
Learning-based mitotic cell detection in histopathological images

Christoph Sommer
Institute for Biochemistry, ETH Zürich
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Abstract

Breast cancer grading of histological tissue samples
by visual inspection is the standard clinical practice for
the diagnosis and prognosis of cancer development. An
important parameter for tumor prognosis is the number
of mitotic cells present in histologically stained breast
cancer tissue sections.

We propose a hierarchical learning workflow for au-
tomated mitosis detection in breast cancer. From an
initial training set a pixel-wise classifier is learned to
segment candidate cells, which are then classified into
mitotic and non-mitotic cells using object shape and
texture features. Our workflow banks on two open
source biomedical image analysis software: ”ilastik”
and ”CellCognition” which provide a user user friendly
interface to powerful learning algorithms, with the po-
tential of making the pathologist work an easier task.

We evaluate our approach on a dataset of 35 high-
resolution histopathological images from 5 different
specimen (provided by International Conference for
Pattern Recognition 2012 contest on Mitosis Detection
in Breast Cancer Histological Images). Based on the
candidate segmentation our approach achieves an area-
under Precision-Recall-curve of 70% on an annotated
dataset, with good localization accuracy, little param-
eter tuning and small user effort. Source code is pro-
vided.

1. Introduction

The standard approach for breast cancer diagnosis
relies on visual inspection of histopathological sam-
ples stained with hematein and eosin (H&E). Among
measurable characteristics, the mitotic cell index is cur-
rently the best single predictor for long-term progno-

sis [3] for breast carcinomas. Manual counting of mi-
totic cells is a time consuming and tedious task; it is
limited by subjectivity and hence prone to low repro-
ducibility [7]. Despite recent advancements in semi-
automatic and automatic methods, the manual counting
of mitotic cells is still today the standard procedure in
clinical practice.

Figure 1. Overall workflow of the mitotic

detection system.

Several automatic methods based on image analysis
have been proposed. The majority of these methods
employs cell segmentation as a first step followed by
statistical analysis. Cell segmentation is achieved by
traditional image processing techniques such as thresh-
olding [10], watershed [11], morphological operations
[12], and active contour models [6]. Then, segmented
cells are classified based on previously annotated exam-
ples [4, 5]. In a clinical setting, however, many of these
methods are of limited use because they require careful
parameter tuning, complex user interactions and lack an
open source, ready to use, implementation.

In order to overcome these shortcomings, our



learning-based framework addresses the challenging
problem of mitotic cell counting demonstrating accu-
rate results, and also facilitates a pathologist’s analysis
banking on the usage of two user friendly and open-
source software packages: ”ilastik” [14] and ”CellCog-
nition” [9]. In particular we combine these two flexi-
ble tools and cast the problem into a hierarchical work-
flow based on two steps. On the first level, using ilastik,
the image pixels are classified on the base of their sur-
rounding local intensities and their gradient informa-
tion. Then, candidate cells are segmented with a robust
threshold of the pixel probability map. On the second
level, using CellCognition, object features expressing
global properties of the cells, such as shape and tex-
ture, are used to classify each segment as mitotic or
non-mitotic. The combined workflow is illustrated in
Figure 1.

Our paper is organized as follows: in the next sec-
tion we introduce the benchmark dataset. Section 2 de-
scribes pixel-wise classification and cell segmentation,
while details on the final candidate classification are
given in Section 3. The performance of our workflow
is demonstrated in Section 4.

1.1. Benchmark dataset

The MITOS-dataset [13] is published for the Inter-
national Conference for Pattern Recogniton 2012 con-
test on Mitosis Detection in Breast Cancer Histologi-
cal Images and provides a set of 5 breast cancer biopsy
slides. The slides are stained with H&E. In each slide
the pathologists selected 10 images (termed high power
fields in the contest description) at 40× magnification.
A image has a size of 512µm×512µm. For each image,
all mitotic cells were manually labeled by two expert
pathologists. In total the entire dataset contains more
than 300 mitoses in 50 images (35 images released as
training data). The dataset covers all phases of mito-
sis, yielding high variability of shapes and texture. The
dataset has been recorded by three different scanners
termed A, H, and a 10 bands multi-spectral microscope
M in the contest description. According to the con-
test regulation, we opt to perform our experiments using
only the raw data (RGB images) generated from scanner
A. Figure 2 (A) shows examples of mitotic cells, includ-
ing prometa, meta and anaphase for scanner A. The im-
ages in (B) depict two regions of the raw data where no
mitotic cell was labeled. Cell nuclei in the input RGB-
images appear as spotted structures dark purple in color.
Other surrounding structures such as stroma appear red
and fat tissue white.

Figure 2. The MITOS-dataset: (A) selected

mitotic examples from scanner A includ-

ing examples from prometa, meta adatas-

dfnd anaphase. (B) Raw data from two

different specimen containing no mitotic

cell.

2. Segmentation of candidate cells

On the first workflow level we seek to detect and
segment cell candidates from the heterogeneous back-
ground. To avoid complex user interaction for object
detection we choose a simple bottom-up approach. A
pixel classifier is learned to produce pixel probability
maps for candidate cells. These are then thresholded
to segment cell candidates. We exploit ilastik [14] for
this step since it offers several advantages: an efficient
and fully multi-threaded implementation, high accuracy
with little parameter tuning, and a graphical user inter-
face with interactive feedback during labeling.

The pixel-wise mitotic ground-truth annotations
(provided with the dataset) are imported as foreground
(i.e. candidate) labels. Background pixel labels (non-
candidate) are obtained by manual annotation. We used
the graphical user interface of ilastik to interactively add
labels by giving brush strokes to regions containing no
candidate cells (see Figure 1).

A number of standard image analysis filters, over
varying spatial scales, are used as features. These fil-
ters comprise Gaussian smoothing (at σ = 1.6, 3.5),
Gaussian gradient magnitude (σ = 1.6), difference of
Gaussians (σ1 = 1,σ2 = 1.6), Laplacian of Gaus-
sian (σ = 1.6), eigenvalues of the Hessian matrix
(σ = 1.6, 3.5), and the eigenvalues of the structure ten-
sor (σ = 1.6, 3.5). In total, the feature vector for each
pixel of a RGB image has a length of 39 (i.e. 13 per
color channel).

ilastik uses a random forest [1] classifier for learn-
ing. Random forests consist of many decision trees.



During prediction, each pixel is classified by collecting
the votes of each individual tree. The ratio of the tree
votes is converted into a probability map and provides
the input for mitosis detection in the second process-
ing stepusing CellCognition. Local adaptive threshold
is applied on the probability maps followed by a split
algorithm [15] in order to separate touching cells.

3. Mitosis classification

On the second workflow level, segmented candidate
cells are classified into mitotic and non-mitotic. For
each segment a set of object descriptors is computed
comprising intensity, shape (e.g. circularity) and texture
features (e.g. haralick [8], statistical geometric features
[2]) (a full list of features can be found in [9]). All fea-
tures are computed per color channel separately and are
concatenated to a feature vector length of 717 (239 per
color channel). For the classification, we use a Support
Vector Machine (SVM) with an Gaussian kernel. The
parameters (i.e. cost and gamma) are optimized by grid-
search. We use the graphical user interface of CellCog-
nition to provide the object labels for training. Mitotic
labels are imported from the ground-truth, whereas non-
mitotic cells are labeled manually.

4. Experiments and Discussion

For the pixel-wise training we select 6 images out of
the full training dataset containing 35 images. We la-
bel the pixels in two classes: candidate foreground mi-
totic pixels and candidate non-mitotic background pix-
els. The graphical user interface of ilastik allows to in-
teractively observe and correct the output of a random
forest classifier. Therefore, we adopt an active learn-
ing strategy during labeling: first, we import the cells
labeled by pathologist as pixels labels for the mitotic
class, second, we start subsequently adding new back-
ground labels in regions where the response of the clas-
sifier is wrong. We qualitatively bias the classifier to
have a maximum accuracy and recall for the foreground
pixels. In total 32453 pixel are labeled as foreground
and 77920 pixels as background.

We train a random forest classifier consisting of 100
decision trees. After training all images are predicted
by the random forest and the resulting probability maps
are segmented. With this procedure we achieve a 93%
pixel recall for the mitotic class.

In the first training round on the cell level classifi-
cation we annotate 208 mitotic cells according to the
ground-truth and select 700 non-mitotic manually from
the candidate segmentation by using the cell annotation

Figure 3. Mitotic cell detection overlayed

on test image: (A) raw data, (B) ground-

truth annotation by pathologist, and (C)

mitotic cell nuclei as found by the pro-

posed method.

tool from CellCognition. In the second training round
we include 796 additional and previously false positive
detections to the final training set of 1704 examples. We
train a SVM with an Gaussian kernel and optimized its
parameters (i.e. cost and gamma) by grid-search. Fig-
ure 3 (A) shows a selected region of the raw data with its
ground-truth annotation in Figure 3 (B). The resulting
detection of mitotic cells with three true-positive and
one false-positive detections is shown in Figure 3 (C).

For better comparison and future reference we eval-
uate our performance according to the contest eval-
uation metric. The overall performance is measured
by the area-under Precision-Recall (AUC-PR = 70%)
curve. Figure 4 shows the PR-curve. The area under the
receiver operating characteristic curve (AUC-ROC) is
0.906 (not shown). We choose a classifier at a threshold
of 0.189 which correspond to a recall of 0.798 precision
of 0.519 (F-measure of 0.629) to predict the entire set.
The pixel accuracy is measured by the mean localiza-



tion accuracy (i.e. displacement of the center-of-mass),
the pixel recall and pixel overlap of each detection on
a held-out image set. A mitotic detection is matched
to the ground-truth if the center-of-mass lies within a
radius of 5µm (≈ 21 pixel). With this we achieve a de-
tection recall of 0.68 and precision of 0.38 with a mean
localization accuracy of 0.57± 0.38µm, mean pixel re-
call of 89± 8% and a mean pixel overlap of 75± 6%.

Figure 4. Overall performance for cell

classification: PR-curve with 5-fold cross-

validation

5. Conclusion

Automated analysis tools are a crucial step towards
a more objective basis for tumor prognosis. In this
paper we describe an automatic workflow for mitotic
cell detection in histopathological images from breast
cancer micro-sections. Our approach is based on su-
pervised classification and combines two state-of-art
machine-learning methods for pixel and object classi-
fication. By combining the open-source software ilastik
and CellCognition, we enable pathologists to train an
automatic mitosis detection system with small user ef-
fort facilitated by convenient graphical user interfaces.
The evaluation on the MITOS-dataset shows convinc-
ing accuracy with good localization properties given the
rather small number of annotated examples.
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