
Inferring and Executing Programs
for Visual Reasoning

Published by Justin Johnson, Bharath Hariharan, Lauren

van der Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence

Zitnick, Ross Girshick

Stanford University, Facebook AI Research

Explainable Machine Learning

PD Dr. Ullrich Köthe

University of Heidelberg

Summer semester 2018

Author

Hannes Perrot



Introduction

1 Introduction

In the following, I will summarize and discuss the paper ”Inferring and Executing

Programs for Visual Reasoning” written by Justin Johnson, Bharath Hariharan,

Laurens van der Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence Zitnick and Ross

Girshick from Stanford University and Facebook AI Research [4]. More and more

applications in computer vision need to answer sophisticated questions, which re-

quire reasoning about the world. Reasoning is defined in the Cambridge Dictionary

as ”the process of thinking about something in order to make a decision” [1]. A

real-world question requiring visual reasoning is shown in Figure 1.1. To answer

this question, the terms have to be understood, recognized in the image and related

to each other.

Figure 1.1: Example of a visual reasoning problem [4]

The presented paper introduces a new method to model visual reasoning. The re-

sults are compared to other methods and tested on the CLEVER and the CLEVER-

Humans dataset. The method includes a program generator and an execution en-

gine, which together conduct the visual reasoning process.

1.1 CLEVER Dataset

A dataset specially created for the task of visual reasoning is the CLEVER dataset [3].

The dataset consists of images, a set of questions about each image, an example pro-

gram, how this question could be answered and the correct answers. The dataset

is created algorithmically and the code to create new images and questions is pub-

lished. The main tasks, the algorithm has to be able to accomplish on the dataset,

Page 1



Introduction

are attribute identification, comparison, counting and evaluating spatial relation-

ships and logical operations.

Figure 1.2: Example image of the CLEVER dataset [3]

Figure 1.2 is an example image from the CLEVER dataset. Some questions about

this picture could be for example:

� Are there an equal number of large things and metal spheres?

� What size is the cylinder that is left of the brown metal thing that is left of

the big sphere?

� There is a sphere with the same size as the metal cube; is it made of the same

material as the small red sphere?

Page 2



Method

2 Method

An overview of the method proposed by the paper from Johnson et al. [4] is shown

in Figure 2.1. The system consists mainly of two parts. First based on a question,

a program is predicted by the program generator. This program is then executed

by the execution engine using the visual features from the image. At the end of the

execution engine, a classifier predicts an answer to the question about the image.

Both, the program generator and the execution engine are implemented using neural

networks. They are trained using back-propagation and REINFORCE.

Figure 2.1: Overview of method [4]

2.1 Programs

The programs used to predict the questions’ answers are composed of functions

with a predefined meaning. The programs are represented by a tree of functions.

Each function node gets the output of its children as input. The functions have a

predefined arity, which means how many children the function node has. The output

of the root node is fed to a classifier, which predicts the answer.

2.2 Functions

The functions are implemented using neural networks. For each function, a neural

network module is used. The network to predict the answer to a question is build

dynamically from the function modules. Each function has the same output size.

Page 3



Method

The input size is either of the functions depend on their airty. Basically there are

different function types:

SCENE The Scene function returns the visual features of the input image. For

this task, the output of the conv4 layer from a pretrained ResNet-101 [2] is used.

Unary functions Unary functions are functions with one input and one output.

An example for this function is ”count”. These functions consist of a single residual

block from the ResNet [2]. A residual block is shown in Figure 2.2. It consists of

two convolutional layers. The input to the residual block is added to the output

of the second convolutional layer. By introducing residual blocks, it was possible

to build much deeper networks, without having problems with vanishing gradients.

Also only learning the residual seemed to be an easier problem.

Figure 2.2: Residual block used in functions [2]

Binary functions Binary functions are functions with two inputs, like for example

”greater than”. The two inputs are concatenated at their channel dimension and

a 1x1 convolution reduces the channels again to their original channel width. A

consecutive residual block like for the unary functions implements the actual func-

tionality.

Classifier The output of the last function in the execution tree is flattened and fed

to a classifier. This classifier predicts the most probable answer out of a fixed set of

possible answers. The classifier is implemented as a multilayer perceptron classifier.

Page 4



Method

2.3 Program Generator

The program generator predicts a program from a natural language question. It

gets the sequence of embeddings of words from the question as input and predicts

a sequence of functions. These functions are then parsed to the program tree. The

predicted functions are the new nodes, until the SCENE function is predicted. The

next predicted functions build a new branch, if there is still a binary function with

only one child left. The program generator is implemented using a sequence to

sequence model. These kind of models are typically used for language translation

[7]. One long short-term memory (LSTM) (or two consecutive) first takes the word

embeddings and compresses them to an intermediate representation of the question

with a fixed size. A second LSTM then predicts the program from the fixed size

representation of the question. It samples from the functions until the program tree

is complete. To make the program generator differentiable, they replace the argmax

with sampling and use REINFORCE to estimate gradients on the outputs of the

program generator [4].

2.4 Execution Engine

The execution engine takes a program and an image as input and predicts an answer.

It is implemented using neural networks. For each function node in the program

tree, the respective network module is taken. These modules are then composed

according to the tree structure. So for each program, the network to predict the

answer looks different. Because the interface between the functions has always the

same size, all complete program trees can be executed. The output of the last

function is then flattened and the classifier predicts an answer.

2.5 Training

For training this network, three approaches are proposed.

Strongly Supervised One possibility is to train the program generator and the ex-

ecution engine separately. The program generator is trained with the ground truth

questions and programs using the standard LSTM sequence to sequence training

like for example in language translation. The functions in the execution engine are

Page 5



Method

trained with the images and their ground truth programs and answers. Since the

network is defined by the ground truth program, this is a normal classification train-

ing, besides that the network is rearranged for each question. With this supervised

training procedure, the best testing performance is achievable. On the other side,

for every question, a ground truth program is needed. This is not always possible,

for example when training on the CLEVER-Humans dataset (see section 3.5)

Joint REINFORCE Another possibility is to train both networks jointly end to

end and back-propagate through both parts of the network. A clear benefit of this

training method is, that no ground truth programs are needed to train the program

generator. But training without any ground truth programs is hard, since there

is the hen and egg problem: The program generator needs to produce programs

without understanding what the functions are meant to mean and the execution

engine has to produce the correct answers from programs, that are just like randomly

generated. Nonetheless, this is a good possibility to fine-tune the network, once a

program generator and an execution engine are pretrained.

Combined semi-supervised A third possibility is a combination of both methods:

1. Train program generator on a small subset of ground truth programs

2. Fix program generator and train execution engine using predicted programs

on large dataset

3. Use REINFORCE to fine-tune program generator and execution engine

Applying this method, only a small subset of the ground truth programs are used

to train the program generator in the beginning. This also allows to fine-tune the

model on a dataset without ground truth programs.

Page 6



Experiments and Results

3 Experiments and Results

In this chapter some of the experiments conducted by the authors of the paper are

presented.

3.1 Comparison of training procedures

In Figure 3.1, the accuracy of different methods is shown. The first five methods are

the baselines. Human performance is measured on a subset of the CLEVER dataset

on Mechanical Turk. The three rows below show the performance of networks trained

with a different amount of ground truth programs. The Ours-strong model was

trained strongly supervised exploiting all ground truth programs. The models Ours-

semi was trained with the combined semi-supervised training method. The 18k and

9k means the number of ground truth programs used to train the program generator

in step 1 of the semi-supervised training.

Figure 3.1: Comparison results on test set different training procedures [4]

One observation is, that the strongly supervised model exceeds human performance

in each question category. Also the semi-supervised model with 18k programs ex-

ceeds human performance in almost every category, even though only 4 % of the

unique questions of the dataset were in the training set. This means, that the model

can adapt to new questions.

The program accuracy over the number of training programs is shown in Figure 3.2.

The program accuracy is measured as the number of programs, that are predicted

by the program generator exactly as they are in the ground truth. This accuracy

rises below 10k training programs and converges then to nearly 100 %. 20k training

programs seem to be sufficient to have almost exact predicted programs.

Page 7



Experiments and Results

Figure 3.2: Program accuracy over number of training programs in training set [4]

The answer accuracy of the execution engine is shown in Figure 3.3. The dashed

line is the accuracy of the strongly supervised model, which used all of the ground

truth programs during training. The green line is the answer accuracy when training

the execution engine with the predicted programs of the program generator, which

itself was trained on a certain number ground truth of programs. This leads to

less accurate predicted answers. With the joint fine-tuning (step 3 in the combined

semi-supervised training method), some of the reduced accuracy can be eliminated.

Figure 3.3: Answer accuracy over number of training programs in training set [4]

3.2 What do the modules learn

To check, what the modules learned, they visualized the attention of the network

with respect to the input pixels on a series of questions, where always some more or

different aspects are asked. In Figure 3.4 one of these series is shown.

Figure 3.4: Attention visualization of the network for slightly different questions [4]

Page 8



Experiments and Results

This series shows, that the attention of the network actually is directed to the parts

of the image, where the objects from the questions are. The region of attention also

changes if single words in the question are exchanged. This seems like, the modules

actually learned the meaningful representations.

3.3 Generalizing to new attribute combinations

With a split of the network, generalization to new attirbute combinations can be

checked. Therefore the dataset was split, so that split A had cubes in gray, blue,

brown, and yellow and cylinders in red, green, purple, and cyan. Split B has the

colors exchanged. They first trained on split A of the dataset and then tested on A

and B separately. The pretrained network was then fine-tuned on split B and tested

again.

Figure 3.5: Results generalizing to unseen attribute combinations [4]

In Figure 3.5 the results are shown. Still, their method outperforms their baselines,

but the split, where the network was not trained on, has significantly worse accuracy.

So no complete generalization of attributes is possible, if the network hasn’t seen the

attribute combinations during training. After fine-tuning on split B, the accuracy

on this split is improved, while it ”forgets” to answer questions on the split it was

originally trained on.

3.4 Generalizing to new question types

In real world scenarios, the program generator should be able to adapt to new

question types and program structures without having seen every possibility. To test

this, the dataset was split into long and short programs. The program generator was

first trained on short examples with the semi-supervised training procedure. Then

the program generator was fine-tuned on both types, with a fixed execution engine.

Page 9



Experiments and Results

Figure 3.6: Results generalizing to longer questions [4]

When the execution engine was trained only on the short programs, a ”short program

bias” was introduced. This can be seen when the program generator is tested on

longer questions. The generated programs tend to model a shorter question. With

these programs, the model even underperforms one of their baselines. After fine-

tuning only the program generator on both question types, this bias can be reduced.

The model then again outperforms the baselines. This means, that new program

structures can be adapted, if the model is fine-tuned on them. This fine-tuning

needs only the correct answers, but no ground truth programs.

3.5 CLEVER-Humans Dataset

Figure 3.7: Examples of CLEVER-Humans dataset with predicted programs and
answers [4]

The CLEVER-Humans dataset is a dataset with linguistically more diverse ques-

tions. To create the CLEVER-Humans dataset, workers on Mechanical Turk were

Page 10



Experiments and Results

asked to write questions about images from the CLEVER dataset, which are hard

for a clever machine to answer. Some other workers were asked to answer these

questions. If the answers agreed among each other, the question was added to the

CLEVER-Humans dataset. In Figure 3.7 some example questions are shown. The

underlined words didn’t appear in questions of the original CLEVER dataset. For

this dataset, no ground truth programs are available. To train the model on this

dataset, it was first trained on the CLEVER dataset, then the program generator

was fine-tuned on the CLEVER-Humans dataset. The embeddings of previously

unknown words were initialized randomly.

The task of the model is to reuse the learned reasoning capability and adapt to

new words and question types. This works, as it still outperforms the baselines. In

the left example of Figure 3.7, the program generator for example learned, that the

new word ”box” has the same meaning than the already known word ”cube”. In the

middle example, the program can approximate the question, and create a reasonable

program and answer. In some cases (right example), the predefined functions are

just not able to model the question. In these cases, the model often fails.

Page 11



Conclusion

4 Conclusion

Why is this approach better than other compared attempts? Johnson et al. [4]

introduce a novel approach to answer questions, that involve reasoning. The method

involves a program generator, that constructs a representation of the reasoning

process needed to answer the question and an execution engine, to execute the

program and answer the question. Previous methods, that directly tried to answer

the question with models, that work as a black box model tend to exploit model

biases. By explicitly modeling the reasoning process, this novel approach has the

possibility to learn reasoning about the questions rather than exploiting data biases.

To what extent make the functions the approach explainable? The intermedi-

ately generated program offers an additionally explanation, why the model came to

this specific answer. This makes the approach more explainable than the black box

approaches.

What could be issues when trying to exceed toy problems? In real wold prob-

lems, the training data cannot be generated as easily as the CLEVER dataset.

When labeling this dataset in addition to the questions and answers, an appropriate

program has to be generated. This labeling process could be very expensive.

As seen in section 3.3, generalizing to new attribute combinations is not trivial for

the model. To overcome this, preferably every attribute combination should be

present in the training set. In real world problems, the possible categories could

be much more diverse and there could be much more attribute combinations. This

would also require a big dataset.

Are there new developments and papers so far? The field of visual reason-

ing is an open research topic and there are many new papers published, using the

CLEVER benchmark. Some of them are also surpassing the results of the pre-

sented method. These include for example new attention mechanism [5] and new

conditioning methods [6].

Page 12



References

5 References

[1] Dictionary, Cambridge: reasoning Bedeutung im Cambridge En-

glisch Wörterbuch. https://dictionary.cambridge.org/de/worterbuch/

englisch/reasoning. – visited on 2018-09-06

[2] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Residual

Learning for Image Recognition. In: CoRR abs/1512.03385 (2015). http://

arxiv.org/abs/1512.03385

[3] Johnson, Justin ; Hariharan, Bharath ; Maaten, Laurens van d. ; Fei-Fei,

Li ; Zitnick, C. L. ; Girshick, Ross B.: CLEVR: A Diagnostic Dataset

for Compositional Language and Elementary Visual Reasoning. In: CoRR

abs/1612.06890 (2016). http://arxiv.org/abs/1612.06890

[4] Johnson, Justin ; Hariharan, Bharath ; Maaten, Laurens van d. ; Hoff-

man, Judy ; Li, Fei-Fei ; Zitnick, C. L. ; Girshick, Ross B.: Inferring and

Executing Programs for Visual Reasoning. In: CoRR abs/1705.03633 (2017).

http://arxiv.org/abs/1705.03633

[5] Malinowski, M. ; Doersch, C. ; Santoro, A. ; Battaglia, P.: Learning

Visual Question Answering by Bootstrapping Hard Attention. In: ArXiv e-prints

(2018), August. https://arxiv.org/abs/1808.00300

[6] Perez, Ethan ; Strub, Florian ; Vries, Harm de ; Dumoulin, Vincent ;

Courville, Aaron C.: FiLM: Visual Reasoning with a General Conditioning

Layer. In: CoRR abs/1709.07871 (2017). http://arxiv.org/abs/1709.07871

[7] Sutskever, Ilya ; Vinyals, Oriol ; Le, Quoc V.: Sequence to Sequence

Learning with Neural Networks. In: CoRR abs/1409.3215 (2014). http://

arxiv.org/abs/1409.3215

Page 13

https://dictionary.cambridge.org/de/worterbuch/englisch/reasoning
https://dictionary.cambridge.org/de/worterbuch/englisch/reasoning
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1705.03633
https://arxiv.org/abs/1808.00300
http://arxiv.org/abs/1709.07871
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215

	Introduction
	CLEVER Dataset

	Method
	Programs
	Functions
	Program Generator
	Execution Engine
	Training

	Experiments and Results
	Comparison of training procedures
	What do the modules learn
	Generalizing to new attribute combinations
	Generalizing to new question types
	CLEVER-Humans Dataset

	Conclusion
	References

