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Abstract

We hypothesize that brain activity can be used to control future information

retrieval systems. To this end, we conducted a feasibility study on predicting

the relevance of visual objects from brain activity. We analyze both magnetoen-

cephalographic (MEG) and gaze signals from nine subjects who were viewing

image collages, a subset of which was relevant to a predetermined task. We

report three findings: i) The relevance of an image a subject looks at can be

decoded from MEG signals with performance significantly better than chance,

ii) fusion of gaze-based and MEG-based classifiers significantly improves the

prediction performance compared to using either signal alone, iii) non-linear

classification of the MEG signals using Gaussian process classifiers outperforms

linear classification. These findings break new ground for building brain activ-

ity based interactive image retrieval systems, as well as for systems utilizing
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feedback both from brain activity and eye movements.

Keywords: Bayesian classification, image relevance, implicit relevance

feedback, information retrieval, magnetoencephalography, gaze signal

1. Introduction

Interactive information retrieval (IIR) refers to a process where a user searches

for information in an iterative manner. A typical interactive search interface

provides a set of search results at a time, collects relevance feedback for the

provided items, and then proceeds to provide a new result set that hopefully is5

more relevant1 for the search needs of the user (Ruthven, 2008).

Most IIR systems collect the relevance feedback by explicitly asking for it

from the user. To relieve the user from this burden, implicit relevance feedback

can be inferred from various signals from the user, including behavioral features

such as mouse movements (Claypool et al., 2001b), gaze patterns (Klami et al.,10

2008; Puolamäki et al., 2005; Salojärvi et al., 2005; Hardoon and Pasupa, 2010;

Ajanki et al., 2009), and physiological measurements such as skin conductance

(Soleymani et al., 2008). It is to be expected that future IIR systems will rou-

tinely use these kinds of additional information sources as soon as the necessary

measurement techniques are widely available; they have been demonstrated to15

provide useful information that should not be ignored. However, the informa-

tion available in the physiological signals measured outside the brain is limited.

For example, gaze trackers are effective in revealing where the user looks at,

and facial expressions provide clues on the users’ emotional responses (Arapakis

et al., 2009), but it is unlikely that more complex behavior could be accurately20

decoded without direct measurements of brain activity.

In this work, we provide one of the first steps in exploring whether rhythmic

1Relevance is a highly important concept in information science and has been utilized in

practical information retrieval systems as well (Saracevic, 2007). The concept of relevance is

abstract and has multiple interpretations. We define relevance as the importance of a stimulus

in fulfilling the goal of a given cognitive task.
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brain activity could provide richer feedback information not available in other

physiological signals besides brain signals. More specifically, we asked subjects

to find, by free visual exploration, the most relevant images in collages of natural25

scenes, and hypothesized that relevance of an image can be decoded from mag-

netoencephalographic (MEG) (Hari and Salmelin, 2012) signals of the subjects.

We also hypothesized that the prediction performance based on the combina-

tion of MEG and gaze signals improves decoding performance compared to just

using gaze signals. MEG provides dynamic information of brain function with a30

millisecond-scale temporal resolution and is therefore well-suited to our study.

Multivariate classification of functional neuroimaging signals has been exten-

sively studied in the context of brain–computer interfaces (BCIs), which allow

direct communication between the user’s brain and an external device, by distin-

guishing between brain signatures of the users’ intentions (Wolpaw et al., 2002).35

For instance, Pohlmeyer et al. (2011) presented a closed-loop BCI system, based

on electroencephalography (EEG), for image search from large databases. In

contrast to BCI studies, we do not provide the user direct means of controlling

the search, but instead only infer the relevance of the images passively. Thus

the user can focus on the search task itself in a natural way, instead of need-40

ing to perform additional tasks, such as motor imagery, required by many BCI

techniques. In general, our free-viewing setup makes our study quite different

from BCI and brain-function decoding studies (Haynes and Rees, 2006) that

typically use highly controlled stimuli and viewing conditions. Recently, Eug-

ster et al. (2014) showed that the relevance of words can be predicted from EEG45

signals with written-text stimuli, and Moshfeghi et al. (2013) decoded binary

relevance information of an image from fMRI. Both these studies used block

design to control stimulus presentation. In contrast to these studies, we used

a free-viewing setup and thus identified the relevance in conditions much closer

to real usage. Free-viewing setups have been previously used for EEG-based50

visual target detection, but the objectives and experimental designs of these

studies differ considerably from our study. For instance, Jangraw et al. (2014)

built a hybrid BCI system for navigation in 3D environment, and Dias et al.
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(2013) predicted, based on EEG signals acquired prior to possible fixation to

the target, whether the subject would detect or miss the small target object55

(would or would not fixate to it).

1.1. Relevance feedback

In IIR systems, the actual retrieval of the new results that takes into account

the relevance feedback can be performed in a multitude of ways. In this work,

we exclusively focus on the process of obtaining the feedback. Relevance feed-60

back can be given in several ways, often dichotomized to explicit and implicit

feedback. Explicit feedback refers to systems that explicitly ask the user to label

the images as relevant or non-relevant (Claypool et al., 2001a; Fox et al., 2005;

Joachims et al., 2005) or which assume that the choices made by the user can be

directly interpreted as positive feedback (Datta et al., 2008; Lew et al., 2006).65

A user selecting one image out of several can be seen as giving partial feedback,

indicating that the particular image is more relevant than the others. Implicit

feedback, in turn, refers to techniques that attempt to automatically infer the

relevance by monitoring the user. The motivation for using implicit feedback is

in relieving the user from the laborious task of providing the feedback. Even70

though the estimated relevance scores are typically not perfect characterizations

of the user’s needs, they can still be used for guiding the search (Buscher et al.,

2012) and the possibility of obtaining perfect coverage (relevance feedback for

all possible items) without any explicit requirements for the users is intriguing.

Although implicit feedback is typically obtained by analyzing explicit behav-75

ioral actions (tracking mouse movements, scrolling, link clicks, etc), the more

relevant perspective for this work is provided by studies inferring the feedback

from physiological signals recorded from users. The most common information

source for this kind of monitoring has been gaze direction, which is easy to record

without bothering the user. For instance, gaze-related features have been used80

for inferring the relevance of items in either textual (Puolamäki et al., 2005)

or visual (Klami et al., 2008) retrieval tasks. Also other forms of physiological

signals have been used; Soleymani et al. (2008) used galvanic skin responses,
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heart-rate and skin temperature for estimating users’ interest in movie scenes,

and Moshfeghi and Jose (2013) combined behavioral and physiological signals,85

such as skin temperature, facial expressions, EEG, heart rate, motion data and

dwell-time, for obtaining feedback for video retrieval.

In practical terms, the task of inferring implicit relevance feedback is often

formulated as binary classification (“relevant” vs “non-relevant”) for each item

in a result set, either producing as output the estimated classes themselves or90

the probability of relevance. Hence, the computational tools for implicit rele-

vance prediction are classifiers that take as inputs a feature representation for

each item and then produce as the output the probabilities of the two classes.

Alternatively, relevance feedback could also be provided by ranking the items

according to the estimated relevance, for example by simply sorting them ac-95

cording to the probabilities of relevance, or by directly estimating the ranks

(Huang et al., 2010; Lan et al., 2012).

2. Materials

2.1. Subjects

Nine volunteers (5 male, 4 female; 21—30 years, mean 25.8 years) with100

normal vision participated in the experiment. Before starting the experiment,

the course of the study was explained, and the participants gave their written

informed consent. The recordings had a prior approval by the Ethics Committee

of the Hospital District of Helsinki and Uusimaa.

2.2. Eye Tracking105

Eye movements were measured with EyeLink 1000 eye tracker (SR-Research,

Ottawa, Canada), which samples the gaze position at 1000 Hz using a dark-pupil

cornea reflection. The eye tracker was located inside the magnetically shielded

room 70 cm from the MEG sensor helmet and below the line of sight of the

subject. The eye tracker has been verified not to cause significant artifacts in110

the MEG signals. Before each experiment, the eye tracker was calibrated using
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9 points on the stimulus screen. Fixations and saccades were detected from

the raw data, using the method by Stampe (1993) embedded to the EyeLink

software. The threshold levels were 30◦/s for saccade velocity, 8000◦/s2 for

saccade acceleration, and 0.1◦ for saccade motion.115

2.3. Magnetoencephalography (MEG)

MEG signals were measured with a 306-channel neuromagnetometer (Elekta-

Neuromag Vectorview; Elekta Oy, Helsinki, Finland) in which 102 sensor units

are arranged in a helmet-shaped array and each unit includes two orthogonal

planar gradiometers and one magnetometer. The device was located in a three-120

layer magnetically shielded room (Imedco AG, Hägendorf, Switzerland) at the

Brain Research Unit of the O.V. Lounasmaa Laboratory, Aalto University, Es-

poo, Finland (MEG Core, Aalto NeuroImaging). During the recording, the eye

tracker sent trigger signals to the MEG when the gaze entered or left the stim-

ulus image. To suppress magnetic interference, we applied temporally-extended125

signal space separation (tSSS) with a correlation window of 16 s and a correla-

tion limit of 0.90 (Taulu and Simola, 2006).

2.4. Stimulus presentation

The stimuli were natural images selected from a set used in a previous ex-

periment (Hussain et al., 2014). We scaled the images so that the maximum130

height was 150 pixels and width 215 pixels, corresponding to 9.4 cm and 13.4

cm, respectively, on the screen (viewing angles 4.3◦ and 6.1◦). The images were

grouped into 5 semantic categories as in the previous study (Hussain et al.,

2014), each group representing one of the 5 tasks in the experiment. Also im-

ages non-relevant for the tasks were included within these groups. Similarly to135

previous works (Klami et al., 2008; Hardoon and Pasupa, 2010), images were

presented to the subjects in a rectangular grid to which both relevant and non-

relevant images were randomly placed. In each of the five tasks (see Table 1), 20

collages, each with 16 images placed on a 4x4 grid, were shown to the subject.

The relevant images were equally distributed within the grid across the trials.140
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The task and the collage ordering were shuffled using the Latin-squares rule

across the subjects.

The stimulus images were projected on a screen located 130 cm in front

of the subject. The stimuli, MEG signals, and gaze signals were synchronized

by trigger signals sent from a stimulus computer. Each experiment lasted on145

average 26 min, excluding instructions, preparations and eye-tracker calibration.

Table 1: Search tasks assigned to the subjects.

Tasks

1 Select the most attractive sunflower.

2 Find one image most related to man-made flying.

3 Find a cheetah.

4 Select the most attractive deer.

5 Find one image most related to American football.

Figure 1 shows an example collage from each search task. The collages were

designed so that a subset of images in each collage was relevant for the given

task, whereas the rest were irrelevant. Hence, the ground-truth relevances of

the images are known. During the experiment the user was asked to select the150

most relevant image in each collage by gazing at that image and by clicking a

button (by lifting the index finger of the right hand). Then a new collage was

displayed (repeated until the end of the task).

When learning our classifier, we used the ground-truth relevances, available

for all images, as the training and test labels. We additionally collected from the155

users data on which image they considered the most relevant in each collage, in

order to keep the user focused on the search task, but this information was not

used in our main analyses. In the analysis, we excluded the last 400 ms before

the click, to guarantee that decoding is done based on the neural correlates of

relevance determination instead of the artifacts caused by the action of clicking160

itself.

Figure 2 shows an example collage and gaze pattern for the task “find chee-
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(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

(e) Task 5

Figure 1: Example collages from search tasks listed in Table 1.

tah” for one subject. Although the task of the subject was to find the most

relevant image of cheetah (subjective relevance), we used ground-truth labels

(objective relevance) to train the classifier. It was thus possible to give the165

IIR system positive feedback also for images the user was likely to consider as

potentially relevant (here the other cheetah image), without making the feed-
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back collection procedure too tedious for the user. Importantly, the collage also

comprised images that were not fixated at all. These unfixated images and im-

ages attracting less than 200 ms gaze time were automatically discarded from170

our analysis. In a practical IIR system these images could be automatically

labeled as “non-relevant” to improve classification performance. See Section 3.1

for more details on how short-time epochs of gaze and MEG data were created

based on the gaze pattern.

Figure 2: An example collage and gaze pattern for the task “find cheetah.” Fixations and

saccades during visual exploration are denoted by red arrows, and the fixations are numbered

according to their temporal order. The last fixation point, where the subject pressed a button

to select the most relevant image, is denoted by a blue circle. In this example collage, 2 out of

16 images were relevant (i.e., they contained an image of a cheetah) and they are denoted by

green rectangles around the images in this illustration (the rectangles were not shown during

the experiment). The other 14 images were non-relevant.

The degree of difficulty varied somewhat between the tasks and collages as175

is obvious from the task definitions and the example collages. To validate that
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users mostly chose images from the category “relevant”, we computed success

rates for each subject. On average, users chose a relevant image with an accuracy

of 87.7 %. Although the subjects performed well in most cases, some of the tasks

were very challenging. Despite the difficulty of some of the tasks, we expected180

that the decoding of the ground-truth relevances would still be possible from

MEG data for most images.

3. Methods

Our goal in this study was to quantify the feasibility of efficient relevance

decoding on the basis of both MEG and gaze data. Because gaze signal based185

predictors have been succesfully built before, our interest was to construct two

particular decoders: i) a decoder based on MEG signal only, and ii) a decoder

based on a combination of gaze and MEG signals. The success of the former

decoder suggests that image retrieval systems operating with brain signal based

relevance feedback is realizable. On the other hand, if the latter decoder turns190

out to be better than the gaze-based decoder, this suggests that gaze-based

image retrieval systems could be improved by utilizing additional information

from brain activity.

3.1. Preprocessing

For building the MEG-based classifier, we used the measured gaze signals195

to identify epochs, time intervals when subjects looked at one image. We then

extracted the MEG signal of the 200—4870 ms epochs, and discarded epochs

corresponding to very short looking times (less than 200 ms) from further analy-

sis, due to their poor spectral resolution. Since information about the relevance

was available for each image, we unambiguously associated each epoch either200

with the “relevant” or the “non-relevant” category. For instance, if the gaze was

first targeted inside the borders of a relevant image for 400 ms, then inside the

borders of another relevant image for 600 ms, and after this inside the borders

of a non-relevant image for 500 ms, three epochs of lengths 400 ms, 600 ms,
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and 500 ms were created with the category labels “relevant,” “relevant,” and205

“non-relevant”. If a subject looked at the same image multiple times, only the

epoch corresponding to the longest gaze time for that image was used in the

analysis. Note that during visual search, the gaze was often only for a short

time over a single image, implying that many of the epochs were relatively short

(the mean epoch length was 510 ms). The total number of epochs per subject210

varied between 431 and 1357 (the average number of epochs across subjects was

905.1). Depending on the subject, the number of “relevant” epochs was 16–23 %

of the number of “non-relevant” epochs, i.e., the two category distributions were

highly unbalanced for all the subjects. For building the gaze-based classifier,

we extracted features from the gaze signal for exactly the same time intervals215

as for the MEG-based classifier.

3.2. Feature extraction

The features extracted for classification from the epochs of the gaze and

MEG signals are explained next.

3.2.1. MEG signal features220

It is plausible that visuospatial attention plays a central role in the discrim-

ination between relevant and non-relevant images in the brain. Therefore, we

expected that the brain signatures of visuospatial attention are useful in this

task. Oscillatory activity from several frequency bands has been previously as-

sociated with selective attention (Womelsdorf and Fries, 2007). Therefore, we225

extracted power features across a wide frequency band and aimed at finding

class-discriminative information in them in a data-driven fashion. First, to ob-

tain band-limited MEG signals, we used second-order Butterworth filters with

the following cut-off frequencies:

• less than 4 Hz (delta)230

• 4–8 Hz (theta)

• 8–12 Hz (alpha)
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• 12–30 Hz (beta)

• 30–50 Hz (gamma).

We applied filters to each epoch separately. This epoch-based filtering was235

preferred over filtering the entire MEG time series at once to avoid introduc-

ing artifical temporal dependencies between adjacent epochs; such dependen-

cies would not allow unambiguous labelling of the epochs to relevant vs. non-

relevant. After filtering, we computed power features from the filtered epochs

(see details below).240

A näıve way to use information from multiple frequency bands in the rel-

evance prediction would be to concatenate the power features from indivual

frequency bands together. However, this would result in a large number of fea-

tures and overfitting would be a major concern because of the relatively small

number of epochs in each category. To avoid overfitting, we reduced the di-245

mensionality of the feature space to one feature per channel. We did this by

applying principal component analysis (PCA) separately for each channel, sim-

ilarly to an earlier study (Kauppi et al., 2013). This procedure is quite different

from the standard approach in machine learning where PCA is used only once

to reduce the dimensionality of the original feature space. The three-way struc-250

ture of the MEG signals (channels × frequency × epochs) makes our approach

natural, because now PCA captures spectral information which is specific to

each channel.

Altogether 48 features were extracted, corresponding to the total number

of gradiometer channels in the posterior cortex. Because the brain networks255

supporting voluntary and stimulus-triggered attention are widely spread (Kast-

ner and Ungerleider, 2000), it is possible that also other brain areas than the

parieto–occipital cortex would include discriminative MEG information in this

task. However, due to sensitivity of the frontal MEG channels to eye artifacts,

we decided to include only parieto–occipital sensors in our analysis.260

The details of our MEG signal feature extraction scheme, called “Spectral

PCA”, are as follows:
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• Estimation of band power features. Let us denote band-pass filtered

epochs as tc,f (n), for n = 1, 2, . . . , N , where N is the number of epochs, c

is the channel index and f is the frequency band index. For each epoch,265

channel and frequency band, the signal power is computed from the ele-

ments of t as:

xc,f (n) =

Tn∑
i=1

(ti,c,f (n))
2
, (1)

where Tn is the number of time points in the nth epoch. Spectra consisting

of the five power features for each channel are denoted by xc(n) ⊂ R5, for

c = 1, 2, ..., C, where C is the total number of channels.270

• Transformation of the features. The power features in each channel

were transformed to a logarithmic scale and subsequently standardized to

zero mean and unit variance. This way, features in different frequency

bands were put into the same scale. The transformed spectra are denoted

by x̃c(n).275

• Channel-wise PCA. We applied PCA channel-wise for the five-dimensional

data sets x̃c(n), for n = 1, 2, . . . , N . Note that since we use standardiza-

tion, PCA finds eigenvectors of the correlation matrices of the above data

sets. We denote eigenvectors explaining the highest amount of variance in

each channel as fc, for c = 1, 2, . . . , C.280

• Computation of the final features.

We projected each spectrum channel-wise onto the direction of the eigen-

vectors fc to obtain the final features. Thus, the final features are given by

the projections: yc(n) = fTc xc(n), for c = 1, 2, . . . , C. The final features

consist of spectral information from the distinct frequency bands.285

3.2.2. Gaze signal features

Efficient sets of gaze-signal-based features for relevance prediction have been

proposed earlier. In this study, we used 15 of the 19 gaze signal features proposed
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by Hussain et al. (2014), leaving out some features not applicable for our setup.

The gaze tracker provides raw coordinate measurements at a constant sampling290

frequency of 1000 Hz and the fixations are extracted from these measurements.

Typical gaze analysis operates at the level of fixations, but here we consider

also features extracted directly from the raw coordinates (marked as “raw” in

Table 2) to improve robustness for potential issues in fixation detection. Table

2 summarizes the used features.295

Table 2: Gaze signal features (taken from Hussain et al. (2014)). These features were extracted

for each “looked-at” image in each trial.

Type Description

1 Raw log of total time of viewing the image

2 Raw total time for coordinates outside fixations

3 Raw percentage of coordinates inside/outside fixations

4 Raw average distance between two consecutive coordinates

5 Raw number of subimages covered by measurements

6 Raw maximum pupil diameter during viewing

7 Fixation total number of fixations

8 Fixation mean length of fixations

9 Fixation total length of fixations

10 Fixation percentage of time spent in fixations

11 Fixation number of re-visits (regressions) to the image

12 Fixation length of the first fixation

13 Fixation number of fixations during the first visit

14 Fixation distance to the fixation before the first visit

15 Fixation duration of the fixation before the first visit

3.3. Image relevance decoding by Bayesian classifiers

We used Bayesian classifiers to decode image relevance. The probabilistic

nature of Bayesian classifiers brings us certain benefits. In particular, they pro-

vide an uncertainty measure for their predictions, unlike other common linear
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models such as an LDA and non-linear models such as the support vector ma-300

chine (SVM). Probabilistic estimates for the relevance are valuable for retrieval

tasks, since they allow ranking images according to the relevance. An additional

benefit of having probabilistic predictions is that “late fusion” (Ye et al., 2012)

of multiple classifiers is possible in the probabilistic framework. In the late fu-

sion, two or more classifiers are trained using different feature sets. Then, in305

the classification stage, the class probabilities of unseen test samples are com-

puted separately for each classifier, and the average of these class probabilities

is adopted as the final class probability.2

The common trend in the neuroimaging community is to use linear classi-

fiers for two reasons: i) Brain imaging data sets are prone to overfitting due310

to their drastically low signal-to-noise ratio, which can be handled by simple

linear models that have a very strong bias. ii) In linear models the learned

regressor weights reveal which features contribute to the classification. How-

ever, we will show in Section 4.1 that it is possible to also learn interpretable

non-linear models from highly noisy MEG data without overfitting, and thus be315

as interpretable as linear models with an additional boost in classification per-

formance. We used Gaussian processes (GP) (Rasmussen and Williams, 2005)

for classification; GPs give probabilistic and non-parametric models providing

uncertainty predictions. It has been previously suggested that the GP classifier

is well-suited to analyze neuroimaging data sets, because it automatically finds320

a trade-off between the data fit and regularization (Zhong et al., 2008; Boyu

et al., 2009). In this way, the method can adapt even for high-dimensional and

non-linear brain imaging data without overfitting. Because the idea of using the

GP in the field of neuroimaging is not widespread, we introduce details of the

GP classifier in the Appendix.325

We trained the GP classifier with the radial basis function (RBF) kernel

with diagonal covariance, also known as the automatic relevance determination

2Taking the average here simply means assigning a uniform prior over the classifiers at

hand.
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(ARD) kernel (see Appendix). The benefit of the ARD kernel is that it enables

investigation of the contribution of features for predictions. We used late fusion

of two GP classifiers, one trained based on the MEG signal features, and the330

other based on the gaze signal features, and hypothesized that the late fusion of

these feature sets improves the classification performance. Another possibility

for combining the MEG and gaze classifiers would be to concatenate the corre-

sponding feature sets (early fusion), but we observed this brought suboptimal

performance. We compared the performance of our GP classifier to the Bayesian335

linear logistic regression (LR) model (see Appendix for details).

3.4. Performance estimation and significance testing

Our search paradigm, which involves continuous exploration of a visual

scene, requires careful design of both performance estimation of the classifier

and assessment of the results. One difficulty is that the sizes of the two cat-340

egories are highly unbalanced, because several non-relevant images often need

to be browsed before a relevant image is found, implying that most epochs in

each collage are labelled as “non-relevant.” Because of this, we used perfor-

mance metrics immune to the class balance. We evaluated the performance of

the classifiers using two metrics (Fawcett, 2006):345

• AUC-ROC: Area Under Receiver Operating Characteristics (ROC) Curve.

• AUC-PR: Area Under Precision-Recall (PR) Curve.

The ROC curve draws the change of recall3
(

TP

TP + FN

)
as a function of

fall-out

(
FP

FP + TN

)
for varying decision thresholds. The PR curve draws the

change in precision

(
TP

TP + FP

)
as a function of recall for varying decision350

thresholds. The areas under these curves measure the discriminative power of

a binary classifier independently of the decision thresholds. These metrics are

3In the definitions of precision, recall and fall-out, we use the following shorthand notations:

TP=true positives, FP=false positives, FN = false negatives, and TN=true negatives.
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well-suited to our imbalanced data set, since they consider all possible deci-

sion thresholds. While AUC-ROC is a widely accepted performance measure

in binary classification, AUC-PR may be a better alternative for data sets with355

highly unbalanced category distributions (Sonnenburg et al., 2007). Classifica-

tion accuracy, even though being widely used in brain decoding studies, would

not be the most appropriate measure here since it would strongly favor majority

voting.

For AUC-ROC, the perfect classifier would have a score of 1 and a random360

classifier a score of 0.5. For AUC-PR, the limits depend on the class ratio and

hence vary from subject to subject. Values clearly above the baseline indicate

that the classifier was able to differentiate between relevant and non-relevant

images within the set of images that were studied sufficiently long (at least for

200 ms); for a practical IIR system, the accuracy would be higher since the365

images viewed only briefly could be labeled as non-relevant.

When estimating classifier performance, it is highly important to ensure

that training and test data sets are independent to avoid bias. Because of

the continuous nature of the task, adjacent epochs may share partially same

information. However, epochs extracted from different collages hardly have any370

dependencies due to the break between the presentation of the collages. For this

reason, we assessed the performance using a block-wise four-fold cross-validation

(CV) scheme, where the epochs of the training data were always drawn from

different collages than those of the test data.

Because our decoding task is expected to be very challenging due to the low375

signal-to-noise ratio of unaveraged MEG data, it is of prime importance to use

a proper testing scheme to assess the significance of the findings. Recently, it

was shown with simulated brain imaging data that existing parametric tests

can easily indicate significant performance even though there is no discrimi-

native information in the data (Schreiber and Krekelberg, 2013). Instead, the380

recommended test is a nonparametric permutation test under the null hypoth-

esis that there is no association between epochs and categories (Schreiber and

Krekelberg, 2013). We approximated a distribution of the expected classifica-
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tion performance under this null hypothesis by randomly shuffling the category

labels of the training data before training and testing the classifier. The pro-385

cedure was repeated 200 times. We used a block-wise shuffling to preserve the

dependency structure of the original data also in the shuffled data, as suggested

by Schreiber and Krekelberg (2013). The permutation distribution and subse-

quent significance testing was performed for both of the performance metrics.

4. Results390

4.1. Classification performance

Table 3 shows the performance for the GP classifier (RBF kernel with diago-

nal covariance matrix) based on the three evaluated feature sets: “MEG”=MEG

signal features, “gaze”=gaze signal features, and “combined”=mean of the pre-

dictions of the above two classifiers (late fusion). We report average and subject-395

wise results for both metrics, AUC-ROC and AUC-PR. The mean AUC-ROC

across the subjects was 0.654 for the “MEG,” 0.655 for the “gaze,” and 0.679

for the “combined.” The corresponding mean AUC-PR values for these feature

sets were 0.348, 0.363, and 0.386. The entire precision-recall curves of the sub-

jects for the classifier “combined” are provided as supplementary material (see400

Fig. S1). For AUC-ROC the “MEG” feature set improved on chance level for

5 users, the “gaze” set for 6 users, and the late fusion result for 7 users. The

corresponding numbers for the AUC-PR metric were: 5, 7, and 8. The com-

bined classifier improved the AUC-ROC performance significantly compared to

the gaze signal feature set alone (paired t-test; p = 0.0040). The corresponding405

improvement was also significant based on the AUC-PR metric (paired t-test;

p = 0.0107).

To validate the choice of our nonlinear GP classifier, we compared its per-

formance against the Bayesian linear LR classifier. The GP classifier was sig-

nificantly better for both metrics (mean AUC-ROC across the subjects 0.654410

for GP vs. 0.609 for LR, paired t-test p = 0.0013; mean AUC-PR across the

subjects 0.348 vs. 0.270, paired t-test; p = 0.0001).
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Table 3: Performance of the GP classifier for each subject based on two performance metrics:

AUC-ROC = area under ROC curve, and AUC-PR = area under precision-recall curve. The

results, which are significantly above a random chance level (block permutation test; p < 0.05;

Bonferroni corrected), are denoted by an asterisk. The feature sets are named as follows: MEG

= MEG signal feature set, gaze = gaze signal feature set, combined = mean of the predictions

of the gaze and MEG classifiers (late fusion). For AUC-ROC, a random baseline is 0.50 for

each subject. For AUC-PR, the baseline corresponds to a class ratio. Because the baseline

values of the AUC-PR are different for each subject, they are reported in a separate column

of the table.

AUC-ROC AUC-PR

MEG gaze combined MEG gaze combined baseline

S1 0.589 0.561 0.601∗ 0.334∗ 0.293∗ 0.353∗ 0.229

S2 0.678∗ 0.659∗ 0.691∗ 0.390∗ 0.378∗ 0.417∗ 0.154

S3 0.677∗ 0.683∗ 0.710∗ 0.399∗ 0.363∗ 0.403∗ 0.226

S4 0.681 0.609 0.673 0.230 0.198 0.241 0.165

S5 0.602 0.622∗ 0.647∗ 0.341 0.345∗ 0.366∗ 0.159

S6 0.758∗ 0.766∗ 0.781∗ 0.460∗ 0.502∗ 0.508∗ 0.218

S7 0.706∗ 0.757∗ 0.760∗ 0.373 0.450∗ 0.454∗ 0.227

S8 0.544 0.536 0.538 0.231 0.266 0.255∗ 0.167

S9 0.654∗ 0.704∗ 0.710∗ 0.379∗ 0.475∗ 0.477∗ 0.227

avg 0.654 0.655 0.679 0.348 0.363 0.386 0.197

4.2. Contribution of the MEG channels to prediction

Figure 3 shows the spatial distribution of the contribution of the MEG chan-

nels to prediction, measured by the learned precisions (1/σ2
d) for 6 subjects.415

Subjects 4, 5 and 8 were excluded from this analysis because the classifiers of

these subjects did not yield reliable results (see Table 3). The feature precisions

provide information about which features were the most capable of discriminat-

ing between the categories. However, it should be noted that most discrimi-

native features do not directly imply high neural activity (Haufe et al., 2014).420

The number and location of the features showing high precision values were

relatively variable across subjects, but there were also similarities; for instance,
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subjects 1, 2 and 3 showed high feature precision in the left lateral occipital

cortex.

In this study, we chose the RBF kernel with a diagonal covariance ma-425

trix to enable visualization of the feature precisions over the MEG helmet as

shown in Fig. 3. However, an isotropic covariance matrix would allow faster

fitting of the model and could therefore be more useful in real-time applications.

To investigate whether the isotropic covariance matrix would yield comparable

performance to the diagonal one, we trained the GP classifier also using the430

isotropic covariance matrix. In this case, the mean AUC-ROC and AUC-PR

performance was 0.658 and 0.352, respectively. These values were slightly higher

than the ones obtained with the diagonal covariance (0.654 for the AUC-ROC

and 0.348 for the AUC-PR), but the performances with the two covariance ma-

trices were not significantly different (paired t-test; p = 0.613 for the AUC-ROC435

and p = 0.543 for the AUC-PR).

4.3. Validation of the MEG features

We validated our feature extraction scheme by evaluating the classification

performance also on the basis of other MEG feature sets. Also these feature

sets were extracted from the occipital gradiometer channels. The seven feature440

sets included: the total power of the MEG signal (denoted as “total”), band

powers from five distinct frequency bands (“delta,” “theta,” “alpha,” “beta,”

and “gamma”) and the concatenation of the individual band powers (“all”).

Figure 4 shows the classification performance computed on the basis of these

feature sets together with the proposed “PCA” feature set. It can be seen that445

the proposed feature set provided the highest mean performance in terms of both

AUC-ROC (Fig. 4(A)) and AUC-PR (Fig. 4(B)). The difference is significant

for 5 out of the 7 feature sets (Table 4).

5. Discussion

We analyzed MEG signals and eye gaze from nine subjects who explored450

collages of natural scene images. Only a subset of the images in each collage
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Figure 3: Contributions of the brain regions to GP classification, measured by the learned

feature precisions of the RBF kernel with diagonal covariance. Bright yellow corresponds to

the highest and dark red to the lowest importances found. The values are reported as means

across folds. The orientation of the helmets is as follows: top of the array = anterior parts

of the brain, bottom = posterior, right on right. Each spatial location in the helmet contains

a pair of gradiometer sensors; only the sensor with the higher weight is shown for each pair.

MEG signals from the gray area were not used in the classification in order to restrict the

analysis to the occipital cortex, and hence to avoid classification based on eye artifacts that

may be present at the frontal sensors.

Table 4: Comparison of the classification performance of the proposed feature extraction

scheme (denoted as “PCA” in Fig. 4) against the other MEG signal feature sets. The results

with “PCA” were compared against results of the seven feature sets using the paired t-test.

The table contains the original p-values, and significant differences compared to the “PCA”

after the Bonferroni correction have been marked by an asterisk.

total delta theta alpha beta gamma all

AUC-ROC 0.0005∗ 0.0003∗ 0.0012∗ 0.0009∗ 0.0632 0.0341 0.0002∗

AUC-PR 0.0001∗ 0.0002∗ 0.0029∗ 0.0001∗ 0.0612 0.1480 0.0047∗

was relevant to the given task, and the subjects were asked to pick the most

relevant image by directing their gaze to it and simultaneously clicking a button.
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Figure 4: Classification performance of eight different MEG feature sets based on A) AUC-

ROC = area under ROC curve, and B) AUC-PR = area under precision-recall curve. From

left to right, bars correspond to the results (mean +/- standard error across subjects) obtained

by training the GP classifier with the following eight MEG feature sets: total = total signal

power, delta = delta-band power (0–4 Hz), theta = theta-band power (4–8 Hz), alpha =

alpha-band power (8–12 Hz), beta = beta-band power (12–30 Hz), gamma = gamma-band

power (30–50 Hz), all = a concatenation of the five band-power feature sets, and PCA =

Spectral PCA (see Section 3.2.1).

Our goal was to analyze whether it would be possible to decode relevance of

the image by utilizing only information about brain activity. To this end, we455

extracted short MEG epochs from the time intervals when the subjects looked at

the images and attempted to classify the epochs as “relevant” or “non-relevant”

using a GP classifier.

Our study showed that the relevance of an image the subject was looking at

could be predicted from the MEG signal alone significantly better than chance460

for most of the subjects (see Table 3). Moreover, when combining the MEG

and gaze signals using late fusion, the classification performance is improved

compared to using either of these two modalities alone. These results imply that

it might be possible to build implicit relevance feedback mechanisms for image
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retrieval systems which are based on integrated information of gaze and brain465

activity, or even brain-activity alone, thereby considerably extending previous

gaze-based studies in information retrieval (Puolamäki et al., 2005; Salojärvi

et al., 2005; Hardoon and Pasupa, 2010; Ajanki et al., 2009).

In this study we used objective labels (based on the ground truth given

the task) for learning the relevance classifier instead of using subjective labels470

based on user input. We made this choice because it is very difficult to collect

reliable subjective feedback on all images from subjects in a natural manner.

The objective labels are a good basis for learning the relevance estimator since

they approximate well the set of images about which the user needs to make

a conscious relevance decision, potentially even more so than the subjective475

relevance estimates would. The eventual estimator will still be applicable for

IR tasks without ground-truth labels and it will provide useful feedback for the

retrieval system.

In neuroimaging reseach, linear classifiers, such as a linear SVM and LDA

are often favored over non-linear ones, because the simplicity of linear classifiers480

helps to prevent overfitting on the usually very noisy and limited neuroimaging

data (Mur et al., 2009; Müller et al., 2003). However, also non-linear classifiers

have been successfully utilized in BCI (Müller et al., 2003) and neuroscien-

tific research (Davatzikos et al., 2005; Cox and Savoy, 2003), suggesting that

classification problems of complex neuroimaging data sets may be intrinsically485

non-linear. If this is the case, non-linear classifiers should outperform linear ones

as long as a classifier is properly regularized against overfitting. For many pop-

ular non-linear classifiers, such as the SVM with the RBF kernel, efficient model

regularization is difficult due to the extensive hyperparameter space. However,

our results suggest that the GP classifier is capable of learning relevant non-490

linearities in data while tuning the kernel hyperparameters without requiring

extensive cross-validation and without overfitting. Moreover, as shown in Fig.

4, the GP classifier enables the investigation of the importances of the features

in a similar manner as classification coefficients in linear models. This is a great

benefit in neuroimaging studies, in which interpretation of the classifiers has495
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primary importance.

The use of a free-viewing search paradigm, and a multivariate classification

approach for the analysis of the relevance of complex natural images, may also

open new possibilites to study brain mechanisms related to stimulus relevance.

Traditional univariate approaches, such as the analysis of power differences in500

single MEG channels, would be rather uninformative in a naturalistic setup such

as ours, where the subject’s behavior is highly uncontrolled and leads to a large

variation in strategies and responses across trials and subjects. Because our rel-

evance decoder takes simultaneously into account complex statistical properties

of multiple sensors, it can reveal discriminative features even when they are not505

significant at the level of single MEG sensors.

In the visual image exploration task used here, a subject selected relevant im-

ages based on both visual properties of those images as well as their expectations

and knowledge about the images. Hence, it is likely that both top-down and

bottom-up attentional control mechanisms (Egeth and Yantis, 1997) were in use510

during the search task, involving several brain areas simultaneously. However,

we used for classification only the posterior MEG channels to avoid contami-

nation by eye artifacts. This selection was important in our study because we

wanted to investigate the information from eye movements and brain activity

separately.515

As a feature extraction scheme, we proposed projecting the powers of mul-

tiple frequency bands onto the direction of the first principal axes using PCA,

separately for each MEG channel. Our method provided the highest classifi-

cation performance among the other tested MEG signal feature sets. Interest-

ingly, our scheme provided significantly better results when compared with the520

classifier trained using all the band-power features (see Table 4), showing that

the method could integrate discriminative information from a wide frequency

band by simultaneously preventing overfitting. Besides high performance, an

additional benefit of using the Spectral PCA feature extraction is that that the

frequency band of interest does not need to be strictly specified a priori, making525

it an applicable tool for different decoding tasks.

24



Also the results of “beta” and “gamma” band-power feature sets provided

good results in our tests (see Table 4). Active role of these frequency bands

in attentional mechanisms has been suggested earlier (Womelsdorf and Fries,

2007). The total power of the MEG signals provided the lowest classification530

performance, emphasizing the importance of rhythmic activity measured from

distinct frequency bands in our task. Also the results of the lowest frequency

band were relatively poor. This was not surprising given the short length of

many filtered epochs.

In this study, we concentrated on features of rhythmic brain activity present535

in the frequency domain of the MEG signals. We favored spectral features

because they are easy to compute for epochs of varying lengths and because

they have been successfully used to control attention-based BCIs (van Gerven

and Jensen, 2009). In fact, the detection of some key temporal features, such

as the P300 response (Blankertz et al., 2011), would not have been possible540

for many epochs due to their short duration. Nevertheless, it is possible that

temporal features of the MEG signals would provide additional discriminative

information. However, due to the highly complex spatiotemporal structure of

the epochs, an entire new study with a different design would be needed to

examine the effect of the most appropriate temporal features on the classification545

performance.

In summary, we have successfully demonstrated that it is possible to decode

relevance information of natural images from MEG signals during unrestricted

visual search using multivariate non-linear modeling, and that the integration

of MEG and gaze signal information allows more powerful image retrieval when550

compared with gaze signals alone. We expect that these findings will be highly

relevant in the future development of brain-activity-based information retrieval

systems.
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Appendix

Here, we present the relevant theory of the Bayesian relevance predictors555

used in this paper. We choose the Bayesian framework due to its well-known

benefits: i) Averaging over a learned distribution of model parameters rather

than learning a point estimate, ii) avoiding overfitting, and iii) making predic-

tions together with an uncertainty score.

Gaussian process classifier560

A Gaussian process GP(µ(x), k(x,x′)) is a stochastic process determined by

a mean function µ(x) and a covariance function k(x,x′), both defined on the

entire feature space. A Gaussian process serves as a prior over the space of func-

tions f(x) that map the feature space to the output space. A Gaussian process

prior on output points y = {y1, · · · , yN} of any chosen finite set of observations

X = {x1, · · · ,xN} is p(y|X,θ) = N (y|µ,K), where µ = {µ(x1), · · · , µ(xN )}

and Kij = k(xi,xj |θ) for a kernel function k(·, ·|θ) parameterized by θ. For a

given set of input and real-valued output observations X and y, the predictive

distribution is analytically available as

p(y∗|x∗,X,y) = N (y∗|kT
∗K−1y, k∗ − kT

∗K−1k∗),

where {x∗, y∗} is a newly seen observation and its corresponding target, k∗ is

the vector of kernel responses between x∗ and each training point, and k∗ is the

kernel response of x∗ to itself. For categorical output, as for binary classification,

a Gaussian process prior is applied on the mapping function from the input

observations to the latent decision margin variables f = {f1, · · · , fN}, which

are then converted to probabilities by being squeezed by a sigmoid function:

p(f |X) = N (f |µ,K),

p(y|f) =

N∏
i=1

σ(yifi),

where σ(z) = 1/(1 + exp (−z)). Since the sigmoid function is not conjugate

with the normal distribution, the predictive distribution for this model is not
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analytically tractable. Hence, approximation techniques are required for infer-

ence. We choose to approximate the posterior by the Laplace’s method due to

its computational efficiency: p(f |X,y) ≈ N (f |f̂ ,Hf̂ ), where f̂ is the posterior565

mode and Hf̂ is the Hessian at the posterior mode. The posterior mode can

easily be calculated by taking the gradient of the log-posterior and using any

gradient-based optimizer.

The Laplace approximation corresponds to a second-order Taylor expansion

as shown by Rasmussen and Williams (2005). We chose the second-order expan-570

sion because the normal density is a quadratic function of the random variable

of interest. The first-order term tends to zero since the expansion is evaluated at

the mode. The resulting formula approximates the posterior distribution with a

multivariate normal distribution with full covariance. Higher-order expansions

would technically be possible but would bring a considerable computational575

burden.

An elegant property of the GP is that its probabilistic nature allows for a

principled way of fitting kernel hyperparameters θ to data, unlike non-probabilistic

kernel-based learners such as support vector machines (SVMs) that can only fit

those parameters by grid search over a validation set. The kernel hyperparam-

eters can be fit by maximizing the log-marginal likelihood log p(y|X,θ) with

respect to θ, which is the well-known Type II maximum likelihood technique.

For GP classification, the intractable log-marginal likelihood can be approxi-

mated by a Taylor expansion as follows:

p(y|X,θ) ' p(ŷ, f̂ |X,θ)

∫
exp

(
−1

2
(f − f̂)THf̂ (f − f̂)

)
df .

Here we have a Gaussian integral, which is analytically tractable. As a result,

we have

log p(y|X,θ) ' −1

2
f̂TK−1f̂ + log p(y|f̂) +

1

2
log |KHf̂ |.

The gradient of this function with respect to θ is also analytically tractable.

Hence, the log-posterior and kernel hyperparameters can easily be learned jointly

by a gradient-search in a coordinate-ascent fashion (i.e. iterating between keep-
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Table 5: Free parameters of our Gaussian process classifier and the related methods used to

fit them to data are listed.

Parameter Description Learning Method

µ(x) = C Constant mean function Gradient descent

θ = [σ2
1 , · · · , σ2

D] Kernel hyperparameters (see Sec. 5) Gradient descent

f = f1, · · · , fN Latent decision margin variables Laplace approximation

ing one fixed and learning the other). We also choose a constant mean function580

µ(x) = C, and fit also C using Type II maximum likelihood, simply by taking

another derivative of the log-marginal likelihood with respect to C. The free

parameters of the GP and the methods used for learning them are summarized

in Table 5 More details on how to solve machine learning problems using GPs

are available in Rasmussen and Williams (2005).585

Given a trained GP classifier, a new observation x∗ can be classified by

calculating the class-conditional distribution p(y∗ = +1|x∗) = E[f∗|y,X,X∗].

Even though this expectation is not analytically solvable, its mean kT
∗K−1f̂

gives a reasonable estimate.

The choice of the kernel function590

Assuming that our data consists of Gaussian-distributed chunks, we adopt

the radial basis function (RBF) as the kernel function

k(x,x′) = exp (−xTS−1x′).

For the covariance matrix S, we consider two choices:

• Isotropic covariance: S = σ2I,

• Diagonal covariance: S = diag(σ2
1 , · · · , σ2

D)

where D is the data dimensionality and the diag(·) constructs a diagonal matrix

with the entries given as the arguments. While the isotropic covariance is faster595

to fit, since it has only one hyperparameter (θ = {σ2}), it has the disadvantage

of not allowing feature importance analysis. The diagonal covariance, on the
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other hand, has a larger hyperparameter set (θ = {σ2
1 , · · · , σ2

D}) that consists

of one hyperparameter σ2
d per data dimension, which is inversely proportional

to how large an effect that dimension has in the model fit. This technique is600

called automatic relevance determination (ARD). We use the diagonal covari-

ance to investigate the contributions of MEG channels to non-linear prediction

of relevance.

Bayesian logistic regression with ARD prior

As an alternative linear classifier, we tested the standard Bayesian logistic

regression with ARD prior on regressor weights (Jaakkola and Jordan, 2000).

The generative process of the classifier is as follows:

p(w|α) =

D∏
d=1

N (wd|0, α−1d ) (2)

p(α) =

D∏
d=1

G(αd|a, b) (3)

p(yi = +1|w,xi) =

N∏
i=1

σ(xT
i w) (4)

where σ(t) = 1/(1 + e−t) is the logistic function. Equation 2 tells that the605

regressor weight wd of each feature dimension d is assigned a normal prior with

zero mean and a precision αd specific to that dimension. This precision is also

given a Gamma hyperprior (Equation 3). Hyperparameters of this hyperprior

are set for all dimensions to a = 10−2 and b = 10−3, which leads to E[αd|a, b] =

a/b = 10, imposing an expected prior variance of 0.1. Equations 2 and 3 form610

the ARD prior, which induces a zero mean and low variance prior over the

regressor weights wd, forcing as many of them to zero as possible. This way, the

model both performs feature selection, and automatically adapts its complexity

to data. The resulting model turns out to be the probabilistic counterpart of

the Lasso regression (Tibshirani, 1996) with the additional benefit of not being615

heavily dependent on the chosen regularization coefficient.

The inference of the model parameters is performed by calculating the pos-

terior p(w,α|X). Since this posterior is not available in a closed form, we
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approximate it by a factorized distribution q(w,α) = q(w)q(α), following the

standard mean field variational approximation scheme. Given the approximate

posterior, the output y∗ of a newly seen observation x can be calculated as

follows:

p(y∗|X,y,x∗) =

∫ ∫
p(y∗|w,α,x∗)p(w,α|X,y)dwdα

≈ p(y∗|w,α,x∗)q(w,α|X,y)dwdα.

For more details, see Jaakkola and Jordan (2000).
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