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Abstract

In this paper, we present an automatic classification fraonkewombining appearance based
features and Hidden Markov Models (HMM) to detect unusuanés in image sequences. One
characteristic of the classification task is that anomalresrare. This reflects the situation in the
quality control of industrial processes, where error eseme scarce by nature. As an additional
restriction, class labels are only available for the congpienage sequence, since frame-wise
manual scanning of the recorded sequences for anomalies Bxpensive and should therefore
be avoided.

The proposed framework reduces the feature space dimeonsithe image sequences by
employing subspace methods and encodes characteristpotalrdynamics using continuous
Hidden Markov Models (CHMMSs). The applied learning procezlis as follows: 1) A generative
model for the regular sequences is trained (one-classitegrr2) The regular sequence model
(RSM) is used to locate potentially unusual segments widtior sequences by means of a
change detection algorithm (outlier detection). 3) Unlisegments are used to expand the RSM
to an error sequence model (ESM). The complexity of the ESkbigrolled by means of the
Bayesian Information Criterion (BIC). The likelihood mtof the data given the ESM and the
RSM is used for the classification decision. This ratio isselto one for sequences without error
events and increases for sequences containing error eegerimental results are presented
for image sequences recorded from industrial laser welghogesses. We demonstrate that the
learning procedure can significantly reduce the user iotiera and that sequences with error
events can be found with a small false positive rate. It has Been shown that a modeling of

the temporal dynamics is necessary to reach these low etes.r

Index Terms

State-space models, Weak labels, One-class learningeOddétection, Time series classifi-

cation



I. INTRODUCTION

In many event detection applications, the aberrations tefr@st occur only rarely. This
lack of positive examples is, for instance, a characteristiefficient industrial processes,
and complicates the training of automated systems thatomlgtatistical learning. In this
paper, we consider the task of finding error events withingiensequences recorded from
an industrial manufacturing process. In this laser weldapglication, error events can
be distinguished from regular frames in terms of their gpappearance and temporal
dynamics. Class labels are only available for the compleggisnce (sequence labels) and
specify the quality of the produced part (either error freemoneous). It would be overly
time consuming to obtain labels for each individual framémi a sequence (frame labels)
due to the large amount of data (in the present applicationma@ge sequence comprises
up to 4000 frames). However, it is deemed acceptable to obtain fraineldan very few
cases in which the error event cannot be clearly locatedirwérsequence.

As others [1]-[7] have done before, we propose to use Hiddark® Models (HMMs)
to capture the dynamics of the process and ultimately disoete between regular and
erroneous sequences. The focus of this contribution is toviisys that allow to train these
HMMs with the smallest possible amount of user interactionparticular, we propose
a strategy that allows to use a strongly imbalanced and oelgkly labeled training set.
That is, there are only few examples of the error class, aacktls only one label for the
entire sequence, even if it is only a few frames that accoomah error event.

Since the raw data is too high-dimensional to allow for arcigffit learning, the recorded
images are projected to a low-dimensional feature space.r@$ulting feature vector can
be considered as a multivariate time series over the com@letjuence. The temporal
dynamics of the process are captured using continuous Hiltéekov Models (CHMMs)
with Gaussian Mixture Models (GMMs). Hidden Markov ModeldMMs) are widely
used probabilistic models for the analysis of time sequ&nespecially in the area of
speech recognition, gesture recognition and bioinforrsatnd efficient algorithms exist
for their implementation [8]. The task considered in thipgais closely related to the
problem of unusual event detection in video sequences,eMA&Ms showed promising

results [9]-[14]. In particular, it has been found that HMMee effective for unusual



event detection, if the normal activity exhibits little 1eility [15]. This assumption is
rarely fulfilled for video sequences of natural scenes witgetd to exhibit high variability
even in the normal state, but it is valid for industrial qtyalcontrol applications. By
definition, industrial processes must be highly repeatadiid therefore regular variations
in an industrial process are relatively small.

In the setting considered here, error events (positive teyere rare and only exam-
ples of regular sequences (negative examples) are awilalthe beginning. The feature
subspace is therefore computed from regular sequencesandlyhe resulting features of
the available negative examples are used to train a regetpresice model (RSM) using
CHMMs. In the next step, the RSM is used to identify unusugnsents within error
sequences and the detected outlier segments are used todetiga RSM model with
additional states and to thus obtain an error sequence n(e&a).

Related ideas for HMMs with GMMs have been considered foespeecognition [16]
and unusual event detection in video sequences [9]. In [Herai-supervised learning
technigue for unusual event detection in the context of @audiual meeting analysis
is proposed. The training procedure is iterative, wheredoheiteration the event with
the lowest likelihood under the regular model is used to adda@ditional state to the
regular model. In contrast in our approach, the expansioth@fregular model is based
on a change detection algorithm on the posterior frame fmibti@s in order to ensure
independence from absolute likelihood values. In additwea use a discriminative model
selection criterion which only adds states to the error seqge model if they better help
to discriminate between a regular sequence and an erroesegu

Several authors have investigated the benefits of HMMs fod#tection of error states in
industrial manufacturing processes [1]-[7]. In [1], [2]stshown that HMMs can improve
the precision of detecting known and unforeseen errorstatgrocess control applications.
[3], [5] consider the task of finding sudden changes in tochmfer machining processes
like drilling or milling with HMMs. In [6] principal componat analysis and HMMs are
combined for on-line fault detection in industrial processand the main contribution of
[7] is to use trained HMMs not only for an automatic diagnasisnachining processes

but also for their prognostics. In [4], an algorithm for dgieg changes in the transition



probability matrix is presented to identify faults. To ourdwledge, learning strategies for
weakly labeled data for the detection of unusual events dustrial processes have not
been considered previously.

The paper is organized as follows: Section Il describes thpgsed framework with its
dimension reduction, incremental model building and maadéction. Results of unusual
event detection in image sequences from industrial lasédimge processes are presented

in section I, followed by a discussion in section 1V. Comsions are offered in section V.

[1. INCREMENTAL LEARNING FORUNUSUAL EVENT DETECTION IN IMAGE

SEQUENCES

We are confronted with a highly imbalanced data set, wheeerégular sequences
(negative examples, members of clags) form the overwhelming majority and the se-
guences containing error events (positive examples, mesrddeclasswy) constitute the
minority clas$. The general ideas of the incremental learning framewoekeaplained in
the following, and a schematic of the proposed incremer@ining system is presented
in Fig. 1; the implementation details follow in the next sexs.

1) Subspace Computation & Dimension Reductidhe individual images of the recorded
sequences can be considered as high-dimensional featttia@sieThe number of features
is much larger than the number of observations, making atiginpr explicit dimension
reduction necessary. We have opted for the latter and hapéoged principal component
analysis (PCA) to find an appropriate linear subspace [138], [Due to the lack of positive
examples, the PCA subspace is computed using regular seggienly. The result of the
dimension reduction step is a time series of low dimensideaiure vectors containing
the relevant information of each image from the regular saqas.

2) HMM Training: Next, a model for the multivariate time series is trained. M8Awith
Mixtures of Gaussians as a model for the probability dersiitthe emission distributions)
are employed to represent the temporal dynamics of the Iymulgiprocess and to achieve
invariance to varying sequence length and position of thereies within a sequence.
HMMs with GMMs belong to the class of generative models. A egative learning

INote that the sequences from the error clagscan be further subdivided into different error types andefach error
type a separate HMM can be trained. To simplify the followagosition, the two-class problem is considered; but it
is straightforward to extend the approach to multiple enlasses due to the chosen generative classification aproac
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Fig. 1. Schematic overview of the training procedure of tlassification system (a) and its application to new sequence
(b). In the training stage, a linear subspace is computet ffte sequences without errors using principal component
analysis (PCA) and the recorded images are projected imgcstibspace to reduce the feature dimension. Using these
features a Hidden Markov Model (HMM) for the regular sequen¢RSM) is trained. The RSM is used in the next
step to locate potentially unusual segments within errgueeces by means of a change detection algorithm (outlier
detection). The unusual segments found are then used toexpa RSM to an error sequence model (ESM) by adding
additional states. The likelihood ratio of the data giveea ESM and RSM is used for the classification decision (b).

approach is opted, since only sequence labels but no frabeslare available in the
current application [19]. The discriminative classificatiof complete sequences would be
possible, but this results in a very high-dimensional d¢fasdgion problem and invariance
to the sequence length has to be achieved in pre-procedsipg #\ direct estimation of
the class boundary, as in discriminative methods, is nosipeson a single frame basis
without labels or prior assumptions. HMMs allow to detecuswmal frames in terms of
their exceptionally low likelihood given the trained model

The number of states of HMMs is an important design parametesugh states are
needed to represent the underlying process. However, imdyfaf models of increasing
complexity, the ones with more parameters (more stateg)anilays allow for a better
fit of the data. To avoid over-fitting, it is advisable to vgrivhether an increase in the
number of model parameters is really justified by the impnoset of the fit. The HMM
parameters are determined via maximum likelihood (ML), #relmodel with the optimal
number of parameters is referred to as regular sequencel {iREMI). It represents the

class of sequences without errors.



3) Model Expansion:Sequence labels are available for the training of an errer se
guence model (ESM) which is obtained by expanding the RSM aadlditional states. The
adaptation works as follows: The error sequencgsare partitioned into non-overlapping
segments of fixed size, and the segments are tested for dbitifyatvith the RSM.
The test statistic is the computed posterior log-likelithad a segment given the RSM.
Segments which provoke a significant drop in the log-liketiti are marked as outliers.
The parameters of the additional states are trained basdateooutlier segments. The
number of additional states added to the RSM has to be ctedrtd avoid unnecessarily
large models. If adding additional states to the ESM doesnwease the log-likelihood
ratio between sequences from the regular classeind sequences from the error class
the training is stopped, because further additional stategd describe the sequences from
both classesyy andwy equally well and would not enhance the discriminative power

4) Classification: For unlabeled sequences, the classification decision isdbas the
log-likelihood ratio of the data between the ESM and RSM (Bag 1(b)). If the log-
likelihood ratio is above an empirical threshalg ;, which is determined from the training
data set, the sequence is marked as erroneous.

In the following, the implementation of the incrementalrldag approach is specified

in more detail.

A. Dimension Reduction

PCA is a traditional technique for dimension reduction.delss a projection that best
approximates the data in a least-square sense. For theasgbspmputation, only samples
from the majority class are used. The transformation decs@p a feature space into a
principal subspacd’ and an orthogonal complementary spdceThe residual errok,
also calledDistanceFrom FeatureSpace (DFFS), is the Euclidean distance of a point in
feature space from the subspake Both the components in the-Space (corresponding
to the directions which describe the major variations in dlaga) as well as the residual
error carry information that can be used for classificatid].[ The DFFS signal increases
for images that are far from the trained subspace, and igfttrera measure of novelty.

PCA approximates the data in terms of a single multivarisa<sian distribution, hence

only first and second order statistical dependencies of tkelspcan be considered. For



complex objects such as faces it is often not possible taucaphe important information
for recognition or discrimination with a single covariamoatrix and therefore extensions of
PCA have been investigated [20]. Independent Componenty8isgICA) is one possible
method to take into account higher order pixel dependeni¥s has been tested on melt
pool images and no significant difference could be obserwedpared to the results of
PCA. It seems that second order statistics are sufficieneszribe the properties of the

disc-shaped melt pools which are simple objects compardacts.

B. Hidden Markov Model

HMMs are one of the most popular methods in statistics andhimaclearning for
modeling sequences and are used extensively in applisaiooh as speech or gesture
recognition. At time instancé the HMM exists in one of a finite set of stat€s, = j
with 1 < j < Ng. Without loss of generality the states are numbered from Xpwhere
N is the total number of states of the HMM. Stochastic traosgibetween states are
governed by a transition probability matrik. Each stat&), that could be visited at time
instancek could emit a single observatian, according to a probability distribution that
is specific to that state. The probability of a particulamtoauous observation, in state
Qr = j is given byb; (o) = P(ox|Qx = j) and is modeled with a GMM with parameters

Aj = Wi, fjms Xjm I
M
bj(or) = ij,mP(Ok\Mj,m, Yim); (1)
m=1

where M is the total number of mixture componenis,,,, is the weight of then mixture
component of statg, and P (ox|;.m, X;.m) Specifies a multivariate normal distribution with
mean vectoy; ,, and covariance matriX; ,,,. The complete set of HMM parameters for a
particular model is summarized by = {7, A, A} wherer is the initial state distribution
at timek = 0. The parameter§> of the HMM are estimated from observed data with
expectation-maximization (EM) algorithm. Starting fromiaitial guess, the EM algorithm
is an iterative procedure to find the maximum-likelihood (Vistimate of the unknown

parametersb [8], [21].



C. Training of the Regular Sequence Model

Instead of immediately training a separate HMM with parasrse®; for each class;,
first a model is learned for the regular sequence clgs®nly. Due to the large number
of available negative examples, the paramedessfor the regular sequence model (RSM)
can be estimated with high precision. The feature veator [y, €] at time k consists
of the principal components (P@). and the residual erraf,. The HMM parameter®
are estimated with the EM algorithm and the number of diffestates/Vy, is optimized

using the Bayesian Information Criterion (BIC) [22]:
~ ~ Kp
BIC(®) :logP(O|<I>)—7logKD (2)

whereO = {0y, 09, ...,0x}, Kp are the number of free model parameters &fglis the
size of the data set. The first term in eq. (2) is the likelihobdhe data given the model
and the second term a penalty for the model complexity. TthesBIC criterion tries to
select the simplest permissible model, among competingotexities, which still fits the
data well (Occams razor). The covariance matriegs, are assumed to be diagnoal and
all state transitions are allowed. The BIC is estimatedaisib-fold cross validation from

the training data.

D. Expansion of the RSM to the ESM by adding additional states

A crucial step in the incremental learning procedure is tecteghe outlier data which is
used to find a first estimate of the parameters for the additieror states. The selection
is based on a temporal change detection algorithm: Each IyédalBeled sequence is
partitioned into segments of constant size; for each segmehe log-likelihood L, is
approximated using the forward probability i.e. the probability of observing the partial

sequence&);.; = {o1,...,0r} and ending up in stat€), = j at timek:
Ak = P (Olzku Qr = j|(I)) (3)

The log-likelihood L, for segments is approximated with:

Ls - Z Z QO ks (4)

kes j=1



whereN, is the number of different states of the RSM. A robust temipditange detection
is used to flag those segments within a sequence that showramnadd change in the

log-likelihood:

7oL —med(L,)] )
med, |L, — med,(L, )|

where med is the median operator amdand ¢ are segment indices ranging over the

number of segments s In general the unusual event constibulg part of the sequence

and therefore manifests itself through a significant changie log-likelihood (see e.g.

Fig.2(a) e. Outlier segments are found with an empiricaldfiteesholdl; ; if L > Tr.,

then segment is identified as incompatible with the RSM (see Fig.2(b)).

A schematic overview of the ESM training is presented in Rg.First the outlier
segments are used to estimate the parameters and trangitbabilities between the
newly added error states. Next, the complete error segeeficeluding the error free
part) are used to estimate the transition probabilitiesnfithe newly added states and
the states of the RSM. In addition, the parameters of the stedes are updated in this
second training phase. It is therefore possible that unisgments which could not be
found by the conservative outlier detection can now be fadopaising the EM algorithm
[23]. During the training procedure of the ESM, the paramseté the well trained regular
states remain unchanged. State transitions are allowed &tbstates of the RSM to the
newly added states, and vice versa. The transition prababifrom the states of the
RSM to the newly added states are set to small constant vaBiiese sequences with
unusual events are rare, the transition probabilities asrestimated if they are directly
determined from the erroneous sequences. As an altertaterapirically chosen constant
values, the transition probabilities estimated by EM camhdtiplied with the expected
ratio of sequences containing error events to sequenchswrierror events. The transition
probabilities from the error states to the states of the R8bbee the mean duration of
an error event and can be determined directly from the trgisequences.

The number of necessary additional error stapeg; is optimized by maximizing the
log-likelihood ratio between the data from the sequencesataing errors and the regular

sequences when using the ESM. Discriminative model selecsi studied in [24] and the
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Fig. 2. (a) Logarithmic values of the forward probabiliyfor each frame within a sequence. The dip in the probability

around frame00 is caused by an unusual (error) event. In (b) the normaliagdikelihood L s of the segments computed
with eq. (5) is presented.
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Fig. 3. Schematic overview to estimate the parameters oétt@ sequence model (ESM).

criterion is referred to as the Discriminative InformatiGniterion (DIC):

1 & . 1 & , Kada
DIC(®g) = Vo Zlog P(Og|®E) — Ny Zlog P(Og|®E) — 5 log Kp  (6)
u=1 v=1

where K,qq are the additional parameters for the error sequence mg8dllf andO%/07, is
theu"/vt" training sequence andiz/ N the total number of training sequences with/without
error events. The DIC ensures that an increase in the nunfls¢éates for the error model
wg is not accompanied by an increase of the likelihood for trgulas sequences. The
DIC decreases if the additional states with their parameteys increase the likelihood

of both the regular and error sequences to a similar extanthis case, the new states
contain no information that is useful for the discriminatiof the two classes. A-fold

cross-validation is used to estimate the DIC.
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E. Maximum A Posteriori Decoder

Each image sequence belongs to a distinct sequenceuwglassdeled by a HMM with
parametersb,. The Maximum A Posteriori (MAP) decoder assigns unlabelegusnces

to the classv,,4p With the highest posterior probability:
wyrap(0) = arg max,, log P(w;|O) (7)

In the following, a two class problem is considered: An uelald sequence can either
be assigned to the regular sequence clgssr error sequence class;. Sequences which
belong to the error sequence clagscontain error events. The two classes can be compared

using the posterior log-likelihood ratio:

[ £len)] ©

0) = log—E 41y |22
p(O) og M| G Plon)

——— 4+ AL 9)
w

whereexp (Arr) = g—i% is the ratio of model priors weighted with the non-symmetric
cost factors’; andC’; for the sequences containing errors and the error free segself
p(O) > 0, the MAP decoder predicts class;ap = wg, otherwise it predicts; 4p = wg.
The weightsC'r and Cr are introduced to enable a trade off between the false pesiti
(FP) rate and the false negative (FN) rate. Sitfery)/P(wr) << 1, the MAP decoder
would almost always select; in order to a achieve an overall minimum probability of
error. But a FN is much more severe than a FP in fault detectpplications. Note that
the ESM is only an extension of the RSM and the thresibjd can be interpreted as a

measure of the severity of an error event.

I1l. EXPERIMENTS

The motivation for the design of the unusual event detectigstem is the quality
inspection of laser welding sequences. Many welds have gigity demands and one
possibility to satisfy the quality requirements is to monithe welding process with high
speed cameras. The interaction between the laser radiatidrwork piece leads to the
generation of secondary radiation. This radiation costamiormation about the stability

and the dynamics of the welding process. Therefore manyepsomspection methods
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are based on the evaluation of these emissions (see e.g[42}] Unusual events in the
recorded sequences of the laser welding process correildtéawits on the produced weld

seam.

A. Data Description

The experimental data was gathered over a 4 month period &gonoduction line.
The welding process was monitored with a high-speed CMOSamvith a rate off915
frames per second and a region of interest (ROQ4of 64 pixel. The recorded weld images
correspond to a field of view of approximately x 0.9 mm? . The welding process was
controlled with a temperature sensor to achieve a constalit geam depth resulting in a
very dynamic process, which makes it challenging to distisiy between normal process
fluctuations and abnormal error events in the recorded segse The manufactured weld
seams were visually inspected by experts and matched toaiesponding sequences
using an identification number. In totad9 parts with weld errors were collected and

classified in3 different error classes g, wgre, andwgs by visual inspection:

« wgi. annealing material particles
« wpo. Weld reinforcements / weld break-in

o wgs: general irregularities

The extent of the error on the manufactured part was alsal fatwveen 1 (weak) to 3
(strong) by visual examination. Each sequence was scretenedsure that the position
of the fault on the weld seam and the irregularity in the ravage sequence coincide.
The screening ensured a fair examination of the algorittsimge it was ensured that the
weld seam error is present in the used sequences. In addaroond 1000 sequences

from error free welding processes were collected. The gempsewere uniformly sampled
from the observation period in order to capture the regutacgss fluctuations. A sample
image from a recorded sequence of an error-free weld seammosnsin Fig. 4(a). The

disc shaped object is the recorded radiation from the lashiced plasma and is in the
following referred to the melt pool. Typical deformationsieh indicate weld seam faults
are shown in Fig. 4(b) to Fig. 4(d).

2Since the welding process is controlled, these have sirapgearance in the sequences.
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@ (b) (©) (d)

Fig. 4. Example images of the welding process as recorded GWM&S camera (inverted colormap). (a) Sample
intensity distribution of a regular welding process and {l§}l) recorded intensity distributions of error events Yoal
31 x 31 region of interest is shown.)

B. Subspace Decomposition

The feature subspace is computed from individual framesrof &ee welding processes
(see Fig. 4(a)). A region of interest (ROI) of si2é x 31 pixel is automatically extracted
from the recorded images4 x 64 pixel). The ROI is centered around the average center of
mass of a melt pool determined from all melt pool images lglonto the same welding
sequence. . The melt pool can be fully observed in this ROl amte only part of the
recorded image is used, minor translatiord § pixel) can be compensated. Within one
sequence the melt pool is not expected to change its pogitiless in case of an error
event), but between different sequences position invegidras to be ensured. The melt
pool is rotation invariant and no major changes are expeictets scale and brightness
unless in case of an error event. Since the observed gragsvae directly used for the
subspace computation, translation invariance has to héreshs

The mean image and the firsteigenvectors of the computed subspace from the regular
sequences are shown in Fig. 5. The eigenvectors descrilittogpal deviations from the
mean image for regular sequences. For the computation oktidual error the first20
eigenvectors are used, which cover approximadgfy of the total variance of the recorded
images from error free welding sequences. In addition, tte¢ Ji principal components
(PC) corresponding to the eigenvectors with the largesreigues are used in the feature
vectol. The time series of feature vectors are normalized over tomeach sequence and
for each feature separately, in order to compensate for alopmocess fluctuations. The
mean and variance for normalization are estimated from #ta tetween the first and
third quartile, to reduce the effect of outliers which shibbe detected.

3The first3 principal components covérs%, 16% and8% of the total variance of the recorded images, respectively.
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Fig. 5. Mean image followed by the first 4 eigenvectors (“Eid@eltPools”) describing the principal deformations of
a regular weld sequence.
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C. Regular Sequence Model (RSM)

First the parameters for the RSM were determined. Approteind0% of the data from
regular sequences were used to estimate the parameteth#ré0% were used for test
purposes. The obtainel/C values for different model complexities for the trainingala
set are compared in Fig. 6. Additional mixture elementsraffe significant increase in
the BIC beyondN, = 4.

For the current application, model complexity was sevepelyalized to avoid overfitting
and high computation times. An additional state or mixtuement was added only if it
increased theB/C' by more than5%. The optimal number of states was found to be
Ny = 4 and the optimal number of mixture componets = 2. This low number of
Gaussian mixture components ensures that temporal dysarecmodeled with different

states instead of different mixture elements.

D. Error Sequence Model (ESM)

The information from the sequence labels was used to exteedRSM to different

ESMs. A separate HMM was trained for each error clags The segment length for the
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change detection algorithm was set5td frames and the thresholf},, to indicate outlier
segments according to eq. (5) was se8 t@ conservative choice). This design parameter
was chosen manually such that only strongly pronounced exents of the training data
set are marked in this initialization step. The ESMs weré@ with80% of the gathered
error sequences. The number of additional states, optimigth the DIC (see eq. (6)),
varied betweer?2 and3. The functional principle of the classification system i®wh in
Fig. 7, where the log-likelihood of a recorded sequence utide RSM and one ESM
are presented for a sequence containing an error eventalargenaterial particles). The
RSM cannot describe the error event, therefore the lodili&ed values drop, whereas
the likelihood values for the ESM decrease less. This diffee in the likelihood is used
for the classification decision. Outside the error everd,likelihood values for the ESM
and RSM coincide and the larger the difference in the logllitood, the more distinct the
error event is.

Fig. 8 shows a sequence containing an unusual event from dasswy; (annealing
material particle) along with the computed features (PC BR&S) and posterior frame
log-likelihood ratio:

a1 Yiean P(Qr = @8, 0)
21 Ljean P(@Qx = j14,0)’

Lp(k) =log (10)

where Qr/|Qr| and Qr/|Qg| are the index/total number of the states from an ESM
describing the regular part and erroneous part of a sequess@ectively. The sign of the
posterior likelihood ratio indicates if the frame belongsan error event (positive value)

or not (negative value), and the absolute value indicatestimfidence in this decision.

E. Classification Results

Fig. 9 presents the receiver operator characteristics @& different feature com-
binations and classification methods for the test data. TBE Rurves are computed by
varying the parameted\;; for the test data set. In industrial applications, it is impot
to detect all erroneous sequences, therefore the FP rateRdl rate of0%, F P|rn—¢ iS
an important quality measure for the investigated clasdibo framework. The evaluation

procedure and data setss are the same for all used apprateswesded in the following e
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Negative peaks in the log-likelihood under the RSM can ben Se€(a); these negative peaks are caused by normal
process fluctuations. The ESM follows these peaks and trer¢fiey do not contribute to the classification decision.
In (b) the log-likelihood values for the RSM decrease sigaifilly whereas the values for the ESM only show a slight
decrease, with this difference indicating an error event.
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lnl
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Fig. 8. Part of a sequence containing an error event (amueatiaterial particle) with some recorded images, used
features (PC and DFFS) and computed posterior frame lefjHidod ratio. Frame3$000 and 2000 belong to the error
free part of the sequence. The images at frairi®9 and 1570 pertain to the error event and show a burning material
particle.
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Fig. 9. Comparison of the ROC curves for different classifica approaches and feature combinations for the
investigated data set. The ROCs are labeled with the uséarésaprincipal components (PC) or DFFS (Distance From
Feature Space) and whether two-class classification useakly labeled error sequences (R&HESM) or one-class
classification using error-free sequences only is employetess otherwise stated, HMMs are used for the classificati
For comparison a pure Gaussian Mixture Model (GMM) whichremmodel temporal dynamics and a discriminative
approach using a Polynomial classifier and time averagioty(Elass.) are presented. (b) shows a magnification of the
framed part of the ROCs in (a).

1) One-Class vs. Two-Class Classificatiorhe ROCs presented in Fig. 9 show that the
classification performance can be improved by using the Weladls. One-class classifi-
cation using only the RSMPC1,2,3&DFFS (RSM)) vyields a FP ratd’P|pn—o ~ 4.8%
and the area under the ROC (AUC) (s998. Two-class classification with the ESMs
(“PC1,2,3&DFFS (RSM+ESM)Jj reduces the FP Rate #0P|ry—o ~ 1.8% and increases
the AUC t00.999.

A two-class classification approach which evaluates thdikadihood ratios instead of
absolute log-likelihood values as for the one-class diaasion improves the detection of
weakly pronounced anomalies (temporally short and/or anhor deviations in the feature
values from normal sequences). Without learning the charad the weak anomalies, it
is more difficult to distinguish them from normal processiatons. For more pronounced
anomalies, the performance of one and two-class classiisatoincide.

2) Feature SelectionThe ROCs in Fig. 9 demonstrate that only the combination of
features of the principal (PC1,2,3) and residual subspBé&=$) enable a satisfactory
classification performance. The features from the prin@paspace detect changes in the
overall brightness and translations of the melt pool, waerthe DFFS signal detects de-
formations which have been not observed in the training slett@f regular sequences. The

ROC in Fig. 9 for the error detection with the DFFS signal al¢ibFFS (RSM+ESM)”)
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, Clearly demonstrates that this single feature cannotctiateerrors. The irregularities in
some erroneous sequences are only observable in the aiiscipspace and therefore the
DFFS signal alone cannot recognize them. The same holds étasaification with the
features from the principal subspace onl{P£t1,2,3 (RSM+ESM)’e.

3) GMM-based Approachtn addition to the HMM approach, the same training method
as described in section Il for weakly labeled data was uséaim a pure Gaussian Mixture
Model (GMM) (No = 1). In comparison to a HMM, a GMM does not use sequence
information to describe the data. The variability of theadat captured by increasing the
number of mixtures\/, instead of increasing the number of statés and the number of
mixtures in a HMM. For the RSM, a GMM with/ = 12 mixture elements was trained and
for each error class betweéno 3 mixtures were added to obtain the ESMs. The ROC in
Fig. 9 shows that the performanteC1,2,3&DFFS (RSM+ESM) GMM”) is significantly
below the performance of the HMM approach for small FN-r&fé®|ry—, ~ 78.0%) and
comparable for higher FN rates. Thus it can be concludedftinareakly pronouced error
events dynamic informatiois necessary to dinstiguish them from the normal variations of
the regular sequences; whereas for strongly pronouncederents, temporal information
is not strictly required.

4) Comparison with a Discriminative Classification Apprbad he HMM classification
system is compared with a two-stage, discriminative diassion approach for industrial
processes [27]. The classification system in [27] evaluageh individual frame using a
polynomial classifier. The classification scores from consee frames are then aggregated
with a temporal low pass filter. In its training phase, thip@ach requires a label for each
individual frame. The Viterbi path (the most likely sequeraf states) for each sequence,
computed using the trained ESMs, is employed to obtain friaipels. These frame labels
are used for the training of the parameters of the polynooi&sifiers. For the training,
80% of the erroneous sequences alid; of the regular sequences are used. The optimum
polynomial degree was and the filter lengthl25 s both values have been determined
using cross validation. The classification performanceresgnted in Fig. 9. It can be
seen that the performance decreases compared to the HMMaagbpiThe ROC curve for

the discriminative approach is always below the ROC for tivMH Note that the HMM
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TABLE |
SUMMARY OF FPRATES AT A FN RATE OF 0% (ALL ERRONEOUS SEQUENCES ARE FOUN)) AND THE AREA UNDER
THE ROCs (AUC) FOR DIFFERENT CLASSIFICATION APPROACHES

FP|py—o | AUC
PC1,2,3& DFFS (RSM) 4.82% 0.998
PC1,2,3& DFFS (RSMrESM) L.77% | 0.999
PC1,2,3& DFFS (RSM+ESM) - GMM 78.0% 0.989
PC1,2,3& DFFS (Polynomial Classifier) 6.43% | 0.994

approach was used to get the frame labels for the discrimeapproach. Without the
HMM as a preprocessing step, fully labeled sequences woake been necessary. The
results for the FP raté' P|ry—o and the AUC for the different classification approaches
are summarized in table I.

5) Correlation between Classification Outcome and Error é8igy: In Fig. 10 the
log-likelihood ratios are sorted according to the erroresity of the error on the part
(established by visual inspection). A statistically nagwn#ficant correlation between the
error severity on the part and the output of the classifioasigstem can be seen: the log-
likelihood ratio increases with higher error severity. Timn-significance of the correlation
must be attributed mostly to the sensor system, not the iligac interpretation of the
sequences: In some sequences, the error on the weld seamesevere than would be

expected from its appearance in the corresponding sequence

IV. DISCUSSION

The observations in section IlI-E lead to the following pireal use of the classification

framework for monitoring industrial processes:

« Initialization Stage: First, &S M is trained from regular sequences and a conservative
classification threshold is used to flag erroneous partsltieg in a high FP rate. The
parts corresponding to the flagged sequences are then sgipiay an expert. The
knowledge of which sequences correspond to real errorsepritduced part can be
used to train ESMs and reduce the FP rate in the following.

. Classification & Optimization Stage: The RSM (one-classglfécation) is used in
combination with the RSMMESM (two-class classification) approach. On the one hand

it is possible to detect fault states which were not accalifidve during the training
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Fig. 10. Box plot of the computed log-likelihood ratio for 14¥35/38/26 parts of error severity 0/1/2/3. By definition
the error severity of zero corresponds to error free pafte dbserved log-likelihood ratios for each error severiy a
summarized by the lowest observation, the lower quartile, hedian, the upper quartile, and the largest observation
(from bottom to top); outliers are marked as additional poin the plot. A non-significant correlation between theerr
severity and the computed log-likelihood ratio is visikitedicating the correct interpretation of the recorded seges
with the used classification method.
procedure, and on the other hand the available informatiorharmless sequence
anomalies that do not jeopardize quality has been includeckduce the FP rate.
The threshold for the one-class classification with the RSMhosen such that only
strongly pronounced anomalies are found in order to avoitharease in the FP rate.
Once more error sequences are available, the parametéss efror states of the ESM
can be updated. ML parameter estimatgs, from the newly collected training data

are computed and the model parameters can be updated:
D =EDyg+ (1 — &) Prew (11)

where{ compromises between the new and previous parameter essimat

This approach combines the benefits of both one- and twas-classification.

V. CONCLUSIONS

In an industrial environment, it is imperative that classifion systems can be trained
with as little user interaction as possible. An automateassification system for the

detection of rare events in image sequences has been me@seich can analyze a large



21

amount of weakly labeled data with strongly unequal clasp@rtions with minimal user

interaction. In the considered application, sequencddadre relatively cheap, whereas the

marking of error events within sequences is tedious andrestpe. Starting from a RSM,

ESMs are built by using a temporal change detection alguariti select outlier segments.

The usefulness of the classification system has been vadiaat industrial data from laser

welding processes. For the investigated data set, all segaecontaining unusual events

can be found with a small estimated FP ratel &%.

The use of HMMs allows to take temporal dependencies of thtufes into account.

We have demonstrated that this capability to model the dyecsof a process improves the

classification performance compared to a generative appeowhich does not use tem-

poral information (GMM) and compared to a temporal smodajtof classification scores

obtained for individual frames from a discriminative apgeb (Polynomial Classifier).
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