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Abstract

In cancer, pathological tissue often exhibits abnormal
perfusion and vascular permeability. These can be esti-
mated by monitoring the abundance of an injected con-
trast medium over time, using Dynamic Contrast-Enhanced
(DCE) MR Imaging. The resulting spatially resolved time
curves are usually interpreted in terms of a pharmacokine-
tic model which is fitted by maximum likelihood. However,
the resulting nonlinear least squares (NLLS) problem may
exhibit spurious local optima leading to false parameter
estimates at individual voxels in the generated parameter
map. We propose the application of a spatial prior model
in form of a generalized Gaussian Markov random field. By
using information from parameter estimates at neighboring
voxels and computing a maximum a posteriori solution for
the whole parameter map at once, false local optima at indi-
vidual voxels can be avoided. Since the number of variables
gets very big for common image resolutions, standard NLLS
solvers cannot be employed anymore. We therefore propose
a generalized iterated conditional modes (ICM) approach
operating on blocks instead of sites. Results on DCE-MR
images of the prostate show less speckle noise in the result-
ing parameter maps. Furthermore, the mean square error
(MSE) in the affected voxels is significantly smaller, thus
reflecting a better fit.

1. Introduction

Dynamic Contrast-Enhanced MR Imaging (DCE-MRI)
emerges as a novel and powerful imaging modality which
has already proved useful in various clinical applications
such as the examination of breast cancer [4], bone mar-
row [7] brain [5] and prostate tumors [15, 9, 11].

In contrast to traditional T1- and T2-weighted MR imag-
ing modalities which mainly carry morphological informa-
tion, DCE-MRI allows to derive physiological information.

However, DCE-MRI also requires more involved postpro-
cessing strategies. In general these can be grouped into
model-based and model-free approaches.

In model-based approaches, an appropriate pharmacoki-
netic model which describes the expected signal evolution is
derived [5]. Its parameters are often associated with mean-
ingful physiological properties of the examined tissue and
are determined with a nonlinear least squares (NLLS) ap-
proach. Because of signal noise and local minima in the
NLLS criterion these model fits can fail for individual vox-
els, resulting in speckled parameter maps. In [5] such vox-
els are identified by a signal-to-noise ratio criterion and re-
moved from the parameter map, thus discarding possibly
valuable information.

A different approach to cope with noise and unantici-
pated signal shapes is to reduce the use of prior knowl-
edge with model-free approaches. For example, [13] re-
quires a labeled data set to train an artificial neural net-
work without an explicit physiological model. As opposed
to that, [10] proposes the application of an unsupervised
method: the high-dimensional time curve feature vectors
are projected onto a two-dimensional manifold by means
of self-organizing maps. The resulting 2D coordinates can
be color-coded and mapped in a diagnostic image. How-
ever, model-free approaches often lack physiological inter-
pretability and come with the flavor of “black-box” meth-
ods.

The approach taken in this paper is model-based. In ad-
dition to a pharmacokinetic model we assume that the char-
acteristics of the tissue vary gradually from voxel to voxel
and, hence, that the parameter map that best describes the
physiological properties of the tissue should exhibit some
spatial smoothness. The parameter map is modeled as a
Markov random field (MRF) with pairwise potentials and
the recorded MR volume is regarded as a noisy observa-
tion of the nonlinearly transformed hidden parameter map.
Hence, the parameter estimate at each voxel is supported by
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the estimates at its neighboring voxels which helps avoiding
spurious local minima. Since incorporating a spatial prior
also poses a greater computational challenge, we propose an
efficient block-ICM algorithm for approximate inference.

2. Dynamic Contrast-Enhanced MR Imaging

DCE-MRI is used to track the diffusion of a para-
magnetic contrast medium (CM) such as Gd-DTPA and
study tissue perfusion and vascular permeability in vivo [5].
Therefore, DCE-MRI allows to detect pathologic tissue
changes and can be used in tumor diagnosis [15, 9, 11, 4, 7].

During the intravenous injection of the CM, a sequence
of several T1-weighted MR image volumes is recorded at
intervals of a few seconds. Hence, a 3D volume of T1 in-
tensity time curves is obtained. Their evaluation is based
on a pharmacokinetic model whose parameters characterize
the tracer accumulation properties of the underlying tissue
(see [12] and references therein).

The basis for the quantitative evaluation in this paper is
the widely used two-compartment model by Brix et al. [5].
The resulting T1 intensity dynamics are described by the
model function

SCM (t)
S0

=
{

1 t ≤ t0
1 + ACCM (t − t0) t0 < t

(1)

where S0 describes the T1 intensity obtained without CM
and t0 the lag time. The amplitude A depends on several
tissue properties, the employed MR sequence and the infu-
sion rate of the CM [5]. It usually increases in tumors. The
concentration of the CM evolves as

CCM (t) = v
exp(kelt

′) − 1
exp(kelt)

− u
exp(k21t

′) − 1
exp(k21t)

(2)

with t′ ≡ t for t ≤ τ , t′ ≡ τ for t > τ and

u−1 = k21(k21 − kel) (3)

v−1 = kel(k21 − kel). (4)

Here, k21 describes the exchange rate between the two
compartments (blood plasma and interstitium) which is in-
creased in tumors and kel the first order elimination rate
constant of the CM from the first compartment (plasma).
The duration of the CM injection is described by τ . For
convenience, all six model parameters are summarized as
θ = (S0, A, kel, k21, t0, τ) in the following.

Given the observed intensities yi for a certain voxel at
discrete time points {ti}N

i=1 the parameters are usually esti-
mated by minimizing the sum of the squared residuals, i.e.
by solving the NLLS problem

θ̂ = argmin
θ

N∑
i=1

(fθ(ti) − yi)2 (5)
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Figure 1. Three examples for the employed pharmacokinetic
model from [5] fitted to recorded T1 intensity time curves. One
frame was acquired every 11.25s. The dashed time curve is ob-
tained for θ0 = (100, .3, .4, .003, 10, 6) used for initialization.

with fθ(t) = SCM (t). When normalized with the number
of sampling points N the sum of squared residuals yields
the mean square error (MSE) which is also minimum for θ̂.
Some examples for time curves fitted with this model are
given in Fig. 1.

For simplicity, regions of interest (ROIs) of the recorded
MR volumes are usually analyzed voxel by voxel [5, 12].
Since the NLLS problem cannot be expected to be convex,
multiple local optima may exist. Indeed, the NLLS fit with
the previously described pharmacokinetic model can fail to
find the “right” solution as shown later. The resulting pa-
rameter maps then contain single voxels or even regions of
voxels for which the estimates are completely off. Instead
of identifying and masking these voxels in the parameter
map, we propose the application of a Bayesian approach
which introduces a spatial smoothness prior in form of a
generalized Gaussian Markov random field (GGMRF) [3].
In this way, the NLLS fit of a voxel is influenced by the data
and the fits in its local neighborhood and pushed towards a
better local optimum.

3. GGMRF: A Generalized Gaussian Markov
Random Field Prior

The generalized Gaussian Markov random field [3] is
a Markov random field [2, 14] with particular compatibil-
ity functions (the logarithm of which are known as poten-
tials). Every voxel in the ROI is represented by a site s ∈ S
which is associated with the vector-valued random variable
θs. Like in the single-voxel case, the observation likelihood
is Gaussian, i.e. ys

i | θs ∼ N (fθs
(ti), σ2). Adding the spa-

tial GGMRF prior on the parameter map θ yields a joint



distribution over y and θ in form of the Gibbs distribution:

Pr(θ, y) =
1
Z

∏
s∼t

Ψ(θs, θt)
∏
s

Φ(θs, ys) (6)

where y and θ are vector variables obtained by stacking the
site vector variables ys and θs. Z is the global normalizer
(partition function) and s ∼ t denotes pairs of neighbor-
ing sites according to the employed neighborhood system.
The compatibility functions in Φ(θs, ys) and Ψ(θs, θt) are
defined by the potentials

log Φ(θs, ys) = − 1
2σ2

N∑
i=1

(fθs
(ti) − ys

i )
2 (7)

log Ψ(θs, θt) = −αst

2
‖W (θs − θt)‖p

p (8)

where 1 ≤ p ≤ 2 and αst ≥ 0 are hyper-parameters deter-
mining smoothness properties of the sought parameter map
and W is a diagonal weighting matrix which accounts for
the different scales of the parameters in θs.

The application of a GGMRF allows to vary continu-
ously between a smoothing Gaussian MRF prior (p = 2)
and an edge-preserving MRF (p = 1) with properties com-
parable to a weighted median filter [3]. Furthermore, the
GGMRF potential defined by (8) is convex and, as opposed
to robust alternatives such as the Huber potential [8], it does
not have a threshold parameter at which its behavior sud-
denly changes.

In this paper, we will mostly be concerned with a special
graph structure, namely regular lattices. Neighborhoods of
different order can be defined on lattices [1]. Here, we will
only consider neighborhoods up to an order of two (i.e. four
and eight neighbors). Furthermore, we only model pairwise
interactions, i.e. all compatibility functions for cliques with
sizes greater than two are defined to be constant.

4. MAP Estimation with Block-ICM

Given an observed MR volume sequence {ys
i }, the max-

imum a posteriori (MAP) estimate θ̂ is found by minimizing

θ̂ = argmin
θ

[ ∑
s∈S

N∑
i=1

(fθs
(ti) − ys

i )
2

+ σ2
∑
s∼t

αst ‖W (θs − θt)‖p
p

]
(9)

For a realistically sized DCE-MR image of 100 × 100 vox-
els, the parameter vector θ already has 6 · 104 entries which
makes the optimization problem (9) very hard to solve with
standard NLLS algorithms. However, the problem is sparse
in the sense that most of the θs are not directly coupled.
The MRF framework provides special algorithms which can

exploit this sparsity such as the ICM (iterated conditional
modes) algorithm [2].

Here, we use a generalized ICM algorithm which often
converges faster than the standard ICM approach. As this
algorithms considers collections of sites instead of single
sites at each step, we call this approach block-ICM.

Given an arbitrary subset of sites S̃ ⊆ S, it follows
from the Hammersley-Clifford theorem [14] that the pos-
terior distribution Pr(θ | y) = Pr(θS | y) can be factored as

Pr(θS | y) = Pr(θS̃ | θ∂S̃ , y) Pr(θS\S̃ | y) (10)

where ∂S̃ = {s | t ∼ s ∧ t ∈ S̃ ∧ s ∈ S \ S̃} is the
border of S̃. Increasing Pr(θS̃ | θ∂S̃ , y) with respect to θS̃

certainly cannot decrease Pr(θ | y) since the second factor
does not depend on any of the variables in θS̃ . Hence, the
MAP problem (9) can be solved iteratively by solving a se-
ries of smaller MAP problems over subsets of sites

θ
(k+1)

S̃
= argmin

θS̃

[ ∑
s∈S̃

N∑
i=1

(fθs
(ti) − ys

i )
2

+ σ2
∑
s∼t

s,t∈S̃

αst ‖W (θs − θt)‖p
p

+ σ2
∑
s∼t
s∈S̃
t∈∂S̃

αst

∥∥∥W
(
θs − θ

(k)
t

)∥∥∥p

p

]
(11)

Clearly the block-ICM algorithm can be viewed as a co-
ordinate descent approach where the potentially intersecting
subsets S̃(k) redefine generalized coordinates θ

(k)

S̃
in every

descent step. Also, it is easily established that it suffices
to find a configuration S̃(k+1) which decreases the objec-
tive (11) instead of finding the exact minimum in every de-
scent step. The convergence to a local minimum of (9) is
preserved.

The shape, size and update sequence of the subsets are
design parameters of the block-ICM algorithm and should
be chosen so as to trade off the problem size in each step
against the number of sweeps required for convergence. If,
e.g., each of the subsets S̃(k) only contains one site s the
standard ICM algorithm is recovered [2] which is known to
converge often rather slowly. If, on the other hand, only
one (sub)set S̃ ≡ S is chosen the complete MAP prob-
lem (9) which contains all variables is obtained. Hence,
small subsets of sites should be chosen depending on the
size of the local neighborhood and the strength of the mu-
tual influence. Because of the locality of this influence, the
size of the subsets does not have to be increased with grow-
ing lattices yielding and algorithm which scales linear with
the number of sites.



5. Experimental Setup

Data from 36 patients with prostate cancer was pro-
vided by our clinical partner (German Cancer Research
Center (dkfz), Heidelberg) [15]. DCE-MRI was performed
on a 1.5-T clinical MR scanner (Magnetom Symphony;
Siemens Medical Solutions, Erlangen, Germany) using en-
dorectal coils (Medrad, Indianola, PA) with T1-weighted
FLASH (TR/TE = 125ms/3.11ms) and a temporal resolu-
tion of 11.25s. Sequences of 25 image volumes have been
acquired with a spatial resolution of 256× 160× 16 voxels
and .78 × .78 × 3.99 mm3 voxel spacing. Regions of in-
terest of about 100× 100 voxels have been chosen in slices
that contained tumorous tissue.

For comparison, the parameters of the pharmacokinetic
model (1) have been determined using the voxel-wise ap-
proach first. The NLLS fit has been performed with an
interior trust region method [6] as implemented in Mat-
lab R14 (optimization toolbox). The same initialization
θ0 = (100, .3, .4, .003, 10, 6) has been used in all voxels
(c.f . Fig. 1). A maximum number of 10000 iterations per
voxel was allowed for in the to ensure convergence.

The proposed GGMRF approach has been tested for a
first and second order neighborhood system (4N/8N) and
homogeneous parameterization with p = 2. The influence
of diagonal coupling terms in the second order neighbor-
hood system has been reduced by choosing αst for diago-
nal neighbors 1.4 times smaller than for horizontal/vertical
neighbors.

The whole lattice was subdivided into two staggered sets
of blocks with 6×6 voxels (Fig. 2). In every odd sweep, the
blocks in the first set have been visited in a quincunx pattern
as indicated in Fig. 2. In every even sweep, the same proce-
dure was performed on the second set of blocks. A total of
12 sweeps have been performed. To prevent premature con-
vergence to a local minimum, the number of optimization
steps in each block was restricted to 20 iterations in the first
10 sweeps. For the remaining sweeps, up to 2000 iterations
were permitted. The same optimization algorithm and the
same initialization have been used for the GGMRF and the
voxel-wise approach.

6. Results and Discussion

In Fig. 3, maps of the two parameters S0 and k21 for
patient P-19 are shown, contrasting the conventional voxel-
wise approach and the spatial GGMRF approach with first
and second order neighborhoods. Especially the k21-map,
which is an important physiological parameter [11], shows
many white dots in the voxel-wise approach. At these vox-
els, the k21 estimate is very different from its surroundings
which does not occur for the GGMRF approach. Further-
more, no visible difference is observed between the em-
ployed neighborhood systems. For the remainder, we will
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Figure 2. Blocks and update schedule used for the block-ICM al-
gorithm. In every odd sweep square blocks of 6×6 sites are visited
following the quincunx pattern as indicated by the numbering. The
even sweeps are performed in the same way but shifted by 3 sites
(dashed squares).

therefore confine ourselves to the GGMRF-8N on a second
order lattice.

Figure 6 presents the difference in MSE between the
GGMRF-8N and the voxel-wise approach. For voxels
which are dark to black in Fig. 6(a), the GGMRF-8N
yields smaller values. Hence, as judged by the MSE, the
GGMRF-8N apparently offers a better fit in nearly all rel-
evant voxels within the indicated boundary of the prostate.
Fig. 4 shows model fits for some of those voxels for which
the GGMRF yields significantly smaller MSE. Although es-
pecially the first two examples look like reasonable fits in
the case of the voxel-wise approach, the solutions found
with the GGMRF approach look much more convincing in
all four cases.

At first sight the decreased MSE might be surprising
since the use of a smoothness prior should result in esti-
mation bias and always yield greater MSE than an unbiased
estimate. However, this must only hold true if the global
optimum of the NLLS objective 5 is actually found. And
indeed, an increased MSE due to estimation bias can be ob-
served in voxels in which the single-voxel approach con-
verged to the global optimum and the spatial prior gains
influence due to sharp edges in the parameter maps. For pa-
tient P-19 a few such voxels can be identified in the contrast-
enhanced version of the difference image in Fig. 6(b).

That small degradations in MSE occur more often than
small improvements by using the GGMRF prior can also
be seen from the zoomed histogram in Fig. 6(c) which is
slightly skewed to the right. It should be noted that to the
far left of this histogram a few outliers are found, i.e. the
black voxels in Fig. 6(a), resulting in a mean MSE differ-
ence which is clearly negative (c.f . Tab. 1).

For two of the voxels which are marked with circles in
Fig. 6(b) the corresponding model fits are shown in Fig. 5.
Although the GGMRF fits in the right column of Fig. 5 pro-



(a) conventional S0-map (b) S0-map with GGMRF-8N (c) S0-map with GGMRF-4N

(d) conventional k21-map (e) k21-map with GGMRF-8N (f) k21-map with GGMRF-4N

Figure 3. Comparison of parameter maps obtained for patient P-19 with conventional voxel-wise estimation and with GGMRF prior on
a first and second order lattice (4N/8N). The k21-map is reported to be most relevant for a diagnostic evaluation [11]. In both maps, the
conventional approach produces speckles which do not occur if the spatial GGMRF prior is employed.

duce slightly greater MSE than the voxel-wise fits in the left
column, both solutions look reasonable. One might even
prefer the solutions found with the GGMRF approach since
they are more in line with the expected pharmacokinetic be-
havior. It should be emphasized that this property is not
explicitly influenced by the GGMRF approach but only im-
plicitly encouraged by the surrounding voxels.

Table 1 lists numerical results for all 36 patients. For
comparison we have calculated the mean MSE difference
∆MSE splitted into a negative and a positive part:

∆MSE− =
1
|S|

∑
s∈S

max(−∆MSE(s), 0) (12)

∆MSE+ =
1
|S|

∑
s∈S

max(∆MSE(s), 0) (13)

Then, the mean MSE difference can be calculated as
∆MSE = ∆MSE+−∆MSE−. Hence, the GGMRF-8N
approach performs better on the average if ∆MSE− >
∆MSE+ which is true for all but two of the 36 patients.

In Fig. 7 the k21-maps of several patients with various
∆MSE−/∆MSE+ ratios are shown among which are the
two most extreme patients P-4 and P-3 (c.f . Tab. 1). Alto-
gether, the examples shown in Figs. 3 and 7 seem to reflect
quite well the numerical results in Tab. 1.

Table 1 also provides a robust estimate of the signal-to-
noise ratio (SNR), i.e. an estimate that is insensitive to out-
liers. The lowest SNR is obtained for patient P-7 for which
two exemplary fits are shown in Fig. 8. Both cases confirm

that the measured image data is very noisy and show that
the expected signal shape (c.f . Fig. 1) can hardly be recog-
nized. For example, in the left part of Fig. 1 it is difficult to
judge which of the two very different fits should be favored.

For patient P-3 the estimated SNR is very high which
indicates that the signal model fits very well. Also,
both the negative and positive MSE differences (∆MSE−

and ∆MSE+) are very small which means that the
GGMRF-8N and the voxel-wise approach perform very
similar for that patient. Figures 7(i) and 7(j) show a com-
parison of the k21-maps. Apart from a few voxels, the two
parameter maps look identical and the better mean MSE of
the voxel-wise approach can again be ascribed to the bias in-
troduced with the GGMRF. However, since no ground truth
is available the bias-variance tradeoff cannot be analyzed on
our experimental data. Nevertheless, oversmoothing seems
to be no problem, neither for patient P-3 nor for the other
examples. All structures present in the conventional param-
eter maps are preserved with the GGMRF approach.

The large gain in individual voxels cannot be ascribed to
a reduction in estimation variance. Better parameter esti-
mates for the dark voxels in Fig. 4 obviously do exist but
are just not found with the voxel-wise approach. For ex-
ample, the GGMRF parameter estimates in the right col-
umn of Fig. 4 all achieve lower scores on the NLLS objec-
tive (5) than the corresponding estimates obtained from the
voxel-wise approach. Hence, the main benefit from using
the GGMRF prior here is that it helps to avoid spurious lo-
cal minima of (5) at individual sites.
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Figure 6. Difference in mean square error (MSE) for patient P-19. Darker pixels indicate sites for which the GGMRF model could find a
better fit. (a) As for the parameter maps in Fig. 3, the greatest benefit is obtained in the lower half of the image. (b) Contrast-enhanced
version of (a). (c) Zoomed histogram from the voxels within the prostate boundary. Positive differences prevail in the displayed range,
reflecting the bias introduced by the spatial prior.
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Figure 4. Comparison of selected model fits (patient P-19). In
these examples the GGMRF-8N approach produced a lower MSE.
The left column shows results from the voxel-wise approach
whereas the right column shows the corresponding fit with the
GGMRF-8N prior.

7. Conclusion

We have proposed the application of a generalized Gaus-
sian Markov random field prior for the quantification of
DCE-MR image data. Since the nonlinear least squares
problem used to fit a pharmacokinetic model in each voxel
is not convex, the conventional approach is susceptible to
spurious local optima. We have demonstrated that the as-
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Figure 5. Fits at the two voxels which are circled in Fig. 6(b). The
left column shows the voxel-wise and the right column the corre-
sponding GGMRF-8N fits.

sumption of a spatial smoothness prior can help to avoid
false optima and usually yields better parameter estimates
in terms of mean square error. The proposed block-ICM al-
gorithm allows to tackle the resulting optimization problem
efficiently since, like the conventional approach, it scales
linear in the number of voxels.

In the conducted experiments we could not observe con-
siderable oversmoothing introduced by the spatial prior. On
the other hand, the noticeable speckles resulting from failed
parameter fits in the conventional approach could largely be
removed.
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Patient SNR [dB] ∆MSE− ∆MSE+ ratio
P-4 39.0 1410.241 2.186 644.981
P-30 33.8 1064.353 4.018 264.895
P-29 27.3 223.972 0.857 261.351
P-14 51.7 35.729 0.162 219.999
P-16 49.6 194.004 1.033 187.885
P-23 50.9 101.946 0.967 105.386
P-27 31.2 13.349 0.157 85.142
P-15 36.8 21.289 0.266 80.113
P-5 46.9 47.562 0.868 54.785
P-18 45.4 42.064 0.829 50.750
P-24 33.1 687.113 15.007 45.786
P-26 22.4 81.634 1.887 43.258
P-7 16.4 191.418 4.714 40.603
P-35 38.0 194.517 5.400 36.020
P-13 23.6 41.499 1.427 29.085
P-31 26.8 34.853 1.426 24.434
P-20 41.5 59.006 2.538 23.251
P-28 41.9 69.005 3.597 19.184
P-11 50.7 23.560 1.333 17.668
P-12 41.8 61.956 5.112 12.120
P-6 52.0 0.433 0.043 10.017
P-36 45.1 4.046 0.472 8.574
P-19 33.3 15.860 2.040 7.776
P-33 33.9 6.387 0.913 6.994
P-25 42.4 11.269 1.619 6.959
P-9 29.9 0.632 0.095 6.662
P-34 31.0 9.341 1.422 6.569
P-2 30.3 4.117 0.802 5.134
P-1 34.7 0.124 0.032 3.889
P-10 28.9 6.589 1.869 3.525
P-22 33.6 6.715 2.061 3.258
P-21 40.8 1.763 0.655 2.692
P-8 17.6 10.740 4.367 2.459
P-32 32.7 21.184 12.499 1.695
P-17 24.0 3.940 5.318 0.741
P-3 50.0 0.035 0.148 0.236

Table 1. Results for all 36 patients ordered by the ratio
∆MSE−/∆MSE+. ∆MSE− (∆MSE+) is the negative
(positive) part of the mean MSE difference, i.e. only voxels in
which the GGMRF-8N (voxel-wise) approach is better are con-
sidered. Hence, the mean MSE difference over all voxels is
∆MSE+ − ∆MSE−. The GGMRF-8N approach can improve
the results in all but the last two cases (ratio > 1).

References

[1] N. Balram and J. M. F. Moura. Noncausal Gauss-Markov
random fields: Parameter structure and estimation. IEEE
Trans Inf Theory, 39(4):1333–1355, July 1993. 3

[2] J. E. Besag. Spatial interaction and the statistical analysis of
lattice systems (with discussion). J Roy Statist Soc Ser B,
36:192–236, 1974. 2, 3

(a) conventional, patient P-4 (b) GGMRF-8N , patient P-4

(c) conventional, patient P-18 (d) GGMRF-8N , patient P-18

(e) conventional, patient P-28 (f) GGMRF-8N , patient P-28

(g) conventional, patient P-2 (h) GGMRF-8N , patient P-2

(i) conventional, patient P-3 (j) GGMRF-8N , patient P-3

Figure 7. Comparison of k21-maps for several patients. The
GGMRF-8N approach improves the MSE most for patients P-4,
P-18, P-28 and P-2 and increases the MSE for patient P-3 (bold
patients in Tab. 1). Nevertheless, the conventional k21-map of pa-
tient P-3 in (c) shows some speckles which are avoided with the
GGMRF-8N approach (d).

[3] C. Bouman and K. Sauer. A generalized Gaussian image
model for edge-preserving MAP estimation. IEEE Trans Im-
age Proc, 2(3):296–310, July 1993. 2, 3

[4] G. Brix, M. Henze, M. Knopp, R. Lucht, J. Doll, H. Junker-
mann, H. Hawighorst, and U. Haberkorn. Comparison of
pharmacokinetic MRI and [18F] fluorodeoxyglucose PET in



0 5 10 15 20 25
100

105

110

115

120

125

 

 
GGMRF−8N
voxel−wise

0 5 10 15 20 25
54

56

58

60

62

64

66

 

 
GGMRF−8N
voxel−wise

Figure 8. Two examples for fits from patient P-7 which has the
lowest signal-to-noise ratio in Tab. 1. For both cases the expected
signal shape is hardly recognizable in the measured data (blue
crosses).

the diagnosis of breast cancer: initial experience. Eur Radiol,
11(10):2058–70, 2001. 1, 2

[5] G. Brix, W. Semmler, R. Port, L. Schad, G. Layer, and
W. Lorenz. Pharmacokinetic parameters in CNS Gd-DTPA
enhanced MR imaging. J Comput Assist Tomogr, 15(4):621–
8, 1991. 1, 2

[6] T. Coleman and Y. Li. An interior, trust region approach for
nonlinear minimization subject to bounds. SIAM J on Optim,
6:418–445, 1996. 4

[7] H. Hawighorst, M. Libicher, M. Knopp, T. Moehler,
G. Kauffmann, and G. Kaick. Evaluation of angiogenesis
and perfusion of bone marrow lesions: role of semiquantita-
tive and quantitative dynamic MRI. J Magn Reson Imaging,
10(3):286–94, Sep 1999. 1, 2

[8] P. J. Huber. Robust Statistics. New York: John Wiley and
Sons Inc., 1981. 3

[9] F. Kiessling, M. Lichy, R. Grobholz, M. Heilmann,
N. Farhan, M. S. Michel, L. Trojan, J. Ederle, U. Abel, H.-
U. Kauczor, W. Semmler, and S. Delorme. Simple models
improve the discrimination of prostate cancers from the pe-
ripheral gland by T1-weighted dynamic MRI. Eur Radiol,
14(10):1793–801, Oct 2004. 1, 2

[10] T. W. Nattkemper and A. Wismüller. Tumor feature vi-
sualization with unsupervised learning. Med Image Anal,
9(4):344–51, Aug 2005. 1

[11] H.-P. Schlemmer, J. Merkle, R. Grobholz, T. Jaeger, M. S.
Michel, A. Werner, J. Rabe, and G. van Kaick. Can
pre-operative contrast-enhanced dynamic MR imaging for
prostate cancer predict microvessel density in prostatectomy
specimens? Eur Radiol, 14(2):309–17, Feb 2004. 1, 2, 4, 5

[12] P. Tofts, G. Brix, D. Buckley, J. Evelhoch, E. Henderson,
M. Knopp, H. Larsson, T. Lee, N. Mayr, G. Parker, R. Port,
J. Taylor, and R. Weisskoff. Estimating kinetic parameters
from dynamic contrast-enhanced T(1)-weighted MRI of a
diffusable tracer: standardized quantities and symbols. J
Magn Reson Imag, 10(3):223–32, Sep 1999. 2

[13] T. Twellmann, O. Lichte, and T. W. Nattkemper. An adap-
tive tissue characterization network for model-free visualiza-
tion of dynamic contrast-enhanced magnetic resonance im-
age data. IEEE Trans Med Imaging, 24(10):1256–66, Oct
2005. 1

[14] G. Winkler. Image Analysis, Random Fields and Dynamic
Monte Carlo Methods, volume 27 of Applications of Mathe-
matics. Springer, 2nd edition, 2003. 2, 3

[15] C. Zechmann, K. Baudendistel, K. Aftab, L. Trojan, M.-S.
Michel, H.-U. Kauczor, and S. Delorme. Dynamic contrast-
enhanced T1-weighted MRI combined with MR spectro-
scopic imaging in patients with prostate cancer - initial expe-
rience. In Proc Intl Soc Mag Reson Med, volume 13, 2005.
1, 2, 4




