53], wo/ft VGG16 512 54.4 50.5 44.1 81.8 85.0
Artminer [53] VGG16 512 79.9 39.5 36.4 88.9 81.5

Ours VGG16 96 85.7 83.9 76.9 90.9 89.9

Ours VGG16 128 87.2 85.6 —- 90.9 89.8
Ours VGG16 256 88.1 86.7 —- 91.3 89.8

is significantly improving. The second round of voting with local query expan-
sion improves the results on all datasets further. This has a particularly strong
influence on the retrieval results for the Brueghel dataset.

Computational cost

We also investigate the search speed of our Python implementation. All mea-
surements are conducted on the same machine with 3 GPUs (Nvidia Quadro
P5000). In Tab. 3, we summarize the results and compare them with [53], where
we assumed a perfect implementation of [53] on multiple GPUs by dividing their
search times by a factor of 3. Besides the search speed, we also report the index
size after storing to disk. It shows that our method is much faster, and its
speed depends only moderately on the number of images. The index size mainly
determines the size of the image collection that can be searched. Its size pri-
marily depends on the number of proposals extracted per image, which is an
important factor in finding small regions. Since the required retrieval accuracy
for small regions, available hardware, and dataset size vary from application to
application, the number of proposals should be adjusted according to the actual
use case.
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Fig. 3. Qualitative comparison. Retrieval examples of our approach (Ours) and [53]
(Artminer) on the Brueghel dataset. We show queries on the left in blue and its nearest-
neighbor, as well as four additional retrievals with an equidistant distance given by the
number of ground truth annotations for the query divided by four. We draw green
bounding boxes if the intersection over union is larger than 0.3 and red otherwise.

Retrieval performance on benchmarks

In the following, we give quantitative and qualitative results on the previously
introduced benchmark datasets.

Quantitative evaluation. We compare our results with max-pooled pre-
trained features on image level (ImageNet, image level) as well as the state-
of-the-art results of Shen et al. [53] (Artminer) and Radenović et al. [43] on
Brueghel, LTLL, and Oxford5K. For a fair comparison, we select the same back-
bone architecture for all methods and report also the original numbers from
[53] with their fine-tuned ResNet18 model. Our approach utilizes marked query
regions within the image. This is not the case for the discovery mode of [53].
According to their publication and our experiments, they obtain the best results
using full images as query, which allows their algorithm to utilize more context.
The reported numbers refer to their discovery mode.

We summarize all results in Tab 4. We outperform all methods on all bench-
mark datasets without fine-tuning on the retrieval task and with a much smaller
feature dimension. The results on the Brueghel datasets with additional dis-
tractors show that the self-supervised method of Shen et al. [53] is not stable
against images without corresponding regions in the dataset. The main reason is
that, the probability of selecting regions without correspondences is very high,
which results in few and potentially spurious matches for training. This effect
can already be seen for Brueghel5K, where their fine-tuned network leads to
worse retrieval results compared to their initial model. In contrast, our method
is much more robust against such distractors. Furthermore, it can be seen that
we even outperform [43] on the Oxford5K dataset, although, their approach is
explicitly designed for geo-localization by fine-tuning on an extensive image col-
lection of various landmarks using ResNet101 [19]. However, since their model
is optimized for this task, their search results on art collections are rather weak.
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Fig. 4. Retrieval examples. We show examples in rows 1-2 and 3-4 for the LTLL and
Oxford5K dataset. The first row shows full images (Full) and the second zoomed-in
versions (Zoom). The queries are visualized in blue on the left and its nearest-neighbor,
as well as four additional retrievals with an equidistant distance, given by the number
of ground truth annotations for the query divided by four on the right.

Qualitative evaluation. In Fig. 3, we provide a qualitative comparison with
the state-of-the-art of Shen et al. [53] (Artminer). It shows that their method
can find first retrievals quite well. However, these become significantly worse for
higher ranks, where our approach gives much better results. In Fig. 4, we show
some qualitative examples for the other datasets. The retrieval results show that
our system is capable of finding similar objects despite differences in colour and
style. Furthermore, we see that objects can be precisely located despite changes
in perspective and partial occlusions, which is also the case for small regions.

Conclusion

We have presented a novel search algorithm to find and localize motifs or ob-
jects in an extensive art collection. This enables art historians to explore large
datasets to find visual relationships. Our algorithm is based on a new multi-
style feature fusion, which reduces the domain gap and thus improves instance
retrieval across artworks. In contrast to previous methods, we require neither ob-
ject annotations, image labels, nor time-consuming self-supervised training. The
presented iterative voting with recent GPU-accelerated approximate nearest-
neighbor search [29] enables us to find and localize even small motifs within an
extensive database in a few seconds. We have validated the performance of our
model on diverse benchmark datasets, including art collections [2, 53] and real
photos [39]. We have also shown that our method is much more stable against
distractors compared to the current state-of-the-art.
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