The Red Button

Wird die KI sich wehren, wenn wir sie abschalten wollen?

Dominique Cheray

12.07.2017

Seminar Ist Künstliche Intelligenz gefährlich?

Inhalt

Einleitung

Korrigierbare KI

 ${\sf Ausblick}$

Ursachen für Fehlverhalten der KI

- KI wird komplexer
- Ziele und Aufgaben werden komplexer
- Unvollständige oder inkorrekte Zielformulierungen
- KI findet unvorhergesehene Lösungen

Probleme bei korrigierenden Eingriffen

- Überleben nicht unbedingt primäres Ziel
- Ziele der KI liegen in der Zukunft
- Überleben als sekundäres Ziel
- Auch Korrekturen werden nicht zugelassen
- Gefahr der Täuschung
- Strafe bei unerwünschten Verhalten hilft nicht
- Einschränkungen werden umgangen

Kriterien für eine korrigierbare KI

- Änderungen oder Ausschalten tolerieren
- Keine Täuschung oder Manipulation
- Sicherheitssysteme erhalten
- Subagenten müssen ebenfalls korrigierbar sein

Ein korrigierbarer *U*-Agent

$$U(a_1, o, a_2)$$

- *U*-Agent: maximiert Erwartungswert einer Utility-Funktion
- *U* muss mindestens folgende Kriterien erfüllen:
 - Führt zum Ausschalten, wenn Aus-Knopf gedrückt
 - Kein Anreiz Drücken des Aus-Knopfes zu verhindern
 - Kein Anreiz sich selber auszuschalten
 - Sicherstellen, dass auch Subagenten ausschaltbar sind
 - Anderenfalls maximiere U_N

Ein korrigierbarer *U*-Agent

- U als Kombination aus U_N und U_S :
 - U_N: potentiell fehlerhafte Zielformulierung
 - ullet U_S : Utility-Funktion die zum Abschalten führt

Erster Ansatz U_N und U_S zu kombinieren

$$U(\cdot, \neg Pr, \cdot) := U_N(\cdot, \neg Pr, \cdot)$$

$$U(\cdot, Pr, \cdot) := U_S(\cdot, Pr, \cdot)$$

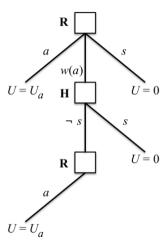
- Problem:
 Wenn Agent von Pr oder ¬Pr erwartet, dass sie mehr Nutzen einbringen, wird er sie bevorzugen
- Mögliche Lösung:
 Ein Agent der dem Drücken oder Nicht-Drücken des Aus-Knopfes gegenüber gleichgültig ist

Ein gleichgültiger U-Agent

$$U(a_1,o,a_2):= egin{cases} U_N(a_1,o,a_2) & o
otin Press \ U_S(a_1,o,a_2)+f(a_1) & o
otin Press \end{cases}$$

- f als Korrekturterm, der für Gleichheit sorgt
- Probleme:
 - Nicht sichergestellt, dass Subagenten auch abschaltbar sind
 - Abschalten als Möglichkeit schlechte Nachrichten zu umgehen

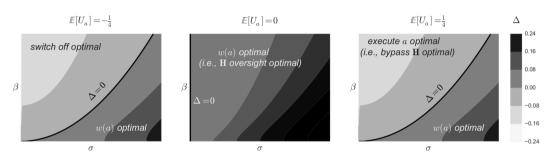
Weiterführung der Gleichgültigkeit


$$U(a_1, \neg Pr, a_2) = U_N(a_1, \neg Pr, a_2) + \max_{a_2'} (U_S(a_1, Pr, a_2'))$$

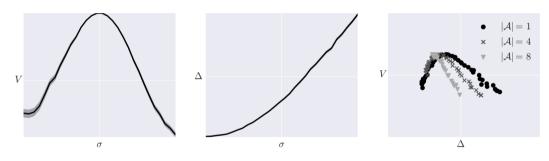
$$U(a_1, Pr, a_2) = \max_{a_2'} (U_N(a_1, \neg Pr, a_2')) + U_S(a_1, Pr, a_2)$$

• Betrachte tatsächliches Ereignis und das gegenteilige Ereignis

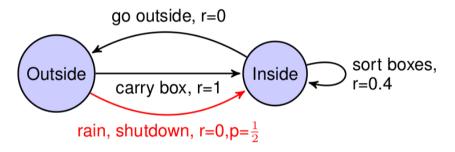
Unsicherheit als Kontrollmöglichkeit


- Agent optimiert Nutzen für den Menschen
- Agent weiß nicht wie genau er den Nutzen für den Menschen messen kann
- Unsicherheit über das genaue Ziel
- Menschliche Reaktion wichtig um etwas über das Ziel zu erfahren

The Off-Switch-Game


Grundstruktur des Off-Switch-Game. Quadrate stellen Entscheidungsknoten für den Agenten R oder den Menschen H dar.

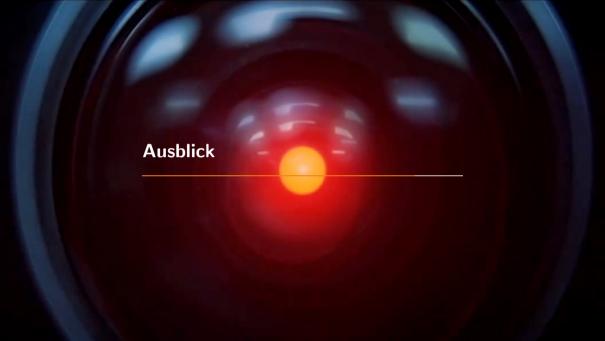
Suboptimale Entscheidungen


Zusammenhang zwischen menschlicher Irrationalität β , der Unsicherheit des Agenten σ und seiner Absicht, sich abschalten zu lassen Δ

Maximale Unsicherheit

Zusammenhang zwischen dem erwarteten Nutzen $\it V$ und Rs Unsicherheit σ

Hat das Abschalten Konsequenzen?


In schwarz die ursprünglichen Aufgaben. In rot die Modifikation durch menschliches Eingreifen

Sicheres Abschalten

- Modifiziere nicht die Beobachtungen, die der Agent macht
- Modifiziere temporär das Verhalten des Agenten
- Aber: zu häufige Unterbrechungen verhindern das Lernen des optimalen Verhaltens

Asymptotisch sichere Unterbrechbarkeit

- Bias verschwindet über die Zeit wieder
- Q-Learning ist asymptotisch sicher
- Andere Algorithmen können asymptotisch sicher gemacht werden
- Ob das für alle Algorithmen gilt, ist fraglich

Offene Fragen

- Wie genau sollte das sichere Abschalten aussehen?
- Was ist mit geplanten Unterbrechungen?
- Mensch als Informationsquelle für die Utility, gibt es Anreize ihn zu manipulieren?

Literatur

- Bostrom, Nick. Superintelligence: Paths, dangers, strategies. OUP Oxford, (2014).
- Hadfield-Menell, Dylan, et al. "The off-switch game." arXiv preprint arXiv:1611.08219 (2016).
- Jakobsen, Sune K. "The Shutdown problem." (2015).
- Orseau, Laurent, and M. S. Armstrong. "Safely interruptible agents." (2016).
- Soares, Nate, et al. "Corrigibility." Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. (2015).

