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Abstract

In this paper, we present an automatic classification framework combining appearance based

features and Hidden Markov Models (HMM) to detect unusual events in image sequences. One

characteristic of the classification task is that anomaliesare rare. This reflects the situation in the

quality control of industrial processes, where error events are scarce by nature. As an additional

restriction, class labels are only available for the complete image sequence, since frame-wise

manual scanning of the recorded sequences for anomalies is too expensive and should therefore

be avoided.

The proposed framework reduces the feature space dimensionof the image sequences by

employing subspace methods and encodes characteristic temporal dynamics using continuous

Hidden Markov Models (CHMMs). The applied learning procedure is as follows: 1) A generative

model for the regular sequences is trained (one-class learning). 2) The regular sequence model

(RSM) is used to locate potentially unusual segments withinerror sequences by means of a

change detection algorithm (outlier detection). 3) Unusual segments are used to expand the RSM

to an error sequence model (ESM). The complexity of the ESM iscontrolled by means of the

Bayesian Information Criterion (BIC). The likelihood ratio of the data given the ESM and the

RSM is used for the classification decision. This ratio is close to one for sequences without error

events and increases for sequences containing error events. Experimental results are presented

for image sequences recorded from industrial laser weldingprocesses. We demonstrate that the

learning procedure can significantly reduce the user interaction and that sequences with error

events can be found with a small false positive rate. It has also been shown that a modeling of

the temporal dynamics is necessary to reach these low error rates.

Index Terms

State-space models, Weak labels, One-class learning, Outlier detection, Time series classifi-

cation
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I. INTRODUCTION

In many event detection applications, the aberrations of interest occur only rarely. This

lack of positive examples is, for instance, a characteristic of efficient industrial processes,

and complicates the training of automated systems that relyon statistical learning. In this

paper, we consider the task of finding error events within image sequences recorded from

an industrial manufacturing process. In this laser weldingapplication, error events can

be distinguished from regular frames in terms of their spatial appearance and temporal

dynamics. Class labels are only available for the complete sequence (sequence labels) and

specify the quality of the produced part (either error free or erroneous). It would be overly

time consuming to obtain labels for each individual frame within a sequence (frame labels)

due to the large amount of data (in the present application, an image sequence comprises

up to 4000 frames). However, it is deemed acceptable to obtain frame labels in very few

cases in which the error event cannot be clearly located within a sequence.

As others [1]–[7] have done before, we propose to use Hidden Markov Models (HMMs)

to capture the dynamics of the process and ultimately discriminate between regular and

erroneous sequences. The focus of this contribution is to find ways that allow to train these

HMMs with the smallest possible amount of user interaction.In particular, we propose

a strategy that allows to use a strongly imbalanced and only weakly labeled training set.

That is, there are only few examples of the error class, and there is only one label for the

entire sequence, even if it is only a few frames that account for an error event.

Since the raw data is too high-dimensional to allow for an efficient learning, the recorded

images are projected to a low-dimensional feature space. The resulting feature vector can

be considered as a multivariate time series over the complete sequence. The temporal

dynamics of the process are captured using continuous Hidden Markov Models (CHMMs)

with Gaussian Mixture Models (GMMs). Hidden Markov Models (HMMs) are widely

used probabilistic models for the analysis of time sequences, especially in the area of

speech recognition, gesture recognition and bioinformatics, and efficient algorithms exist

for their implementation [8]. The task considered in this paper is closely related to the

problem of unusual event detection in video sequences, where HMMs showed promising

results [9]–[14]. In particular, it has been found that HMMsare effective for unusual
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event detection, if the normal activity exhibits little variability [15]. This assumption is

rarely fulfilled for video sequences of natural scenes whichtend to exhibit high variability

even in the normal state, but it is valid for industrial quality control applications. By

definition, industrial processes must be highly repeatable, and therefore regular variations

in an industrial process are relatively small.

In the setting considered here, error events (positive events) are rare and only exam-

ples of regular sequences (negative examples) are available in the beginning. The feature

subspace is therefore computed from regular sequences onlyand the resulting features of

the available negative examples are used to train a regular sequence model (RSM) using

CHMMs. In the next step, the RSM is used to identify unusual segments within error

sequences and the detected outlier segments are used to expand the RSM model with

additional states and to thus obtain an error sequence model(ESM).

Related ideas for HMMs with GMMs have been considered for speech recognition [16]

and unusual event detection in video sequences [9]. In [9], asemi-supervised learning

technique for unusual event detection in the context of audio-visual meeting analysis

is proposed. The training procedure is iterative, where in each iteration the event with

the lowest likelihood under the regular model is used to add an additional state to the

regular model. In contrast in our approach, the expansion ofthe regular model is based

on a change detection algorithm on the posterior frame probabilities in order to ensure

independence from absolute likelihood values. In addition, we use a discriminative model

selection criterion which only adds states to the error sequence model if they better help

to discriminate between a regular sequence and an error sequence.

Several authors have investigated the benefits of HMMs for the detection of error states in

industrial manufacturing processes [1]–[7]. In [1], [2] itis shown that HMMs can improve

the precision of detecting known and unforeseen error states in process control applications.

[3], [5] consider the task of finding sudden changes in tool wear for machining processes

like drilling or milling with HMMs. In [6] principal component analysis and HMMs are

combined for on-line fault detection in industrial processes, and the main contribution of

[7] is to use trained HMMs not only for an automatic diagnosisof machining processes

but also for their prognostics. In [4], an algorithm for detecting changes in the transition
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probability matrix is presented to identify faults. To our knowledge, learning strategies for

weakly labeled data for the detection of unusual events in industrial processes have not

been considered previously.

The paper is organized as follows: Section II describes the proposed framework with its

dimension reduction, incremental model building and modelselection. Results of unusual

event detection in image sequences from industrial laser welding processes are presented

in section III, followed by a discussion in section IV. Conclusions are offered in section V.

II. I NCREMENTAL LEARNING FOR UNUSUAL EVENT DETECTION IN IMAGE

SEQUENCES

We are confronted with a highly imbalanced data set, where the regular sequences

(negative examples, members of classωR) form the overwhelming majority and the se-

quences containing error events (positive examples, members of classωE) constitute the

minority class1. The general ideas of the incremental learning framework are explained in

the following, and a schematic of the proposed incremental learning system is presented

in Fig. 1; the implementation details follow in the next sections.

1) Subspace Computation & Dimension Reduction:The individual images of the recorded

sequences can be considered as high-dimensional feature vectors. The number of features

is much larger than the number of observations, making an implicit or explicit dimension

reduction necessary. We have opted for the latter and have employed principal component

analysis (PCA) to find an appropriate linear subspace [17], [18] . Due to the lack of positive

examples, the PCA subspace is computed using regular sequences only. The result of the

dimension reduction step is a time series of low dimensionalfeature vectors containing

the relevant information of each image from the regular sequences.

2) HMM Training: Next, a model for the multivariate time series is trained. HMMs (with

Mixtures of Gaussians as a model for the probability densityof the emission distributions)

are employed to represent the temporal dynamics of the underlying process and to achieve

invariance to varying sequence length and position of the anomalies within a sequence.

HMMs with GMMs belong to the class of generative models. A generative learning

1Note that the sequences from the error classωE can be further subdivided into different error types and foreach error
type a separate HMM can be trained. To simplify the followingexposition, the two-class problem is considered; but it
is straightforward to extend the approach to multiple errorclasses due to the chosen generative classification approach.
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Fig. 1. Schematic overview of the training procedure of the classification system (a) and its application to new sequences
(b). In the training stage, a linear subspace is computed from the sequences without errors using principal component
analysis (PCA) and the recorded images are projected into this subspace to reduce the feature dimension. Using these
features a Hidden Markov Model (HMM) for the regular sequences (RSM) is trained. The RSM is used in the next
step to locate potentially unusual segments within error sequences by means of a change detection algorithm (outlier
detection). The unusual segments found are then used to expand the RSM to an error sequence model (ESM) by adding
additional states. The likelihood ratio of the data given the ESM and RSM is used for the classification decision (b).

approach is opted, since only sequence labels but no frame labels are available in the

current application [19]. The discriminative classification of complete sequences would be

possible, but this results in a very high-dimensional classification problem and invariance

to the sequence length has to be achieved in pre-processing steps. A direct estimation of

the class boundary, as in discriminative methods, is not possible on a single frame basis

without labels or prior assumptions. HMMs allow to detect unusual frames in terms of

their exceptionally low likelihood given the trained model.

The number of states of HMMs is an important design parameter; enough states are

needed to represent the underlying process. However, in a family of models of increasing

complexity, the ones with more parameters (more states) will always allow for a better

fit of the data. To avoid over-fitting, it is advisable to verify whether an increase in the

number of model parameters is really justified by the improvement of the fit. The HMM

parameters are determined via maximum likelihood (ML), andthe model with the optimal

number of parameters is referred to as regular sequence model (RSM). It represents the

class of sequences without errors.
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3) Model Expansion:Sequence labels are available for the training of an error se-

quence model (ESM) which is obtained by expanding the RSM with additional states. The

adaptation works as follows: The error sequencesωE are partitioned into non-overlapping

segments of fixed size, and the segments are tested for compatibility with the RSM.

The test statistic is the computed posterior log-likelihood of a segment given the RSM.

Segments which provoke a significant drop in the log-likelihood are marked as outliers.

The parameters of the additional states are trained based onthe outlier segments. The

number of additional states added to the RSM has to be controlled to avoid unnecessarily

large models. If adding additional states to the ESM does notincrease the log-likelihood

ratio between sequences from the regular classωR and sequences from the error classωE,

the training is stopped, because further additional stateswould describe the sequences from

both classesωR andωE equally well and would not enhance the discriminative power.

4) Classification: For unlabeled sequences, the classification decision is based on the

log-likelihood ratio of the data between the ESM and RSM (seeFig. 1(b)). If the log-

likelihood ratio is above an empirical threshold∆LL, which is determined from the training

data set, the sequence is marked as erroneous.

In the following, the implementation of the incremental learning approach is specified

in more detail.

A. Dimension Reduction

PCA is a traditional technique for dimension reduction. It seeks a projection that best

approximates the data in a least-square sense. For the subspace computation, only samples

from the majority class are used. The transformation decomposes a feature space into a

principal subspaceF and an orthogonal complementary spaceF . The residual errorǫ,

also calledDistanceFrom FeatureSpace (DFFS), is the Euclidean distance of a point in

feature space from the subspaceF . Both the components in theF -Space (corresponding

to the directions which describe the major variations in thedata) as well as the residual

error carry information that can be used for classification [18]. The DFFS signal increases

for images that are far from the trained subspace, and is therefore a measure of novelty.

PCA approximates the data in terms of a single multivariate Gaussian distribution, hence

only first and second order statistical dependencies of the pixels can be considered. For
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complex objects such as faces it is often not possible to capture the important information

for recognition or discrimination with a single covariancematrix and therefore extensions of

PCA have been investigated [20]. Independent Component Analysis (ICA) is one possible

method to take into account higher order pixel dependencies. ICA has been tested on melt

pool images and no significant difference could be observed compared to the results of

PCA. It seems that second order statistics are sufficient to describe the properties of the

disc-shaped melt pools which are simple objects compared tofaces.

B. Hidden Markov Model

HMMs are one of the most popular methods in statistics and machine learning for

modeling sequences and are used extensively in applications such as speech or gesture

recognition. At time instancek the HMM exists in one of a finite set of statesQk = j

with 1 ≤ j ≤ NQ. Without loss of generality the states are numbered from 1 toNQ, where

NQ is the total number of states of the HMM. Stochastic transitions between states are

governed by a transition probability matrixA. Each stateQk that could be visited at time

instancek could emit a single observationok according to a probability distribution that

is specific to that state. The probability of a particular, continuous observationok in state

Qk = j is given bybj(ok) = P (ok|Qk = j) and is modeled with a GMM with parameters

λj = {wj,m, µj,m, Σj,m}:

bj(ok) =
M∑

m=1

wj,mP (ok|µj,m, Σj,m), (1)

whereM is the total number of mixture components,wj,m is the weight of themth mixture

component of statej, andP (ok|µj,m, Σj,m) specifies a multivariate normal distribution with

mean vectorµj,m and covariance matrixΣj,m. The complete set of HMM parameters for a

particular model is summarized byΦ = {π, λ, A} whereπ is the initial state distribution

at time k = 0. The parameterŝΦ of the HMM are estimated from observed data with

expectation-maximization (EM) algorithm. Starting from an initial guess, the EM algorithm

is an iterative procedure to find the maximum-likelihood (ML) estimate of the unknown

parametersΦ [8], [21].
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C. Training of the Regular Sequence Model

Instead of immediately training a separate HMM with parametersΦi for each classωi,

first a model is learned for the regular sequence classωR only. Due to the large number

of available negative examples, the parametersΦR for the regular sequence model (RSM)

can be estimated with high precision. The feature vectorok = [yk, ǫk] at time k consists

of the principal components (PC)yk and the residual errorǫk. The HMM parametersΦR

are estimated with the EM algorithm and the number of different statesNQ is optimized

using the Bayesian Information Criterion (BIC) [22]:

BIC(Φ̂) = log P (O|Φ̂) −
KP

2
log KD (2)

whereO = {o1, o2, . . . , oK}, KP are the number of free model parameters andKD is the

size of the data set. The first term in eq. (2) is the likelihoodof the data given the model

and the second term a penalty for the model complexity. Thus,the BIC criterion tries to

select the simplest permissible model, among competing complexities, which still fits the

data well (Occams razor). The covariance matricesΣj,m are assumed to be diagnoal and

all state transitions are allowed. The BIC is estimated using a 5-fold cross validation from

the training data.

D. Expansion of the RSM to the ESM by adding additional states

A crucial step in the incremental learning procedure is to select the outlier data which is

used to find a first estimate of the parameters for the additional error states. The selection

is based on a temporal change detection algorithm: Each weakly labeled sequence is

partitioned into segments of constant size; for each segment s the log-likelihoodLs is

approximated using the forward probabilityα, i.e. the probability of observing the partial

sequenceO1:k = {o1, ..., ok} and ending up in stateQk = j at timek:

αj,k = P (O1:k, Qk = j|Φ) (3)

The log-likelihoodLs for segments is approximated with:

Ls =
∑

k∈s

NQ∑

j=1

αj,k, (4)
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whereNQ is the number of different states of the RSM. A robust temporal change detection

is used to flag those segments within a sequence that show an abnormal change in the

log-likelihood:

L̃s =
|Ls − medp(Lp)|

medq |Lq − medp(Lp)|
, (5)

where med is the median operator andp and q are segment indices ranging over the

number of segments s In general the unusual event constitutes only part of the sequence

and therefore manifests itself through a significant changein the log-likelihood (see e.g.

Fig.2(a) e. Outlier segments are found with an empirical fixed thresholdTLs
; if L̃s > TLs

,

then segments is identified as incompatible with the RSM (see Fig.2(b)).

A schematic overview of the ESM training is presented in Fig.3. First the outlier

segments are used to estimate the parameters and transitionprobabilities between the

newly added error states. Next, the complete error sequences (including the error free

part) are used to estimate the transition probabilities from the newly added states and

the states of the RSM. In addition, the parameters of the error states are updated in this

second training phase. It is therefore possible that unusual segments which could not be

found by the conservative outlier detection can now be foundby using the EM algorithm

[23]. During the training procedure of the ESM, the parameters of the well trained regular

states remain unchanged. State transitions are allowed from all states of the RSM to the

newly added states, and vice versa. The transition probabilities from the states of the

RSM to the newly added states are set to small constant values. Since sequences with

unusual events are rare, the transition probabilities are overestimated if they are directly

determined from the erroneous sequences. As an alternativeto empirically chosen constant

values, the transition probabilities estimated by EM can bemultiplied with the expected

ratio of sequences containing error events to sequences without error events. The transition

probabilities from the error states to the states of the RSM encode the mean duration of

an error event and can be determined directly from the training sequences.

The number of necessary additional error statesQadd is optimized by maximizing the

log-likelihood ratio between the data from the sequences containing errors and the regular

sequences when using the ESM. Discriminative model selection is studied in [24] and the
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Fig. 2. (a) Logarithmic values of the forward probabilityα for each frame within a sequence. The dip in the probability
around frame600 is caused by an unusual (error) event. In (b) the normalized log-likelihoodL̃S of the segments computed
with eq. (5) is presented.
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Fig. 3. Schematic overview to estimate the parameters of theerror sequence model (ESM).

criterion is referred to as the Discriminative InformationCriterion (DIC):

DIC(ΦE) =
1

NE

NE∑

u=1

log P (Ou
E|ΦE) −

1

NR

NR∑

v=1

log P (Ov
R|ΦE) −

Kadd

2
log KD (6)

whereKadd are the additional parameters for the error sequence model (ESM) andOu
E/Ov

R is

theuth/vth training sequence andNE/NR the total number of training sequences with/without

error events. The DIC ensures that an increase in the number of states for the error model

ωE is not accompanied by an increase of the likelihood for the regular sequences. The

DIC decreases if the additional states with their parametersKadd increase the likelihood

of both the regular and error sequences to a similar extent. In this case, the new states

contain no information that is useful for the discrimination of the two classes. A5-fold

cross-validation is used to estimate the DIC.
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E. Maximum A Posteriori Decoder

Each image sequence belongs to a distinct sequence classωi modeled by a HMM with

parametersΦi. The Maximum A Posteriori (MAP) decoder assigns unlabeled sequences

to the classωMAP with the highest posterior probability:

ωMAP (O) = arg maxωi
log P (ωi|O) (7)

In the following, a two class problem is considered: An unlabeled sequence can either

be assigned to the regular sequence classωR or error sequence classωE. Sequences which

belong to the error sequence classωE contain error events. The two classes can be compared

using the posterior log-likelihood ratio:

ρ(O) = log
P (ωE|O)

P (ωR|O)
+ ln

[
CE

CR

P (ωE)

P (ωR)

]
(8)

= log
P (ωE|O)

P (ωR|O)
+ ∆LL (9)

whereexp (∆LL) = CE

CR

P (ωE)
P (ωR)

is the ratio of model priors weighted with the non-symmetric

cost factorsCE andCR for the sequences containing errors and the error free sequences. If

ρ(O) > 0, the MAP decoder predicts classωMAP = ωE, otherwise it predictsωMAP = ωR.

The weightsCE and CR are introduced to enable a trade off between the false positive

(FP) rate and the false negative (FN) rate. SinceP (ωE)/P (ωR) << 1, the MAP decoder

would almost always selectωR in order to a achieve an overall minimum probability of

error. But a FN is much more severe than a FP in fault detectionapplications. Note that

the ESM is only an extension of the RSM and the threshold∆LL can be interpreted as a

measure of the severity of an error event.

III. EXPERIMENTS

The motivation for the design of the unusual event detectionsystem is the quality

inspection of laser welding sequences. Many welds have highquality demands and one

possibility to satisfy the quality requirements is to monitor the welding process with high

speed cameras. The interaction between the laser radiationand work piece leads to the

generation of secondary radiation. This radiation contains information about the stability

and the dynamics of the welding process. Therefore many process inspection methods
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are based on the evaluation of these emissions (see e.g. [25]–[27]). Unusual events in the

recorded sequences of the laser welding process correlate with faults on the produced weld

seam.

A. Data Description

The experimental data was gathered over a 4 month period froma production line.

The welding process was monitored with a high-speed CMOS camera with a rate of7915

frames per second and a region of interest (ROI) of64×64 pixel. The recorded weld images

correspond to a field of view of approximately0.9× 0.9 mm2 . The welding process was

controlled with a temperature sensor to achieve a constant weld seam depth resulting in a

very dynamic process, which makes it challenging to distinguish between normal process

fluctuations and abnormal error events in the recorded sequences. The manufactured weld

seams were visually inspected by experts and matched to the corresponding sequences

using an identification number. In total,99 parts with weld errors were collected and

classified in3 different error classesωE1, ωE2, andωE3 by visual inspection:

• ωE1: annealing material particles

• ωE2: weld reinforcements / weld break-in2

• ωE3: general irregularities

The extent of the error on the manufactured part was also rated between 1 (weak) to 3

(strong) by visual examination. Each sequence was screenedto ensure that the position

of the fault on the weld seam and the irregularity in the raw image sequence coincide.

The screening ensured a fair examination of the algorithms,since it was ensured that the

weld seam error is present in the used sequences. In addition, around1000 sequences

from error free welding processes were collected. The sequences were uniformly sampled

from the observation period in order to capture the regular process fluctuations. A sample

image from a recorded sequence of an error-free weld seam is shown in Fig. 4(a). The

disc shaped object is the recorded radiation from the laser induced plasma and is in the

following referred to the melt pool. Typical deformations which indicate weld seam faults

are shown in Fig. 4(b) to Fig. 4(d).

2Since the welding process is controlled, these have similarappearance in the sequences.
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(a) (b) (c) (d)

Fig. 4. Example images of the welding process as recorded by aCMOS camera (inverted colormap). (a) Sample
intensity distribution of a regular welding process and (b)- (d) recorded intensity distributions of error events (only a
31× 31 region of interest is shown.)

B. Subspace Decomposition

The feature subspace is computed from individual frames of error free welding processes

(see Fig. 4(a)). A region of interest (ROI) of size31× 31 pixel is automatically extracted

from the recorded images (64×64 pixel). The ROI is centered around the average center of

mass of a melt pool determined from all melt pool images belonging to the same welding

sequence. . The melt pool can be fully observed in this ROI and, since only part of the

recorded image is used, minor translations (±16 pixel) can be compensated. Within one

sequence the melt pool is not expected to change its position(unless in case of an error

event), but between different sequences position invariance has to be ensured. The melt

pool is rotation invariant and no major changes are expectedin its scale and brightness

unless in case of an error event. Since the observed gray values are directly used for the

subspace computation, translation invariance has to be ensured.

The mean image and the first4 eigenvectors of the computed subspace from the regular

sequences are shown in Fig. 5. The eigenvectors describe theprincipal deviations from the

mean image for regular sequences. For the computation of theresidual errorǫ the first20

eigenvectors are used, which cover approximately98% of the total variance of the recorded

images from error free welding sequences. In addition, the first 3 principal components

(PC) corresponding to the eigenvectors with the largest eigenvalues are used in the feature

vector3. The time series of feature vectors are normalized over timefor each sequence and

for each feature separately, in order to compensate for normal process fluctuations. The

mean and variance for normalization are estimated from the data between the first and

third quartile, to reduce the effect of outliers which should be detected.

3The first3 principal components cover55%, 16% and8% of the total variance of the recorded images, respectively.
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Fig. 5. Mean image followed by the first 4 eigenvectors (“Eigen-MeltPools”) describing the principal deformations of
a regular weld sequence.
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Fig. 6. Topology optimization for the Regular Sequence Model (RSM) with the Bayesian Information Criterion (BIC).
The number of statesNQ and the number of mixture elementsM are varied.

C. Regular Sequence Model (RSM)

First the parameters for the RSM were determined. Approximately 40% of the data from

regular sequences were used to estimate the parameters, theother60% were used for test

purposes. The obtainedBIC values for different model complexities for the training data

set are compared in Fig. 6. Additional mixture elements offer no significant increase in

the BIC beyondNQ = 4.

For the current application, model complexity was severelypenalized to avoid overfitting

and high computation times. An additional state or mixture element was added only if it

increased theBIC by more than5%. The optimal number of states was found to be

NQ = 4 and the optimal number of mixture componentsM = 2. This low number of

Gaussian mixture components ensures that temporal dynamics are modeled with different

states instead of different mixture elements.

D. Error Sequence Model (ESM)

The information from the sequence labels was used to extend the RSM to different

ESMs. A separate HMM was trained for each error classωEi. The segment length for the
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change detection algorithm was set to50 frames and the thresholdTLs
to indicate outlier

segments according to eq. (5) was set to8 (a conservative choice). This design parameter

was chosen manually such that only strongly pronounced error events of the training data

set are marked in this initialization step. The ESMs were trained with80% of the gathered

error sequences. The number of additional states, optimized with the DIC (see eq. (6)),

varied between2 and3. The functional principle of the classification system is shown in

Fig. 7, where the log-likelihood of a recorded sequence under the RSM and one ESM

are presented for a sequence containing an error event (annealing material particles). The

RSM cannot describe the error event, therefore the log-likelihood values drop, whereas

the likelihood values for the ESM decrease less. This difference in the likelihood is used

for the classification decision. Outside the error event, the likelihood values for the ESM

and RSM coincide and the larger the difference in the log-likelihood, the more distinct the

error event is.

Fig. 8 shows a sequence containing an unusual event from error classωE1 (annealing

material particle) along with the computed features (PC andDFFS) and posterior frame

log-likelihood ratio:

LF (k) = log

1
|QE |

∑
j∈QE

P (Qk = j|ΦE , O)
1

|QR|

∑
j∈QR

P (Qk = j|ΦR, O)
, (10)

where QR/|QR| and QE/|QE| are the index/total number of the states from an ESM

describing the regular part and erroneous part of a sequence, respectively. The sign of the

posterior likelihood ratio indicates if the frame belongs to an error event (positive value)

or not (negative value), and the absolute value indicates the confidence in this decision.

E. Classification Results

Fig. 9 presents the receiver operator characteristics (ROCs) for different feature com-

binations and classification methods for the test data. The ROC curves are computed by

varying the parameter∆LL for the test data set. In industrial applications, it is important

to detect all erroneous sequences, therefore the FP rate fora FN rate of0%, FP |FN=0 is

an important quality measure for the investigated classification framework. The evaluation

procedure and data setss are the same for all used approachesdescribed in the following e
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Fig. 7. Frame log-likelihood values of part of a regular sequence (a) and of an error event under the RSM (dashed line)
and ESM (solid line) in (b). For the regular part of the sequence, the log-likelihood values for both models coincide.
Negative peaks in the log-likelihood under the RSM can be seen in (a); these negative peaks are caused by normal
process fluctuations. The ESM follows these peaks and therefore they do not contribute to the classification decision.
In (b) the log-likelihood values for the RSM decrease significantly whereas the values for the ESM only show a slight
decrease, with this difference indicating an error event.

Frame 1000 Frame 1520 Frame 1570 Frame 2000
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DFFS
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Fig. 8. Part of a sequence containing an error event (annealing material particle) with some recorded images, used
features (PC and DFFS) and computed posterior frame log-likelihood ratio. Frames1000 and2000 belong to the error
free part of the sequence. The images at frames1520 and1570 pertain to the error event and show a burning material
particle.
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Fig. 9. Comparison of the ROC curves for different classification approaches and feature combinations for the
investigated data set. The ROCs are labeled with the used features: principal components (PC) or DFFS (Distance From
Feature Space) and whether two-class classification using weakly labeled error sequences (RSM&ESM) or one-class
classification using error-free sequences only is employed. Unless otherwise stated, HMMs are used for the classification.
For comparison a pure Gaussian Mixture Model (GMM) which cannot model temporal dynamics and a discriminative
approach using a Polynomial classifier and time averaging (Poly. Class.) are presented. (b) shows a magnification of the
framed part of the ROCs in (a).

1) One-Class vs. Two-Class Classification:The ROCs presented in Fig. 9 show that the

classification performance can be improved by using the weaklabels. One-class classifi-

cation using only the RSM (“PC1,2,3&DFFS (RSM)”) yields a FP rateFP |FN=0 ≈ 4.8%

and the area under the ROC (AUC) is0.998. Two-class classification with the ESMs

(“PC1,2,3&DFFS (RSM+ESM)”) reduces the FP Rate toFP |FN=0 ≈ 1.8% and increases

the AUC to0.999.

A two-class classification approach which evaluates the log-likelihood ratios instead of

absolute log-likelihood values as for the one-class classification improves the detection of

weakly pronounced anomalies (temporally short and/or onlyminor deviations in the feature

values from normal sequences). Without learning the character of the weak anomalies, it

is more difficult to distinguish them from normal process variations. For more pronounced

anomalies, the performance of one and two-class classifications coincide.

2) Feature Selection:The ROCs in Fig. 9 demonstrate that only the combination of

features of the principal (PC1,2,3) and residual subspace (DFFS) enable a satisfactory

classification performance. The features from the principal subspace detect changes in the

overall brightness and translations of the melt pool, whereas the DFFS signal detects de-

formations which have been not observed in the training dataset of regular sequences. The

ROC in Fig. 9 for the error detection with the DFFS signal alone (“DFFS (RSM+ESM)”)
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, clearly demonstrates that this single feature cannot detect all errors. The irregularities in

some erroneous sequences are only observable in the principal subspace and therefore the

DFFS signal alone cannot recognize them. The same holds for aclassification with the

features from the principal subspace only s(“PC1,2,3 (RSM+ESM)”e.

3) GMM-based Approach:In addition to the HMM approach, the same training method

as described in section II for weakly labeled data was used totrain a pure Gaussian Mixture

Model (GMM) (NQ = 1). In comparison to a HMM, a GMM does not use sequence

information to describe the data. The variability of the data is captured by increasing the

number of mixturesM , instead of increasing the number of statesNQ and the number of

mixtures in a HMM. For the RSM, a GMM withM = 12 mixture elements was trained and

for each error class between2 to 3 mixtures were added to obtain the ESMs. The ROC in

Fig. 9 shows that the performance(“PC1,2,3&DFFS (RSM+ESM) -GMM” ) is significantly

below the performance of the HMM approach for small FN-rates(FP |FN=0 ≈ 78.0%) and

comparable for higher FN rates. Thus it can be concluded thatfor weakly pronouced error

events dynamic informationis necessary to dinstiguish them from the normal variations of

the regular sequences; whereas for strongly pronounced error events, temporal information

is not strictly required.

4) Comparison with a Discriminative Classification Approach: The HMM classification

system is compared with a two-stage, discriminative classification approach for industrial

processes [27]. The classification system in [27] evaluateseach individual frame using a

polynomial classifier. The classification scores from consecutive frames are then aggregated

with a temporal low pass filter. In its training phase, this approach requires a label for each

individual frame. The Viterbi path (the most likely sequence of states) for each sequence,

computed using the trained ESMs, is employed to obtain framelabels. These frame labels

are used for the training of the parameters of the polynomialclassifiers. For the training,

80% of the erroneous sequences and40% of the regular sequences are used. The optimum

polynomial degree was8 and the filter length125 s both values have been determined

using cross validation. The classification performance is presented in Fig. 9. It can be

seen that the performance decreases compared to the HMM approach. The ROC curve for

the discriminative approach is always below the ROC for the HMM. Note that the HMM
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TABLE I
SUMMARY OF FP RATES AT A FN RATE OF 0% (ALL ERRONEOUS SEQUENCES ARE FOUND), AND THE AREA UNDER

THE ROCS (AUC) FOR DIFFERENT CLASSIFICATION APPROACHES.

FP |FN=0 AUC
PC1,2,3& DFFS (RSM) 4.82% 0.998

PC1,2,3& DFFS (RSM+ESM) 1.77% 0.999
PC1,2,3& DFFS (RSM+ESM) - GMM 78.0% 0.989
PC1,2,3& DFFS (Polynomial Classifier) 6.43% 0.994

approach was used to get the frame labels for the discriminative approach. Without the

HMM as a preprocessing step, fully labeled sequences would have been necessary. The

results for the FP rateFP |FN=0 and the AUC for the different classification approaches

are summarized in table I.

5) Correlation between Classification Outcome and Error Severity: In Fig. 10 the

log-likelihood ratios are sorted according to the error severity of the error on the part

(established by visual inspection). A statistically non-significant correlation between the

error severity on the part and the output of the classification system can be seen: the log-

likelihood ratio increases with higher error severity. Thenon-significance of the correlation

must be attributed mostly to the sensor system, not the algorithmic interpretation of the

sequences: In some sequences, the error on the weld seam is more severe than would be

expected from its appearance in the corresponding sequence.

IV. D ISCUSSION

The observations in section III-E lead to the following practical use of the classification

framework for monitoring industrial processes:

• Initialization Stage: First, aRSM is trained from regular sequences and a conservative

classification threshold is used to flag erroneous parts, resulting in a high FP rate. The

parts corresponding to the flagged sequences are then appraised by an expert. The

knowledge of which sequences correspond to real errors on the produced part can be

used to train ESMs and reduce the FP rate in the following.

• Classification & Optimization Stage: The RSM (one-class classification) is used in

combination with the RSM&ESM (two-class classification) approach. On the one hand

it is possible to detect fault states which were not accounted for during the training
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Fig. 10. Box plot of the computed log-likelihood ratio for 1014/35/38/26 parts of error severity 0/1/2/3. By definition
the error severity of zero corresponds to error free parts. The observed log-likelihood ratios for each error severity are
summarized by the lowest observation, the lower quartile, the median, the upper quartile, and the largest observation
(from bottom to top); outliers are marked as additional points in the plot. A non-significant correlation between the error
severity and the computed log-likelihood ratio is visible,indicating the correct interpretation of the recorded sequences
with the used classification method.

procedure, and on the other hand the available information on harmless sequence

anomalies that do not jeopardize quality has been included to reduce the FP rate.

The threshold for the one-class classification with the RSM is chosen such that only

strongly pronounced anomalies are found in order to avoid anincrease in the FP rate.

Once more error sequences are available, the parameters of the error states of the ESM

can be updated. ML parameter estimatesΦnew from the newly collected training data

are computed and the model parameters can be updated:

Φ = ξΦold + (1 − ξ)Φnew (11)

whereξ compromises between the new and previous parameter estimates.

This approach combines the benefits of both one- and two-class classification.

V. CONCLUSIONS

In an industrial environment, it is imperative that classification systems can be trained

with as little user interaction as possible. An automated classification system for the

detection of rare events in image sequences has been presented which can analyze a large
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amount of weakly labeled data with strongly unequal class proportions with minimal user

interaction. In the considered application, sequence labels are relatively cheap, whereas the

marking of error events within sequences is tedious and expensive. Starting from a RSM,

ESMs are built by using a temporal change detection algorithm to select outlier segments.

The usefulness of the classification system has been validated on industrial data from laser

welding processes. For the investigated data set, all sequences containing unusual events

can be found with a small estimated FP rate of1.8%.

The use of HMMs allows to take temporal dependencies of the features into account.

We have demonstrated that this capability to model the dynamics of a process improves the

classification performance compared to a generative approache which does not use tem-

poral information (GMM) and compared to a temporal smoothing of classification scores

obtained for individual frames from a discriminative approach (Polynomial Classifier).
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