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Abstract. As a novel learning setup, we introduce learning to count ob-
jects within an image from only region-level count information. This level
of supervision is weaker than earlier approaches that require segment-
ing, drawing bounding boxes, or putting dots on centroids of all objects
within training images. We devise a weakly supervised kernel learner
that achieves higher count accuracies than previous counting models.
We achieve this by placing a Gaussian process prior on a latent function
the square of which is the count density. We impose non-negativeness and
smooth the GP response as an intermediary step in model inference. We
illustrate the effectiveness of our model on two benchmark applications:
i) synthetic cell and ii) pedestrian counting, and one novel application:
iii) erythrocyte counting on blood samples of malaria patients.

1 Introduction

Counting objects of interest within an image is a fundamental requirement of
many applications. Biologists gain insights on cell population dynamics from
such counts, pedestrian counting helps urban planners, and counting cars is
crucial for detecting or foreseeing traffic jams.

Traditional approaches to counting proceed by first detecting all targets and
then counting them. The transductive principle [1], instead, suggests never to
solve a harder problem than the target application necessitates. As a conse-
quence, recent models [2–4] exploit the fact that estimating the object count
does not necessarily require accurate detection of individual objects, let alone
their segmentation. They focus exclusively on the easier task of assigning each
pixel a density in such a way that when the densities within any image region are
integrated, a good prediction of the true object count in that region is obtained.
This approach is called density counting [2].

The main disadvantage of density counting is that it requires a sufficiently
large number of per-object annotations. For instance, a common practice in cell
counting is to densely annotate a few tens of images by marking the centroids
of all cells with a dot. This task demands a considerable effort from the anno-
tator. Given the dots, the ground-truth density counts of individual pixels are
approximated by placing a Gaussian kernel on top of each dot within an image.
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We propose an object counting model that reconciles the density counting
approach with weaker supervision. Our model learns to predict density counts
from a set of image regions for each of which only the number of contained objects
is known. Differently from earlier approaches, our model does not require the user
to mark where the target objects are within these regions. Figure 1 gives a visual
comparison of annotation requirements of our approach and previous work.

Fig. 1. Comparison of different annotation methods with respect to their difficulty for
the annotator. Bounding box annotation is used by [5], dots in all objects by [2], dots
in some objects by [3, 4], and image-level annotations by [6, 7].

As the learner, we devise a Bayesian model that places a Gaussian process
(GP) prior [8] on a latent function whose square is the count density. We impose
a smoothness prior on this latent function and assume a Gaussian likelihood
that relates the integral over the squared smoothed latent function over a region
with the ground-truth count. In addition to facilitating intuitive modeling, the
GP prior enables us to employ non-linear kernels on image features, resulting
in a model with enhanced expressive power. A welcome feature of our Bayesian
approach is that our model produces uncertainty estimates. Finally, we achieve
fast and scalable training by sparsify the GP prior and applying stochastic vari-
ational inference [9]. Thanks to this scalability, our model is able to operate on
individual pixels, rather than superpixels, keeping the model depend loosely on
preprocessing.

We evaluate our model on two benchmark data sets: i) cell counting in syn-
thetic fluorescence microscopy images, and ii) pedestrian counting from outdoor
video sequences. Additionally, we introduce a novel application for density count-
ing: counting of erythrocytes in blood samples of malaria patients which is useful
for diagnostic purposes. In all of these experiments, we observe that the proposed
model achieves higher counting accuracies than a large selection of models that
are also trained with weak annotations. Our contributions can be summarized
as follows. We introduce:

– A new learning setup: Density counting from weak supervision (i.e. region-
level counts).

– A novel Bayesian model for weakly supervised density counting with a GP
prior on a latent function the square of which is the count density.
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– A fast inference algorithm that makes our model usable for pixel-level pro-
cessing of the input image.

– The first application of density counting to malaria blood cell images.

2 Background

Counting. Approaches to object counting from images can be grouped into two
categories: i) counting by detection, and ii) counting by regression. Counting by
detection works by first detecting each individual object in an image and then
counting the number of detections. In some cases this method is combined with
a foregoing segmentation step where each segment is expected to contain one
object. This method relies heavily on a good object detector or some other
heuristic that identifies regions containing a individual object. These methods
work best when the individual objects are clearly distinguishable [10–13].

Counting with regression skips the detection step and infers the count of ob-
jects in the image by regression over features associated with individual pixels,
an entire image or regions found by a foregoing segmentation step. Segmented
regions are allowed to contain multiple objects in this case. This approach is very
suitable for cases where the objects are partly occluded or hard to detect indi-
vidually [6, 7, 14–16]. Lempitsky and Zisserman [2] introduced a third alternative
approach for counting objects in images: density counting. This method predicts
not only an object count for the whole image but a count density for each pixel.
Integrating over these pixel count densities in an arbitrary region yields the count
of the region. This method has later on been adapted to sparse annotations [3]
and has also been used within an interactive model where users could anno-
tate according to feedbacks from the model [4], and finally, has been adapted
to deep learning by [17]. These methods have in common that the regression
model needs pixel-level density annotations. Providing pixel-level annotations is
a tedious task and these methods circumvent this task by applying a density
shape assumption around the center of each object specified by the user.

MIR. Our method does not need pixel-level annotations. Instead, it builds on a
Multiple Instance Regression (MIR) formulation.1 In MIR, several regions in the
image are annotated with their corresponding counts. The model learns how to
assign the pixel-level count densities to obtain the right region counts. The MIR
formulation has different modes depending on fundamental assumptions about
the structure of the data [19, 18, 20–22]. It either seeks for a prime instance
(pixel) in each bag (region) that is responsible for the bag label (region count)
or assumes that all instances (pixels) contribute to the bag label (region count).
These two modes are called the prime instance assumption and the instance
relevance assumption, respectively. In this work, we adopt the instance relevance
assumption, hence, allow each instance label to contribute to the bag label. We
then treat the sum of all instance labels as the bag label.

1 Our definition of MIR differs from that put forward in [18], where a single instance
in a bag determines the entire count for the bag.
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GP. Gaussian processes are probabilistic kernel learners [23] which apply a prior
on the space of functions mapping an input to a continuous output. This prior
follows a multivariate normal distribution with a mean µ(x) and a covariance
k(x,x′) function. It is customary to assume µ(x) = 0. As for k(x,x′), any positive
definite function can be used. For a data matrix X = [x1, · · · ,xN ] with N data
points in rows and the corresponding noise-free outputs f , a GP imposes an N -
variate normal prior on the mapping function: f |X ∼ N (0,KXX), where KXX is
a covariance matrix with entries is KXX[ij] = k(xi,xj) calculated by a positive
definite kernel function k(·, ·) applied on each pair of feature vectors xi and xj .

GPs have been proven useful in many learning setups. GPLVM [28, 33], the
generative extension of GPs, attracted widespread attention as an effective non-
linear dimensionality reduction tool. Its inference scheme has inspired techniques
to scale GPs up to millions of data points [31] and to build alternative deep
learning approaches that contain GPs as perceptrons [29]. Finally, GPs improved
the state-of-the-art in binary classification from weak labels [24, 25]. We show
in this paper that they can be trained by weak supervision for density counting
as well. We achieve this by placing a sparse approximation of the GP [26] as a
prior on a latent value, the square of which gives the count density of a pixel.

3 Density Counting Setup and Notation

Following the seminal work by Lempitsky and Zisserman [2], we build on the den-
sity counting setup, which can formally be defined as follows. Let I ∈ RNx×Ny×Nc

be an image of Nx × Ny = N pixels and Nc channels. We look for a function
g : I → ρ that maps this image onto its density map ρ ∈ RN+ , such that the
sum taken over any region b inside ρ gives the count cb of target objects in that
region:

∑
i∈Bb

ρi = cb. The task here is to learn a function g that predicts density
maps that lead to accurate object counts on all regions. For each pixel i in image
I, we extract a feature vector xi ∈ RD from the neighbourhood of i and store it
as a row in matrix X ∈ RN×D. We use B arbitrarly shaped regions in the image
for annotations. One annotation b consists of the set of pixels Bb that belong to
the region b and the count of target objects cb that reside within that region.
The feature vectors of all pixels i that belong to region b are stored as rows in
matrix Xb ∈ RNb×D and the corresponding object count is element cb of count
vector c ∈ RB+.

4 Baseline: Counting with Linear Models

A simple model for function g that maps an image I to its density map ρ would
be the linear mapping where the count cb for each region b is given by

cb =
∑
i∈Bb

ρi =
∑
i∈Bb

ωTxi = ωTXT
b 1,
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where 1 = [1, . . . , 1]
T

and ω ∈ RD. Several methods exist for learning a param-
eter vector ω. In [4], a L-2 regularizer with the following objective function is
minimized

L(ω; θ, ε) =
1

2
ωTω + θ

∑
b

max(0, |ωTXT
b 1− cb| − ε)2

where ε is the allowed divergence from the true count and θ is a regularization
parameter. We enhance this model by an additional regularization term to en-
courage smooth density maps and use as a baseline to motivate the core model
proposed in the next section. The resultant objective function is

L(ω, ξb; θ, ε) = min
ω,ξb

(
1

2
ωT (XTDTDX)ω + θ

∑
b

ξb

)

subject to:

ωTXT
b 1− cb − ε ≤ ξb, ωTXT

b 1− cb + ε ≥ ξb, ξb ≥ 0,

where DXω = Dρ is the first spatial derivative of the density map, and ξb are
slack variables. The slack variables prevent the model from overfitting to data
by allowing a small error on individual data points. This model gives a family
of linear count regressors and includes the ridge regression model of [2] as a
special case. Furthermore, it improves that model with large margin regulariza-
tion and density smoothing. As there does not exist any earlier work tailored
specifically for weakly supervised density counting, we take as a baseline the
weakly-supervised version of a state-of-the-art global count regressor with an
added smoothing term.

5 Gaussian Process Multiple Instance Counting

In this section, we describe the proposed GP-based weakly supervised density
counting model.

5.1 Core Model

We introduce a novel probabilistic and non-linear model for object counting to
address some severe limitations of linear models such as limited flexibility and the
possibility of obtaining negative densities in some pixels. Our main contribution
is that we place a Gaussian process prior on the latent function f ∈ RN whose
square is the count density ρ: f |X ∼ N (f |0,KXX). We impose the fact that
a count is non-negative by assigning a region not the sum of f but the sum of
its element-wise square cb =

∑
i∈Bb

ρi =
∑
i∈Bb

f2i = fTb fb, where the index b
indicates the part of latent vector f that belongs to bag b. We make the central
assumption that we only know the counts for image regions (i.e. a group of
pixels).
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Following the multiple instance learning terminology, we denote each annotated
pixel group as a bag. Hence, during training, we are given a group of observations
partitioned into bags X = {X1 ∪ X2 ∪ · · · ∪ XB} with the corresponding bag
labels c = {c1, · · · , cB}. Note that a bag Bb is a set of pixels from one or multiple
image regions. Put together, the GP prior and the cb formula above lead to the
generative process

p(f |X) = N (f |0,KXX), p(c|ρ) =

Nb∏
b=1

N (cb
∣∣fTb fb, β−1).

The first density is a GP prior on the latent function whose square is the count
density map, and the latter performs density counting on the squared latent func-
tion f subject to a small additive measurement noise with precision β. We refer
to this novel model as Gaussian Process Multiple Instance Counting (GPMIC).

5.2 Sparsifying the GP

While the GP prior brings the model high expressive power by kernelizing the
input patterns, it suffers from the fact that both storage and time complexities
of the covariance matrix K grow quadratically with the total number of unique
pixels in the annotated bags. Furthermore, the probability density function of
the normal distribution requires inversion of this potentially large matrix. This
prevents the above model from generalizing to even modest data set sizes (e.g.
a few tens of thousands of instances). We overcome this problem using Fully
Independent Training Conditional (FITC) [26], a well-known technique to ap-
proximate the full GP on vector f by

p(u|Z) = N (u|0,KZZ), p(f |u,X,Z) = N (f |Au,B), (1)

where A = KT
ZXK−1ZZ and B = diag(KXX − KT

ZXK−1ZZKZX). Note here that
we no longer have to invert the full KXX matrix as it never determines the
covariance of a normal distribution. Instead, we define a so-called inducing point
set Z ∈ RP×D with a much smaller number of data points than X (so that P <<
N). Then we assign a GP prior from Z to its so-called inducing responses u. We
assume that the responses f (i.e. the vector of latent values whose square gives the
count densities of pixels) of our real data set X are generated as predictions from
the GP on this small pseudo data set. The operator diag(·) returns the diagonal
elements of the matrix in its argument as a diagonal matrix. Note that this
matrix can easily be inverted by taking the reciprocal of its diagonal entries. The
resultant model in Equation 1 converts the non-parametric GP into a parametric
model that can express the training set only by u and Z, regardless of its size.
This approximation has close ties to the well-known Nyström approximation of
kernel matrices [27].

5.3 Smoothing the Density Map

Mapping the pixel (neighborhood) features onto density counts is very prone
to produce uninterpretable density maps, since edges, image acquisition arti-
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facts, and tiny fluctuations in appearances may lead to larger changes in fea-
ture descriptions of pixels than intended. Furthermore, in some cases such as
cell counting, the objects of interest may have easily-encodable characteristic
shapes. Providing the model with prior knowledge about how the density counts
of the neighboring pixels should affect each other would be very desirable. Such
information can be plugged into our model very easily.

Given an image I and its latent function whose square is the count density
map f , we are interested in smoothing the GP response, rather than the input.
Hence, we convolve f by a J × J-pixel-sized linear filter W ∈ RJ×J . For this we
can simply generate a matrix Rw such that Rwf = F ∗W, where F ∈ RNx×Ny

is f expressed on the input image coordinates and ∗ is the convolution operator
that convolves the filter in its right argument on the matrix in its left argument.
We define a new latent random vector g, which encodes the smoothed version
of f . Remember that f follows a GP prior, hence we have

p(f |X) = N (f |0,KXX), p(g|f) = N (g|Rwf , β
−1I),

where I is the identity matrix with size determined by the context. To see the
effect of smoothing on the GP prior, let us integrate out f :

p(g|X) =

∫
p(g|f)p(f |X)df =

∫
N (g|Rwf , β

−1I)N (f |0,KXX)df

= N (g|0, β−1I + RwKXXRT
w). (2)

Since K is a positive semi-definite matrix governed by a proper kernel function,
we have k(x,x′) = φ(x)Tφ(x′). Hence, the kernel function projects our input
observation x onto a higher-dimensional Hilbert space with φ(·). Repeating the
same on every data point by the capitalized argument X, we can essentially
express the entire KXX on the Hilbert space as φ(X)Tφ(X). Placing this into
the covariance matrix in Equation 2 leads to

K′XX = β−1I + Rwφ(X)Tφ(X)RT
w.

This eventually gives a GP on g with a new kernel function

k′(xi,xj) = φ′(xi)
Tφ′(xj) + δijβ

−1

such that φ′(X) = φ(X) ∗W. Here, δij denotes the Kronecker delta function.
Hence, the response of the former φ(·) is convolved on the Hilbert space by the
filter W. As we will show in Section 6, smoothing the kernel response on the
image space leads to more interpretable density counts.

5.4 Final Model

Putting together everything above, our model reads

p(u|Z) = N (u|0,KZZ), p(f |u,X,Z) = N (f |Au,B),

p(g|f) = N (g|Rwf , β
−1I), p(c|g) =

B∏
b=1

N
(
cb

∣∣∣gTb gb, α−1),
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Fig. 2. Plate diagram of the proposed model. For simplicity, the diagram pretends that
the annotated regions do not overlap, Bb ∩ B′

b = ∅ for b 6= b′. Our actual model is not
limited by this assumption.

where gb denotes the subset of the smoothed pixel latent function whose square
is the count density belonging to region b. Figure 2 depicts the plate diagram of
the proposed model. Note here that the inner product gTb gb equals to the sum
of the element-wise square of gb. With the former, the model performs density
counting and with the latter non-negative counts are imposed. Principles of
Bayesian statistics suggest integrating out all nuisance variables [30]. In this
case, it is possible to integrate out f , which leads to

p(g|u) =

∫
p(g|f)p(f |u)df = N (g|RwAu, β−1I + RwBRT

w).

Although integrating out u is possible [26], this would end up with a non-
parametric model, preventing scalable inference. Following [31], we avoid this
and keep u as a global parameter which paves our way towards stochastic vari-
ational inference [32].

5.5 Inference

In learning, our goal is to infer the posterior distribution

p(g,u|X, c) =
p(c,g,u|X)∫ ∫

p(c|g)p(g|u,X)p(u)dgdu
=

p(c|g)p(g|u,X)p(u)∫ ∫
p(c|g)p(g|u,X)p(u)dgdu

.

Since the integral in the denominator is not tractable, this posterior density needs
to approximated. As shown in recent studies [31], FITC approximation leads
to scalable variational Bayesian inference, which we also adopt in this work.
As [33], we assume the variational distribution Q = p(g|u,X,Z)q(u) where
q(u) = N (u|m,LTL) and L ∈ RP×P . The decomposition LTL is made to
guarantee a positive-semi definite covariance matrix. It is possible to decompose
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the marginal likelihood as:

log p(c|X,Z) = EQ[log p(c|g)]−KL(Q||p(u|Z))︸ ︷︷ ︸
ELBO(L)

+KL(Q||p(g,u)),

where KL(·||·) denotes Kullback-Leibler (KL) divergence between the two den-
sities in its arguments. The first two terms in this decomposition constitute the
Evidence Lower Bound (ELBO). During training, our goal is to maximize the
ELBO, or in other words, minimize the KL divergence in the third term by
updating the free parameters {m,L} of our approximate distribution Q. Note
that the third term vanishes only when we reach the real posterior. This only
provides an asymptotical guarantee. In practice, this term is never exactly zero.
After computing all expectations, our ELBO reads

L(m,L,θ,Z) =
B

2
logα+

∑
b

(
−α

2
cb

2 − α

2
EQ[(gb

Tgb)2] + αcbEQ[gb
Tgb]

)
+ Eq(u)[log p(u|Z)] + H[q(u)]− 1

2
log

(
|K−1ZZ|
|LTL)|

)
+
dim(m)

2

=α
∑
b

[
− 1

2
c2b + cb

(
Tr [G] + hTh

)
−
(

2Tr
[
G2
]

+ 4hTGh +
(
Tr [G] + hTh

)2) ]
B

2
logα− 1

2

[
tr
[
K−1ZZL

TL
]

+ mTK−1ZZm
]
,

where G = β−1I + RwbBbR
T
wb + RwbAbL

TLAT
b R

T
wb and h = RwbAbm and

G2 is the element-wise square of G. The subscript b of the variables gb, Ab Bb

and Rwb indicates a subset of these vectors or matrices corresponding to the
pixels of bag b. Using these region-level values speeds up inference significantly,
as the dimensionality of the kernels is now reduced to the size of each individual
region. Above, EQ[·] denotes the expected value of the argument with respect to
the distribution Q, dim(·) returns the dimension of the vector in the argument,
and Tr[·] is the Trace operator. Here, L depends on the kernel hyperparameters
θ, variational parameters m, L, and the inducing points Z, all of which can
be learned by gradient updates. To this end, we use stochastic gradient descent
updates where we randomly chose one bag during each iteration. This approach
is known as stochastic variational inference [32].

5.6 Prediction

Given a new region X∗, the predictive distribution on the density maps is

p(g∗|X∗) =

∫
p(c∗|g∗)p(g∗|u,X,Z)p(u,g|X, c)dudg.

We approximate the posterior p(u,g|X, c) by the distribution learned during
training Q = p(g|u,X,Z) × q(u). Both of the integrals here are tractable in
closed form, leading to

p(g∗|X∗) = N (g∗|RwAm, β−1I + RwBRT
w).
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6 Results

6.1 Baselines

Since no method exists that performs density counting from weak and sparse
region annotations we adapted some existing methods to this new learning setup
and treat as baselines. We also perform a lesion study on major components of
our GPMIC. Consequently, we compare against the following models:

– Linear Model : This is the model introduced in Section 4, where the den-
sity of each pixel is a linear mapping of the feature vector of the pixel xi
with the parameter vector ω. The count cb of region b is then given by the
sum over the pixel densities. This is, in effect, a multiple instance regression
model based on the instance relevance assumption: cb = ωT

∑
b xb.

– MIR Cluster Bags : This model is a variant of the above linear model
and the one proposed in [21]. The key assumption of this model is that the
bags have an internal structure. Hence, the individual instances in each bag
belong to different abstract classes that correspond to clusters in the feature
space. The model considers only the instances of one prime class to predict
the count. This means the sum over the feature vectors xbi that belong to
the prime cluster i of bag b is mapped to the count cb of bag b using the
parameter vector ω: cb = ωT

∑
bi
xbi .

– GPMIC No Square : This is a simplified version of the proposed GPMIC
with the difference that the GP prior is placed on the count density of each
pixel instead of a latent value whose square is the count density. The prob-
abilistic process if this baseline reads

p(u|Z) = N (u|0,KZZ), p(f |u,X,Z) = N (f |Au,B),

p(g|f) = N (g|Rwf , β
−1I), p(c|g) =

B∏
b=1

N
(
cb

∣∣∣1Tgb, α−1).
– GPMIC Unsmoothed: This is another variant of GPMIC where the smooth-

ing step introduced to enforce spatial smoothness of the density map is omit-
ted. We introduce this baseline to demonstrate the benefit of smoothing. The
resultant model is

p(u|Z) = N (u|0,KZZ), p(g|u,X,Z) = N (g|Au,B),

p(c|g) =

B∏
b=1

N
(
cb

∣∣∣gTb gb, α−1).
– Bag level histogram: This method, introduced as a baseline in [2], does

not perform density counting, as it does not predict pixel-level count densi-
ties but instead directly predicts the count of whole images or regions of an
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image from a histogram that describes the image or the region. The count cb
of region b is given by a linear map of the histogram vector hb with weight
vector ω: cb = ωThb.

– Random Forest: This baseline [3] is an application of random forests to
density counting. The model in its vanilla form is trained with strong su-
pervision at the pixel level. These labels are obtained by clicking on the
center of an object and then placing a normal distribution with unit norm
on this object center pixel to infer the count density for all the neighbouring
pixels. To label background regions, users are asked to give a stroke to the
background of an image and then all pixels that belong to that stroke are
labeled with count density zero. We labeled the same parts of the training
images with this method as we annotated for our weakly supervised methods.

– Convolutional Neural Net (CNN): This baseline uses the CNN architec-
ture proposed in [17] for cell counting. We trained the CNN on 50 regions of
40× 40-pixels that are strongly annotated using the same Gaussian density
prior as the random forest. We use elastic transformations to augment the
annotated data. We train the model for 15 epochs with gradually decreasing
learning rate. We evaluate this model only on the synthetic cell data set, as
the CNN architecture has been specifically tailored for this kind of data.

6.2 Experiments

We evaluate our proposed GP-based weakly supervised density counting model
and the baselines described in Section 6.1 on two benchmark tasks: i) synthetic
cell counting, ii) pedestrian counting from [2], and one novel task: iii) erythrocyte
counting in blood sample slides of malaria patients. The synthetic cell data set
consists of a set of simulated fluorescence microscopy images containing round-
shaped synthetic cells. The pedestrian counting application is based on a surveil-
lance video of a street where pedestrians walk in two opposite directions. Finally,
the Malaria data set consists of microscopy images of erythrocytes that are partly
infected by Malaria and partly healthy. For all data sets, the position of the cen-
ter pixel of each object is provided as ground truth. The general properties of
the data sets are show in Table 1 and example images from the data sets are
shown in the first column of Figure 3.

Table 1. General properties of the data sets.

Name # Images Average Count

Pedestrian 2000 29± 9
Synthetic cells 200 171± 64
Malaria 78 90± 84
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For the results reported in Table 2, we use regions annotated by humans.
For the pedestrian and the synthetic cells data sets, we use the same features
and identical pre- and post-processing procedures as described in [3]. We char-
acterized each pixel by the feature set consisting of Gaussian and Laplacian of
Gaussian filters, Gaussian gradient magnitude, and the eigenvalues of structure
tensors at scales 0.8, 1.6, and 3.2. Also for the Malaria data set we use the same
features as for the synthetic cells data set described in [3] but this time for all
three color channels of the RGB images. As the density smoothing kernel W,
we use a 11×11-pixels sized Gaussian density normalized to unity on that patch
with a variance of four for all three experiments. We use stochastic variational
inference to maximize the ELBO with respect to m and L. To achieve faster
convergence we initialize

m→ arg min
m

∑
b

(||Abm|| − cbr1) ,

L← I · 1/r2,

where r1 and r2 are scaling parameters that further improve the initialization.
We have observed that r1 = P̄b/10 and r2 = 1000, where P̄b is the average
number of pixels per bag, is a suitable choice.

For the experiment on the synthetic cells data set we take the same approach
as described by [2] and use the first 100 images as training set and the last 100
images as test set. We then annotate 5 images from the training set with 14 weak
annotations each. On the Pedestrian data set we use five out of the 2000 frames,
sparsely annotate ten regions on each frame, and leave the rest for evaluation. On
the Malaria data set we use five images with ten weak annotations on each image
as training set and the rest of the 78 images as test set. We train the baseline
models on the same annotated regions. In Figure 3, we show the density maps
obtained by our model and the baselines described in Section 6.1. Table 2 reports
the mean average count prediction errors of the models in comparison, averaged
over ten runs. GPMIC always gives the best performance in all three data sets,
while it is tightly followed on the pedestrian data set by the random forest
based density counting baseline. The results also reveal that the Malaria data
set is harder than the other two benchmarks. This is understandable since the
erythrocytes highly vary in shape when they are infected by malaria and they
also overlap heavily no matter if they are healthy or diseased. Figure 3 clearly
shows qualitative differences between the different methods. The smoothing step
in GPMIC leads to a count density map that better reflects the real shape of the
objects. A model without smoothing tends to learn a pronounced edge density in
such cases as the Malaria data set. Note that GPMIC No Square allows negative
count densities which also occur, as one can see in Figure 3, and lead to worse
performance compared to the original GPMIC model as shown in Table 2.

Once strong annotations are provided, it is possible to achieve marginally
better results on the synthetic cells and pedestrian data sets as reported in var-
ious earlier work [2–4, 7, 14, 17]. However, these models need considerably more
annotation effort. Our model trains in 114, 32, and 341 seconds on pedestrian,
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Fig. 3. Example densities for each dataset and all density counting methods. To il-
lustrate the differences better, the Random Forest densities for the Pedestrian and
Malaria data set were scaled by a factor of 0.35 and 0.47 respectively.

cells, and malaria data sets, respectively on a machine with 8 GB RAM and
2.3 GHz CPU. The training times for the closest competitor, Random Forest
[3], for the same data sets are in the sub-second range. The CNN of [17] de-
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signed specifically for the Cells data set trains in 5478 seconds. Consequently,
our model achieves better prediction performance than the baselines within rea-
sonable training time in all three applications.

Table 2. Mean Average Errors (MAE) of the models in comparison. The ”Dense” col-
umn indicates whether a method provides a density map or not. GPMIC (Unsmoothed)
and GPMIC (No Square) are more basic versions of the main GPMIC model. As the
CNN of Xie et al. [17] is tailored specifically for the synthetic cell data set, we do not
use it as a baseline in the remaining two applications.

Regression Model Pedestrians Cells Malaria Dense

Linear Model (Baseline Sec. 4) 21.3 22.1 23.7 Yes
MIR Cluster Bags [21] 4.8 15.5 19.6 No
Bag-level Histogram Linear [2] 10.7 17.4 23.7 No
Random Forest [3] 3.6 10.0 21.1 Yes
Convolutional Neural Net [17] - 7.8 - Yes

GPMIC (Unsmoothed) 15.8 21.2 26.2 Yes
GPMIC (No Square) 20.3 8.6 29.9 Yes

GPMIC (This work) 3.5 6.7 18.0 Yes

7 Conclusion

We propose a novel machine learning setup, weakly supervised density counting,
and introduce a novel model that gives state-of-the-art performance on this
setup. For the first time, we show the usability of GPs as effective prior functions
on pixel count densities. This is made possible by building on the recent advances
on scalable variational inference, which enables the GP prior to operate at the
pixel level. Secondly, we propose an intermediary density smoothing scheme,
which proves effective to regularize the count densities and achieve interpretable
estimates. Lastly, we show that density counting can be successfully performed
on a new medical application: counting blood cells of malaria patients. We believe
this outcome to evoke new ideas for a number of clinical use cases.

An alternative way to enforce smooth density maps would be to introduce
a normal distributed latent variable g with the regularized Laplacian precision
matrix Q: p(g|f) = N (g|f ,Q−1). The disadvantage of this formulation is that
the inverse of the regularized Laplacian matrix is needed during inference, which
is computationally very demanding.

The Bayesian nature of GPMIC allows closed-form calculation of the pos-
terior predictive density, which provides a second-order uncertainty measure
(variance) for predictions. This measure can easily be used to build effective
interactive learning interfaces using information-theoretic active learning crite-
ria, such as Bayesian Active Learning by Disagreement (BALD) [34]. We are
encouraged to address such interesting implications of the proposed model in
future work.
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