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Feature Visualization

How neural networks build up their understanding of images

Olah, et al., "Feature Visualization”, Distill, 2017. [3]



Attribution

What parts are responsible for the activation?



Feature Visualization

AN <2
What kind of image does the neuron/layer activate for?




Network Architecture (GooglLeNet)
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Inception module [5]




Feature Visualization by Optimization

> Freeze parameters of trained model

» Update image X using the gradients Vx £ to optimize an
objective L:

X +=AVxL

Step 0

Step 4

layer mixed4a
channel 11




What to visualize

softmax

Class Class
Logits Probability

There are a lot of different parts of a network that we might want to
interpret, for which we need different objective functions.
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Optimization Objective

For a neuron

The idea is to maximize the activation z,, of
a given neuron:
Licxy = Ziexy I: layer index
¢: channel index

X,y spatial position
a negative optimization,

For

the output of

the pre-activation 2, can be taken for the
gradient to be non-zero in case of a RelLU.




Optimization Objective

For a channel

Extending the neuron objective to a channel,
following objective can be used:

1 w: layer width
Lic= m Z Zicxy
X?.y

h: layer height




Optimization Objective

For a layer

A layer captures many patterns, so it's difficult
to find a good objective.

One approach to this is the Deep Dream ob-
jective which aims to maximize what the layer
deems 'interesting’:

L=zl




Optimization Objective

For a class label

For the class labels, there are two
possibilities:

Optimizing the pre-softmax activa-
tion (evidence of the class k):

softmax

L1 =21k k: class index
L: output layer

Or optimizing the post-softmax ac-
tivation (probability of the class k&,
given the evidence):

présoftmax[k] post-softmax[k] L L= Z1k



Why Optimization?

Dataset examples vs. optimization
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Baseball — or stripes? Animal faces — or snouts? Clouds — or fluffiness? Buildings — or sky?
mixed4a, Unit 6 mixed4a, Unit 240 mixed4a, Unit 453 mixed4a, Unit 492

Although dataset examples give a good intuition about what a neuron
activates for, it might not show the full picture.



Examples
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Examples

Textures




Examples

Patterns




Examples
Parts

mixed4c




Examples
Objects

layer mixed4d and
mixed4e




Diversity

Motivation

Minimum activation Slightly negative activation Slightly positive activation Maximum activation
examples examples examples examples

Does the optimized image show the "facets” of activation?



Diversity
Approaches

v

"Intra-class” diversity, optimizing for the cluster centroids

v

Use diverse dataset examples as starting point

v

Generative model — pick diverse samples

v

Optimize with diversity term



Diversity

Optimization with diversity term

Gram matrix G:
Gij = layers[:,:,i] - layers[:, :, ]

Diversity term as negative pairwise cosine similarity:

- vec(G,) - vec(Gp)
Cdiversity = ZZ ||lvec(G,)|| ||vec(Gp)||

Optimize jointly for optimization objective and diversity term:

L+= Cdiversity



Diversity Examples

Simple Op-  Optimization with diversity Dataset
timization examples

St

iy

Layer mixed4a, Unit 143

Layer mixed5a, Unit 9



Diversity Examples

Simple Op-  Optimization with diversity Dataset
timization examples
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Layer mixed4a, Unit 143
In contrast to the simple optimization which suggests the channel
activation on top of a dogs head through the curved fur and eyes,
the diverse examples show that the channel also reacts to just the
brown fur texture.




Diversity Examples

Simple Op-  Optimization with diversity Dataset
timization examples
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Layer mixedde, Unit 55
This channel activating for cats, foxes and cars shows that for a
better understanding we may also need to examine combinations of
neurons.



Diversity Examples

Simple Op-  Optimization with diversity Dataset
timization examples

Layer mixed5a, Unit 9
The expectation of optimization with diversity might be images

with different kinds of balls, like in the dataset examples.

This example shows that the diversity term can also be misleading,
because it pushes images to be different from each other,
introducing features that are not relevant to the objective.
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Interaction between Neurons

If single channels are the basis directions of the activation space of
a layer, this can be extended to the activation direction

d/:[z/o ZiL e z/C]T

The objective for a given layer / and direction d| is

1
Li=—c > Zieydic

X7y7C

Random directions have been found to seem as interpretable as basis
directions. [6]

Basic directions have been found to be interpretable more often than
random directions. [1]



Interaction between Neurons

Interpolation

Given two channels, their base directions can be interpolated by

d/’t = (1 — 1.')C//C1 —+ i'd/c2

channel 476 channel 460



The Enemy of Feature Visualization

How to make visualizations look good

Step 128
0.01

Step 256

Step 2048

0.05

0.25

[m]
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The Enemy of Feature Visualization

How to make visualizations look good

Step 1 Step 32 Step 128 Step 256 Step 2048

Feature visualization without regularization

When optimized without regularization, high frequency patterns
emerge to activate the neuron.

While it is not fully understood, the patterns seem to be caused by
strided convolutions and pooling operations, creating a high
frequency grid pattern in the gradient.
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The Spectrum of Regularization

To make generated images more natural looking, a range of
regularization techniques can be applied:
Weak Regularization
» Frequency penalization
» Transformation robustness
Strong Regularization
» Learned priors

» Dataset examples



Regularization

Frequency penalization

No frequency penalization

: —0.05, total variation: —0.25, blur: —0.1
Total variance penalizes variance between neighboring pixels.
Blurring implicitely penalizes high-frequency noise.
These approaches also discourage legitimate high-frequency patterns like
edges.
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Regularization

Transformation robustness

No transformation robustness

Jitter: 1px, Rotate: 5°, Scale: 1.1x

Using transformation robustness as regularizer leads to images that still
activate the target even if they're slightly transformed.
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Regularization

Learned prior

Another step to creating natural looking images is to train a model
of the real data and try to enforce it.

This approach can produce photorealistic visualizations [2], but it's
not necessarily clear what came from the visualization objective
and what came from the prior.



Preconditioning and Parameterization

Another way to improve visual quality is to " precondition” the
image.

The preconditioner chosen here is a transformation g to the fourier
basis and a color decorrelation h using a Cholesky decomposition
from the training set.

Instead of using the image X directly, the transformed image

X = h(g(X)) is used as input for the network.



Preconditioning and Parameterization

Step 1

Step 32

Step 128
w/o

Step 256

Step 2048

Resulting visualizations in decorrelated space seem to have
better visual quality and develop faster.
(Ir = 0.05; with transformation robustness)




Optimization initialized with example

Visualization of mixed4a, channel
240, initialized with a picture fit-
ting to the neuron. The snout
stays the same during optimiza-
tion while the non related parts
get more high frequency patterns.
(no regularization used)




Conclusion

» Basics of feature visualization and optimization objectives
» How do we get diversity in feature visualization?

» Improving the visual quality of generated examples

— There's a lot of room for more research.

Follow-up paper: Olah, et al., " The Building Blocks of Interpretability”,
Distill, 2018.[4]
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