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Abstract

In this review/summary of
Judea Pearl’s and Dana Macken-
zie’s book "The Book of Why",
the most important aspects of the
first five chapters are outlined. The
book deals with the problems that
arose when people tried to intro-
duce causal reasoning into the field
of statistics, which grew up in an-
ticipation to causal argumentation.
It gives a brief history about how
it came to this development, and
introduces modern methods that
make the connection between both
concept really easy. In the fifth
chapter, the problem is demon-
strated using the smoking-lung-
cancer-debate from the middle of
the 20th century.
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Introduction

"The Book of Why"[1] by Judea Pearl and
Dana Mackenzie is a popular science book
about the introduction of real causal meth-
ods to the sciences and how they started
to help liberating the statistics from mis-
takes of their early days. The main tool
used here are causal diagrams, graph-based
models for causal relationships that Pearl
(re-)discovered and improved over the past
years.

The general question about the impor-
tance of causation as opposed to the use of
data on its own can be shown via a little
example: Presume having data about the
number of fire fighters at an operation, com-
pared to the damage the fire caused. Usu-
ally, a positive trend should be noticeable:
The more fire fighters, the more damage.
But without knowing the causal connec-
tions in the background, one cannot derive
from the data whether lowering the number
of fire fighters sent to an operation might
lower the damage done by the fires, or not.

In this summary/review, in each chap-
ter I will focus on the two to three main
points1 and summarize them. In most (but
not all) cases, I will abstain from adding my
personal thought. While the numbering of
my sections 1-5 fits to the book, the titles of
my summaries are chosen on my own. The
sixth section then contains my personal con-
clusion.

1 Basics

1.1 Ladder of Causation

The guiding thread through the whole book
is a metaphor called the ladder of causa-
tion, which describes three different prob-
lem classes seated on the three rungs of the
ladder, each presenting new issues that can-
not be solved with methods only that would
suffice for overcoming obstacles from the
lower rungs. Those rungs are named "Asso-

ciation", "Intervention" and "Counterfac-
tuals" and bear the following structure:

The lowest rung, "Association", sup-
ports all questions whose answers can be
found by looking at data alone. These in-
clude questions like "If a patient has a cer-
tain symptom X, how likely is it that he
suffers from disease Y?" and "If a customer
bought cookies, what are the odds the he
also buys milk?". These are classic statis-
tical queries that lead to results that can
only describe the relation of different obser-
vations without intervening in the observed
process.

Addressing questions of this rung is nat-
ural to all higher animals, since it is needed
to interact with the outside world at all.

The second rung, "Intervention", con-
tains those problems that additionally im-
ply some external control over the situa-
tion, like doing or preventing a certain ac-
tion. This can, for example, be something
like "Will my headache be cured, if I take
this medicine?" or "How will poverty rates
behave, when we introduce this new law?".
This introduces some kind of causal think-
ing, since the main difference to rung one
is that the queries cannot be answered with
observational data alone, because it shows
only in which relations the variables might
occur "in the wild", but not which variable
influences which and therefore what would
change if someone changed something.

The fire fighter example from above be-
longs into rung two. We can answer rung
two questions like "How many fire fighter
might be there, when the fire cost X$?",
but to know the difference between seeing
less fire fighters (maybe because of a small
fire) and making less fire fighters handling
a fire (which might result in bad conse-
quences), more knowledge is needed than
the data itself supplies. This could for ex-
ample be the fact that both variables might
have the fire’s magnitude as a common cause
(which obviously yields the difference be-

1in my eyes
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tween seeing and enforcing less fire fighters)
and the circumstance that fire fighters fight
fires (which leads to opposing results when
reducing their numbers).

Engaging in these questions requires
more brainpower than the previous ones,
so it is assumed that early humans were the
first animals to develop the skill to grasp
the consequences of their manipulation of
the world, going on until today, where tod-
dlers learn this in their early years.

The highest rung, "Counterfactuals",
deals with imagining worlds where things
would have been different than in the cur-
rent situation, hence the name COUNTER-
FACT(-UAL). Instead of predictions about
a general, statistical population and their
behaviour under "normal" or tweaked con-
ditions, one observes a special situation (e.g.
that of a special individual) and than wants
to know how the outcome of that exact
scene would have changed, if some details
would have differed. For example, possible
queries could be "Was it the medicine, that
cured my headache?" (since it is equivalent
to "Would my headache also have stopped,
if I hadn’t taken the medicine?") or "Would
Kennedy still be alive, if he hadn’t been
shot?".

Questions from this class of problems
still seem very natural to us humans, even
though they involve worlds that do not ex-
ist. This is assumed to be a skill unique
to humans2, and laying the foundation of
not only all fictional story-telling, but also
of human inventions at all. This is due to
the fact that these questions are needed for
understanding the world, since it is essen-
tial for comprehension of e.g. a method,
to know what would have happened if the
method wasn’t applied or applied differently.

Since the book’s author, Judea Pearl,
looks at and partially illuminates the issue
from a computer scientist’s point of view, he
compares these different levels to the capa-
bilities of modern, artificial intelligence and

finds two things:
On one hand, a strong AI that learn

like and interact with humans on a natu-
ral level needs to be able to answer ques-
tions from all three rungs, since they are
necessary for an understanding of the world
and so deeply woven into the human mind
that a robot’s lack of understanding would
limit the possibilities of easy communication
greatly. On the other hand, state-of-the-art
machine learning models still reside on rung
one, in some cases maybe scratching on the
bottom of rung two, because most training
algorithms do not involve the modeling of
the world but only associating from what is
seen. Therefore, a strong AI seems further
away than the current, sci-fi-esque era might
suggest and will need more research involv-
ing causal reasoning in machine learning.

1.2 Causal Diagrams

To either work with and analyze causal
models or implement them in learning ma-
chines, they need a representation. And
since causality consists of asymmetric rela-
tions between different variables, we can il-
lustrate a model as a directed graph where
the nodes symbolize random variables (mea-
surable and not) and every direct causal ef-
fect from one variable to another is shown
through a directed edge. A graph with
these features is called "causal diagram", a
method highly utilized in this book.

In the following example, which is highly
simplified to explain the nature of those
causal diagrams, all variables are boolean
(true/false) and if there is a causal effect be-
tween two variables, it is of the type "if A
happens, B happens".

The idea is the modelling of a shooting
squad and the causal relationships are easy:
Iff the court orders the prisoner to die, the
captain commands the shooting. Iff the cap-
tain commands a shooting, A shoots. Iff the
captain commands a shooting, B shoots. Iff
either A or B shot, the prisoner dies. There
are no jammed guns, pacifistic or rampaging

2At least on earth..!
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soldiers, missed bullets, suicidal prisoners or
anything else in this scenario.

dead

A B

captain

court

Even with a simple situation like this,
we can pose many different questions from
the different rungs. For rung one questions,
we could for example ask "Is the prisoner
dead when the court gave the order?", and
following the diagram and applying the rules
yields the answer. We could also ask "Did
A shoot if B shot?", and even though there
is no directed path between the two, we can
see that there is no other possibility than
yes. Both queries can be noted in statistical
terms, like P (dead|court) or P (A|B).

Queries from rung two could include
questions like "If A decides to shoot on his
own, is the prisoner dead?". Even though
the question defies the rules by letting a sol-
dier shoot without the captains command,
we can give an answer by manipulating the
scenario in a minimal way that fits or sit-
uation while keeping everything else un-
changed, than simulating everything like in
the first examples. That manipulation can
be implemented by removing any incom-
ing arrows into the variable that "decides"

or "is made to" and setting it to a fixed
value, thus erasing all external influences
on it. Since classic statistics does not work
on causal relationships but data alone, this
process cannot be expressed by classic no-
tation, so a new operator is introduced, the
do-operator: P (dead|do(A = true)). The
answer to this query is obviously yes, since
the still applied rules make prisoner die even
on a single bullet.

To generate queries from rung three, a
given situation must be described, followed
by a question that involves fact that contra-
dict the situation. For example, it could be
asked: "The prisoner is dead. Would he also
be, if soldier A had not shot?" This kind of
questions also needs a new notation, for we
cannot express this through the do-operator.
Instead, we use: deadA=false(dead = true).
With human logic, one can clearly see that
the prisoner would of course be dead, too,
but an algorithm to tackle problems like this
with causal diagrams is also explained later
in the book.

2 History of Statistics

To illustrate why the methods utilizing
causal diagrams are so important and to ex-
plain how the science of statistics could ma-
neuver itself into the situation that causality
was mainly ignored, causal reasoning some-
times even considered unscientific, Judea
Pearl tells the stories of three scientists that
left a significant mark on the history of
causality and statistics.

2.1 Francis Galton

During a lecture in 1877 for the "Friday
Evening Discourse" at the Royal Institution
of Great Britain in London, a regular and
exquisite lecturing event since the 19th cen-
tury, Francis Galton revealed the first great
insight needed for statistics. Particularly, he
stuck metal balls into a self-designed board
with regularly spaced nails. The great ob-

4



servation here is that, while all individual
balls seem to behave very chaotically, the
whole population of all balls acts in a very
predictable way, a bell shaped curve.

Since human body sizes are distributed
in the same way, he assumed that they both
behave the same way. While investigating
this incident, he accidentally stumbled upon
the discovery of the regression to the mean
by realizing that tall fathers tend to have tall
sons, but not as tall as their fathers. First,
he thought it to be a phenomenon of hu-
man sizes and genetics, but when he realized
that it also concerned tall sons and their tall
(but not as tall) fathers, and finally found
the same anomaly in all kinds of statistical
data.

During this, he also came upon corre-
lation of random variables and regression,
which not only enabled the newly born
statistics to thrive, but also to to gain won-
derful results without the need of causal rea-
soning.

2.2 Karl Pearson

While Galton discovered correlation acci-
dentally on his search for causation, Pear-
son intepreted his work differently. For him,
correlation was the bigger and mightier con-
cept and correlation only one of its special
cases; an interpretation which was deeply in-
fluenced by his personal philosophical posi-
tion.

He saw the great opportunity in statis-
tics to finally integrate mathematical foun-
dation into other sciences and after Galtons
death, Pearson’s new Biometrics Lab be-
came the center of statistics. But according
to Judea Pearl, Pearson’s whole movement
(even accompanied by a successful journal
he published) felt more and more like a sect
over the time, that listed causation as one
of their deadly sins.

This refusal of all causal thinking even
developed ridiculous situations, for example
when Pearson and others discovered "spu-
rious" correlations, like between chocolate
consumption and number of Nobel Prize

winners per country, where they could not
just blame this correlation on a common
cause (since causes are irrelevant to science),
or the correlation that occurs when two dif-
ferent populations are mixed. But still, the
adherents of this cause-free movement man-
aged to shape the following time strongly.

2.3 Sewall Wright

Being a fresh scientist in the field of genetics
in the beginning of the 20th century, Wright
found himself with the task of figuring out
what factors influence the development of
specific fur colors in guinea pigs. With the
information present to him, he was able to
draw a diagram that showed which factors
have an impact on which other factors, and
thus created the first known causal diagram.

After his paper about his findings, he
also published another paper that elucidated
the usage of his methods to solve other prob-
lems. Immediately supporters of Pearson
lectured him about the meaninglessness of
causation and how his methods do not work
properly, without having really understood
them. Luckily, Wright was not demotivated
by this hard reaction, but continued improv-
ing and advertising his method that allowed
to use assumptions about causal relation-
ships to either move a rung 2 two problem
down to rung 1 or prove the assumptions
wrong.

3 Bayes and Junctions

This chapter focuses mainly on explaining
two issues very vividly, at first the rule of
Bayes, a highly important theorem in statis-
tics, then the implication of certain junc-
tions in causal networks, a viewpoint, that
helps to identify most of its properties by
looking only at three-node sub-graphs. He
also gives small insight in the mechanisms of
Bayesian Networks, a model that i.a. allows
to feed a causal network with data, and how
they could be used to identify victims after
a tragical plane crash, but in my point of
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view, this is not the spotlight of this chapter

3.1 Rule of Bayes

To understand the importance of the rule,
it is crucial to grasp the idea of forward
and backward probability. Here, this is ex-
plained with a pool table example: Imagine
a pool table of length L. When hitting a
billiard ball so hard that its final position
can be assumed to be random, the odds of
it stopping in the first 1m of the table is cal-
culated by P (x ≤ 1|L = l).

But if the question posed now is instead
"Imagine the ball stopping in the first 1m.
How likely is is, that the length L of the
table is l?", the probability P (L = l|x ≤ 1)
is much harder to calculate. The first one
is called "forward probability", and in most
cases those probabilities feel more natural
to us humans an describe the causal direc-
tion of a process, the other one "backward
probability".

The Rule of Bayes tries to bring the two
probabilities into context, by stating the fol-
lowing formula:

P (X|Y ) =
P (Y |X)P (X)

P (Y )

When rearranging the formula to
P (Y )P (X|Y ) = P (X)P (Y |X), one can
clearly see the sense this equation makes,
since the probability of e.g. finding a cer-
tain pair of attributes in a population should
stay the same, no matter weather we filter
for one attribute first, than for the in the re-
maining population, or the other way round.

3.2 Junctions in Causal Diagrams

A lot of the analysis of causal networks deals
with the investigation of paths through the
graph. On these paths, every inner node can
be seen as the middle node of a three-node
sub-graph, called a junction. These junc-
tions can be classified into three groups that
behave very differently. To understand the
difference, the concept of "controlling" for
variables must be known. Ultimately, this

means nothing more than clustering the data
into sub-divisions in which all data-points
share the same value (or lay in the same,
small interval) regarding the variable con-
trolled for.

Chain

A B C

A chain has on directed path through all
three nodes. The middle node here is called
"mediator", since it is transferring causal in-
formation from A to C. As an example one
could imagine A to be a fire having started,
B the smoke coming up, and C the smoke
detector starting an alarm. Since the de-
tector does not detect fire on its own, there
is no direct link between A and C. The in-
teresting thing here is that information can
flow from A to C, but stops as soon as B is
controlled for, meaning that e.g. only sce-
narios are considered where there has been
smoke. In this case, A and C loose their cor-
relation and therefore look like uncorrelated
variables.

Fork

A B C

In so called forks, both A and C have
a common cause B, which is called a "con-
founder". Confounders are dangerous, be-
cause they introduce spurious correlations
between variables, that are not directly
causally connected. Luckily, controlling for
confounders eradicates this correlation. For
example, if one looks for children’s shoe
size (A), and their reading ability (C), they
seem strongly, positively related. But when
controlling for their confounder, age (B),
the correlation vanishes, since older children
tend to read better and have bigger feet,
while for children in the same age, bigger
feet do not automatically make them read
better (or vice versa).

Collider

A B C
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The last class of junctions are colliders,
where both A and C have a causal impact
on B. This is the most interesting junction,
since here A and C are (usually) uncor-
related, but controlling for B makes them
(seem) correlated. This effect, also called
the "explain away"-effect, can be viewed
from the following perspective: Imagine be-
ing famous (B) can be only achieved by be-
ing beautiful (A) and talented (C). When
now looking only at the N most famous
people, it seems like talented people were
less attractive and vice versa. This artifact
emerges from the fact, that if a person is al-
ready really good-looking, he or she does not
have to be that talented to reach the Top-N
of famous people. His or her talentlessness
is "explained away".

4 Confounders

The forth chapter of the book explains the
connection between randomized controlled
trails and causal analysis and finally states
a simple algorithm for annihilating con-
founders in data.

4.1 RCTs

A great problem that occurs when all sci-
ences handle their data using mathemat-
ical tools that do not allow any causal
statements, is that you cannot make causal
statements. However, those statements are
needed in practically all sciences. Imagine
medicine, where one needs to know whether
a certain drug causes a disease to vanish or
if a special symptom is caused by a certain
disease.

To tackle this issue, randomized con-
trolled trials (short: RCTs) have been devel-
oped. Here, a large population is randomly
split into groups, with each group getting
a different treatment, including a so-called
control group, that receives no treatment at
all. Analogical to the do-operator, in a per-
fect setting the randomization of the groups
eliminates all influences on the chosen treat-
ment and thus possible confounders, like

a certain condition making a subject both
more attracted by the treatment and more
likely to develop the desired result on its
own.

The example given in the book is that
of R. A. Fisher, who had the task of help-
ing farmers by developing a method to test
which fertilizer produces the most yield.
While the yield is influenced by many fac-
tors, the choice of the fertilizer is, too. In-
stead of just dividing the field into (N + 1)
subdivisions to test the N fertilizers, the field
is split into many more parts and instead of
letting someone choose which fertilizer to
use where, the positions are randomly cho-
sen by a shuffled deck of playing cards. This
way, even if there are clusters of the field
where certain properties influence the yield
in a special kind, it is highly likely that this
cluster is partly occupied by all fertilizers,
compared to a negative or positive effect
on only one group, when the cluster would
lie completely in this groups 1

N+1 -th of the
field. The shuffled deck assures a good dis-
tribution of the groups across the field while
preventing everyone from tainting the ex-
periment with unconscious introduction of
personal experience.

A long time, randomized controlled trails
were considered the only tool that allowed
to draw a causal conclusion from statisti-
cal data. But RCTs also have downsides:
there are many situation, where the im-
plementation of an RCT is not applicable,
for example for ethical or financial reasons.
Also, the randomization does not completely
eradicate confounders. This can, for exam-
ple, occur through the choice of the sub-
population to run the RCT on. This intro-
duces a whole new problem: Even in RCTs,
scientists still need to control for possible
confounders. This can lead to a lot of mis-
takes, not only through confounders that are
not controlled for, but also via accidentally
controlling for a mediator or a collider, and
thereby erasing important correlations or in-
troducing spurious correlations that should
not be there.
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4.2 Back-Door Criterion

One great thing about causal diagrams is
that (if based on correct assumptions), one
can easily use it to determine confounding
inside a system of random variables. This
is done by using the junctions from Section
3 to block paths in the causal diagram, e.g.
by controlling for confounders in forks and
mediators in chains or not controlling for col-
liders. Which paths are to be blocks follows
simple rules:

Assume we have a causal diagram and
want to examine the impact of X on Y.
A "back-door path" is an undirected3 path
from X to Y, where the first arrow points
into X. The idea of this algorithm is to
close all back-door paths, while assuring
that the variables that get controlled for
are not reachable via a directed4 path from
X. When this is achieved, X and Y do not
share a common cause anymore, while the
information flow between the two stays in-
tact. If some of the variables to control
for are unobservable, and there is no other
set of control variables without this flaw, the
system of variables cannot be deconfounded.

Here is a small example of a causal dia-
gram from the book:

A B C

D

X E Y

We can see the back-door path
X←A→B←D→E→Y, but luckily it is al-
ready blocked by the collider around B.

Since there are no other back-door paths,
the situation is unconfounded, as long as B
is not controlled for.

Another example from the book loos like
this:

A C

B

X Y

In this case, we can discern two dif-
ferent back-door paths: X←A→B←C→Y
and X←B←C→Y. While the first path is
blocked by the collider around B, the second
path needs to be closed. We could achieve
this by controlling for B without breaking
any rule, but that would open up the first
path. Therefore is would be better to close
it by controlling for C instead.

5 The Smoke-Cancer-Debate

5.1 Does smoking cause cancer?

As stated before, except for randomized con-
trolled trials, statistics did not grant any
causal conclusions. This posed a big, unan-
swerable question in the end of the 1950s:
Does smoking cause lung cancer? There was
time-series data showing a rise in lung cancer
cases right after the rise in cigarette a clearly
noticeable correlation between the heaviness
of smoking and the development of lung can-
cer, so the connection between the two could
not be unseen, but the causation behind the
correlation was important!

If there was a causal path from smok-
ing to cancer, not smoking would lower the

3the direction of the arrows does not matter
4only following direction of the arrows
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risk of cancer and therefore some legal steps
could be initiated, like banning cigarettes
or at least controlling the situation through
taxes and education.

If not, say because there existed a gene
that makes you both love cigarettes prone
to lung cancer, and the raising case counts
emerged only from other temporal factors
like the newly started tarring of roads, there
would not only be no need for any new, re-
stricting laws, but also there was no reason
for people to stop smoking at all, since it
would not change a thing. Obviously, the
tobacco industry took this side in the dis-
cussion.

Adding up to a huge concern propa-
gating the harmlessness of cigarettes, the
discussion was also very emotional for many
of the involved, since nicotine is a highly
addictive drug and addicts tend to defend
their drug very impassioned. Therefore,
clear facts without room for interpretation
needed to be stated to convince on side of
the other, and the best fact-producing mech-
anism known to mankind, mathematics, was
paralyzed by its responsible field, statistics,
anticipating the posed question itself.

The only way known so far to gain causal
conclusions on a mathematical foundation
were RCTs. Unfortunately, this was one of
the cases where RCTs were not only ethically
not applicable, but also not fast enough. To
gain reliable results, the supervisors of the
RCT had to split a large population ran-
domly into people that are forced to smoke
regularly in the next 40 years, and people
who are completely forbidden to smoke in
that time at all. Not only that making peo-
ple potentially damage their bodies for half
a life-time feels just wrong from a humane
perspective, also could many people still die
from lung cancer due to false information
during the long time a trial like this takes.

Luckily, after some time, Jerome Corn-
field found a mathematical way of making
the explanations and the point of view of
the tobacco industry too highly unlikely to

believe in, thus closing the debate. His ex-
planation was as easy as this: Assume there
was a gene that fully accounts for the lung
cancer found in smokers. Since lung cancer
is found nine times more often in smokers
than in non-smokers, this gene must occur
nine times more often in smokers than in
non-smokers. That means that when 11% of
all non-smokers have that gene, 99% of all
smokers had it. With more than 11.1%, the
full accusation of the gene was mathemati-
cally impossible. Since such a tight, nearly
deterministic link between a gene and a per-
sons decision to smoke was seen as highly
unlikely, the theory of the full-accountable
gene was refuted, only leaving theories be-
hind, where smoking has a causal effect on
lung cancer.

After the discussion was brought to a
conclusion, a committee with members of
all different fields was founded to elaborate
methods on how to tackle situations like this
in the future. Their main outcome was the
fact, that statistical methods are not suffi-
cient for spotting causal relationships, but
also a list of criteria that might give a good
hint on a causal link. This list, containing
criteria like consistency over different pop-
ulations, specificity of the cause to a cer-
tain effect and temporal order (effect after
cause), was later revised and expanded by
Austin Bradford Hill and therefore became
known as "Hill’s Criteria". The list is far
from perfect, and the presence or absence of
individual criteria must not mean anything
regarding the causal relation, but the pres-
ence of most aspects gives a strong sign in
the causal direction and without causal dia-
gram, this was a long time the best measure
present.

5.2 Smoking and newborns

Another controversy regarding smoking was
detected only a little later, but then not
solved for over 40 years. The scenario is the
following: In a study, for many thousands
of children, information was gathered about
their condition after birth and whether they

9



died soon after. Logically, the children of
smoking mothers had lower birth weight
and higher child mortality. The paradox
finding that was made here was the fact
that, if only looking at underweight babies,
the babies of smoking mothers had a much
lower mortality that those of non-smoking
mothers. When taking into account that
there are various genetic defects, that de-
cline birth weight and cause a child to die
early, looking at a causal diagram describes
and solves the problem easily:

Smoking

Weight

Defect

Death

The birth weight here serves as a
collider. By controlling for it, we al-
low information to flow in the direction
Smoking→Weight←Defect→Death. Thus,
the explain-away effect holds. When an un-
derweight baby has a smoking mother that
lowers the chance of the baby having a se-
vere birth defect compared to the other un-
derweight babies where there is no know
reason that "explains away" the low birth
weight. That means that the baby has a
lower chance to die that the babies with
birth defects that will kill them for sure.

6 Conclusion

To state my first impression of the book is
pretty simple: I was shocked, especially from

the historic parts. Never had I thought that
there has been so emotion, personal prefer-
ence and struggle for power in a field as pure
and logic-driven like mathematics. Maybe
I was just to naive up top this point, but
this shows once again that even becoming a
professor in mathematics does nothing near
guarding you from your human flaws.

But then again, reading the book also
made me happy, because this is a bad situa-
tion, that science and humanity are about to
overcome, and as a sideline producing meth-
ods that are easy to use, especially for a com-
puter scientist5.

Pearls argumentation that a strong AI
needs to be build upon statistical methods
that include causal inference makes perfect
sense to me. Because nearly every thought,
every plan, every wish that passes our brain
contains some aspect that differs from how
the world really is, I clearly see the ne-
cessity of robots being able to grasp rung
three problems for being able to communi-
cate with humans on equal terms, not even
talking abut the ability to understand the
world, which is incredibly important since
humans can’t model the world perfectly for
a robot.

Finally, causal diagrams as a model for
causal relations seem like a jack of all trades
to me. It is simple, yet compiling the whole
needed information into a little, compressed
graph, on which then thousands of already
existing graph algorithms can be used. Also,
they motivate scientific exploration, com-
pared to the classic statistical cookie-cutter-
methods used in other sciences. They invite
to play around with them to find out how the
world works, using data mainly for verifica-
tion (and later results), which sounds kind of
romantic to me and definitely worth looking
into them again some time.
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