
Machine Learning
Winter Semester 2014/2015 Exercise 0

Niko Krasowski
niko.krasowski@iwr.uni-heidelberg.de

Exercise 0

Deadline: None

Computer Setup

Windows

Download Python(x,y) via http://code.google.com/p/pythonxy/wiki/Downloads and install it.
Make sure that � before installation � the installer does not complain about an existing Python
version on your computer.

Although Python(x,y) comes already with a great variety of scienti�c Python packages, we might
have to install additional dependencies:

For instance, we will make use of the vigranumpy package which you can download and install from
this website: http://www.lfd.uci.edu/~gohlke/pythonlibs/

Now you can test whether your installation was successful: Find the Python(x,y) folder in the
Windows start menu and launch the contained Spyder program. In the interactive interpreter on
the bottom right, enter

import vigra

import numpy

import sklearn

If no output appears, your installation was successful. If the sklearn import failed, try to install the
latest version from http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn.

Ubuntu

Either compile everything yourself, use pip, or just execute the following line to install the system
libraries we need:

sudo apt -get install build -essential python -dev python -numpy python -setuptools

python -scipy libatlas -dev libatlas3 -base python -matplotlib python -vigra python -

sklearn spyder

If you want to start GUI programs such as spyder, always start them from the terminal; this way
they inherit all necessary environment variables that have been set in �/.bashrc.

Mac

Install Homebrew (http://brew.sh) by running this command:

ruby -e "$(curl -fsSL https ://raw.github.com/mxcl/homebrew/go)"

If you get errors here, follow these instructions:
http://www.moncefbelyamani.com/how-to-install-xcode-homebrew-git-rvm-ruby-on-mac/

Then, insert the Homebrew directory at the top of your PATH variable by adding the following line
at the bottom of your �/.bash_profile �le:

export PATH=/usr/local/bin:$PATH

Now open a new terminal and run the following command:

brew doctor

1/6

Machine Learning
Winter Semester 2014/2015 Exercise 0

Niko Krasowski
niko.krasowski@iwr.uni-heidelberg.de

As long as you do not get Your system is ready to brew, try to �x the warnings.

In the next step, you can install Python using Homebrew via

brew install python

You can then install most python packages using pip:

pip install numpy

pip install scikit -learn

pip install matplotlib

pip install scipy

pip install scikit -image

pip install spyder

Note that it is not possible to install vigranumpy like that. In case you need this dependency for
your project, we can assist you installing it.

Troubleshooting :

• If pip install scipy fails, you might have to run brew install gfortran �rst.

• If pip install matplotlib fails, try to do the following

brew install freetype

brew install libpng

brew link --force freetype

and then reinstall scipy.

The Scienti�c Python Ecosystem

In this course, we are going to use the Python programming language. There exist many highly
usable and well maintained scienti�c libraries for Python. Packages that will be useful for us are:

• numpy (numpy.org), provides multi dimensional arrays and fast numeric routines that work
with these arrays.

• scipy (scipy.org), a collection of many scienti�c algorithms for areas such as optimization,
linear algebra, integration, interpolation, FFT, signal and image processing. Makes use of
numpy arrays.

• matplotlib (matplotlib.org), a plotting library which provides a MATLAB like interface.
Check out the great gallery with many examples.

• scikit-learn (scikit-learn.org), a quickly growing collection of machine learning algorithms,
such as Support Vector Machines, Decision Trees, Nearest Neighbor Methods and many more.
Their website o�ers good overview documentation and great examples, too.

• scikit-image (scikit-image.org), a collection of image processing algorithms.

• vigranumpy (hci.iwr.uni-heidelberg.de/vigra, a C++ library for multidimensional ar-
rays, image processing and machine learning, developed in our group. It exposes most functions
to Python via the vigranumpy module.

All of these packages can be easily installed on recent Linux distributions, such as Ubuntu.

Coming from MATLAB?

Read http://www.scipy.org/NumPy_for_Matlab_Users. Indexing starts at zero in numpy!

IPython

For an interactive python shell, start ipython within a shell. It supports auto-completion using the
tab key, as well as showing the documentation of functions by appending a ? to the function name.

2/6

Machine Learning
Winter Semester 2014/2015 Exercise 0

Niko Krasowski
niko.krasowski@iwr.uni-heidelberg.de

Spyder

Spyder (http://code.google.com/p/spyderlib) is a MATLAB-like IDE for scienti�c Python.
You can use the editor on the left or the interactive interpreter on the bottom right, just like in
MATLAB.

Python

For a tutorial introduction to Python, we recommend http://docs.python.org/tutorial, secti-
ons 1 through 6 as well as 7.2 and 9.3. The following sub-sections, which are aimed at advanced
users, can be skipped: 2.2, 4.7, 5.1.3, 5.1.4, 5.6, 5.7, 5.8, 6.4.

In the following, we give a quick overview of the language in order to get you started quickly.

Indentation

Python uses indentation to group statements as opposed to curly braces in C-like languages. Always
indent using 4 spaces. Also note that braces around statements following if, for, etc. are omitted;
instead, a colon : at the end is used.
if a == 42:

for i in range (5):

print i

else:

b = 5

Variables

Python, as a scripting language, uses dynamic typing.
a = 42 #int

b1, b2 = 42.0, float (42) #float , cast to float

c = MyClass(a) #instance of MyClass

d = None #special 'none' type

e = "Hello" #string

f = [1,2,3] #a list of values (mutable), f[0]=1

g = (1,2,3) #a tuple of values (immutable), g[0]=1

h = {"x": 1, "y": 2} #a dictionary h['x ']=1, h['y ']=2

Functions

Functions are declared with def. They take a list of required arguments and optional keyword
arguments (with default values), and may return values.
def some_func(arg1 , arg2 , kwarg1=True , kwarg2 =42):

return arg1 + arg2

Control Flow

if, elif, else:
if (a or b) and c:

print "x"

elif b:

print "y"

else:

print "z"

A for loop:
for i in range (0,10): # range [0,10)

print i

if i < 2:

continue

if i >= 7:

break

Exercise: Fizz-Buzz (http://en.wikipedia.org/wiki/Fizz_buzz)

3/6

Machine Learning
Winter Semester 2014/2015 Exercise 0

Niko Krasowski
niko.krasowski@iwr.uni-heidelberg.de

Write a program that prints the numbers from 1 to 100. But for multiples of three print
�Fizz� instead of the number and for the multiples of �ve print �Buzz�. For numbers
which are multiples of both three and �ve print �FizzBuzz�.

� http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding

Lists, tuples and slicing

List, tuple or strings can be subscripted using slice notation.
s = "Hello"

print s[1:]

print s[2:4]

print s[0: -1:2]

print s[::2]

Exercise: Can you explain the output?

Modules

Additional functionality can be accessed by importing modules. If you want to import only parts of
a module, use the from module import symbol notation, where the function can be optionally renamed
using as:
import math

from math import pi as circle_number

print "cos(pi)=%f" % (math.cos(circle_number) ,)

Every python �le you write can be imported from you in other �les: If �le file1.py de�nes a
function function1, you can use it from file2.py in the same directory via from file1 import

function1.

Files

Write import statements always at the beginning of your python �le.
Always put your main function in if __name__ == "__main__" at the end of the �le. This way, the
main code won't be executed if you import this �le from another �le.

Numpy

A good tutorial for numpy can be found at http://www.scipy.org/Tentative_NumPy_Tutorial.

Import the numpy module via import numpy

Creating and calculating with arrays
import numpy

#create a 2D array of shape (4,6), data type is unsigned char

a = numpy.zeros ((4,6), dtype=numpy.uint8)

print a.ndim #2-dimensional

print a.shape , a.shape [0], a.shape [1]

print a.dtype #numpy.uint8

#uniform random numbers in [0,1)

b = numpy.random.random(a.shape)

#basic algebra for arrays

c = a+b

d = a*b

e = a/(b+1)

f = numpy.sqrt(b)

Array slicing

Slicing works similar to the slicing of lists, tuples and strings as introduced above. For multi-
dimensional arrays, a slicing for each dimension is given (comma separated). Please see http:

//docs.scipy.org/doc/numpy/reference/arrays.indexing.html for a comprehensive overview.

4/6

Machine Learning
Winter Semester 2014/2015 Exercise 0

Niko Krasowski
niko.krasowski@iwr.uni-heidelberg.de

a[:] = 1 #write a 1 to every entry

a[1,2] = 2 #assign 2 to the row 1, col 2 (indices start at 0!)

s = numpy.sum(a) #sum over all array elements

assert s == 7

a[:,0] = 42 #assign 42 to the 0-th column

':' ==> select all rows

'0' ==> select the 0-th column

a[0 ,...] = 42 # fill 0-th element of first array dimension (here: column)

with 42's, no matter how many dimensions a has

b = a[: ,0:2] #make a subarray: select only columns 0 and 1

(range [0..2))

numpy.where

To �nd the indices in an array where a certain condition matches, use numpy.where. The returned
tuple of indices can be passed as an argument to the [] operator of any array:
import numpy

a = numpy.asarray ([[2,5,4,3,1],[1,2,1,5,7]])

print a.shape

print a

print numpy.where(a == 2)

print numpy.where(a == 4)

print a[numpy.where(a == 1)]

Vigra

Import the vigranumpy module using import vigra.

The documentation can be found at http://hci.iwr.uni-heidelberg.de/vigra/doc/vigranumpy/
index.html.

vigranumpy may be used, among many other functions, to read in images as numpy arrays or write
them out to �le1:
import vigra

img = vigra.impex.readImage('./ myImage.png')

img.shape

red channel

img = img [... ,0]

img.shape

vigra.impex.writeImage(img , './ redChannel.png')

Note that many functions expect the array to be of a certain data type. If you get errors like

Boost.Python.ArgumentError: Python argument types in

vigra.filters.gaussianSmoothing(numpy.ndarray, int)

did not match C++ signature:

gaussianSmoothing(vigra::NumpyArray<4u, vigra::Multiband<float>, vigra::StridedArrayTag> array,

boost::python::api::object sigma, vigra::NumpyArray<4u, vigra::Multiband<float>, vigra::StridedArrayTag> out=None,

boost::python::api::object sigma_d=0.0, boost::python::api::object step_size=1.0, double window_size=0.0,

boost::python::api::object roi=None)

gaussianSmoothing(vigra::NumpyArray<3u, vigra::Multiband<float>, vigra::StridedArrayTag> array, boost::python::api::object sigma,

vigra::NumpyArray<3u, vigra::Multiband<float>, vigra::StridedArrayTag> out=None, boost::python::api::object sigma_d=0.0,

boost::python::api::object step_size=1.0, double window_size=0.0, boost::python::api::object roi=None)

you have forgotten to cast to the correct data type (note that it searches above for a
vigra::NumpyArray<4u, vigra::Multiband<float>, vigra::StridedArrayTag>, which has pi-
xel type �oat). In this case, you can cast to 32-bit �oat using array.astype(numpy.float32). Other
vigra functions may use data type numpy.uint8 or numpy.uint32. Additionally, check that your array
has the correct shape, in this case, the function expects an array with ndim == 3 or ndim == 4.

1If you did not manage to install vigra on your machine, you might want to check out scikit-image for some of

those operations.

5/6

Machine Learning
Winter Semester 2014/2015 Exercise 0

Niko Krasowski
niko.krasowski@iwr.uni-heidelberg.de

Matplotlib

The recommended way to import matplotlib is:
import matplotlib; matplotlib.use("Qt4Agg")

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import pyplot as plot

See http://matplotlib.org/gallery.html to copy/paste some code.

Example: read and display image.

import numpy , vigra

import matplotlib; matplotlib.use('Qt4Agg ')

from matplotlib import pyplot as plot

img = vigra.impex.readImage("myImage.png")[... ,0] # read in red channel

plot.figure ()

plot.gray() #select grayscale color map

plot.imshow(img)

plot.show()

Scikit-learn

Scikit-learn is a very powerful machine learning toolbox. Most of the algorithms contained in this
package will be reviewed in the Pattern Recognition lecture. A tutorial for scikit-learn including de-
tailed descriptions of the algorithms is available at http://scikit-learn.org/stable/tutorial/
index.html.

Exercises (optional, no pts)

1. Plot sin(x) for x ∈ [−1, 1]. Label the axes and add a title. Then save the �gure as png.

Implementation hints:

Use numpy and matplotlib.pyplot.

2. Write a function computing n! and call the function from your main function for n = 5.

3. Find and output the eigenvalues and eigenvectors of the following matrix:

A =

 4 0 −1
2 5 4
0 0 5

 (1)

Implementation hints:

Check out the documentation page of numpy.linalg for eigenvalue computation.

4. Concatenate the eigenvectors as columns in a matrix P , compute P−1, and con�rm that
P · Λ · P−1 == A, where Λ is the diagonal matrix of the eigenvalues of A. What does a * p

do?

Implementation hints:

In numpy, �nd a function for matrix multiplication and for creating a diagonal matrix.
Matrix inversion is implemented in the numpy.linalg package. You might also want to
look at numpy.all.

6/6

