The pitfalls of competitions

Lasse Becker-Czarnetzki

Heidelberg University How to lie with statistics Winter 2019/2020

Dezember 12, 2019

- What's it about
- Important techniques

2 What's going wrong?

- No real standards…
- Ranking robustness (Everybody wins)

3 What to do?

Why do we have competitions

What did people do before?

- Use of own datasets
- No fair/easy comparison
- Strongly biased results?
- Public data (quality checked)
- Fair comparisons (same conditions)
- Efficient research exchange \rightarrow Progress
- Establishment of good methods, State-of-the-art
- Getting seen, published

Benchmarking principles/Best practices

- Validity
 - Standardized procedure. (Training, test split)
 - Statistical sound procedure.
- Reproduceability
 - Experiments description (e.g Hyperarameters)
 - Data description (e.g Preprocessing)
 - Hardware and software enviroment
- Comparability
 - Identical experimental setup:
 - Benchmark problems
 - Datasets
 - statistcal analysis
 - Use sound metrics to capture relevant difference in performance
 - Avoid bias in data partitions

Get robust ranking

- Metric based aggregation
- Sound statistical significance
- Avoid correlated metrics
- Combat lack of representation
 - Evaluate on broad spectrum of datasets
 - Evaluate on datasets with different statistical properties
 - Number of features
 - Number of classes
 - Noise

Hold out methodCross-validation

- K-folds cross validation
- Leave one out
- Stratified cross validation

Bootstrapping

Split dataset into train, validation, test set

Don't release test set to prevent data snooping

K-Fold Cross Validation

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test

¹ Cross Validation

(

		1/////		XXXXXI	
Training Data				Validatior	Holdout
Training Data			Validation		Holdout
		k			
Training Data		Validation			Holdout
Training Data	Validation				Holdout
	N				
Validation	Training Data				Holdout
10%	20% 30%	40%	50% 60%	70%	80% 90% 1009

Stratified Cross Validation

Stratified K-Fold Cross Validation (K=5)

Class Distributions

Bootstrapping

- Repeat this process b times (10.000)
- For every resample take some meaningful value (e.g mean)
- Now you can do statistical analysis

- Repeat this process b times (10.000)
- For every resample take some meaningful value (e.g mean)
- Now you can do statistical analysis

■ Metric Performance (e.g. Accuracy)

- Model complexity
- Computational complexity
- Scalability
- Sample complexity
- Interpretability

Structure

1 Competitions overview

- What's it about
- Important techniques

2 What's going wrong?

- No real standards…
- Ranking robustness (Everybody wins)

3 What to do?

4 Conclusion

Study on biomedical image analysis competitions

- Study by [Maier-Hein et al. 2018]
- 150 competitions, 549 tasks over 12 years
- Statistical analysis (What are the numbers?)
- Critical analysis
 - Are the challenges sound in procedure
 - What are they main problems?
 - What best practices can combat these?

Figure 1: Biomedical image analysis tasks [Maier-Hein et al. 2018]

Why was this necessary

Figure 2: Overview of biomedical image analysis challenges Maier-Hein et al. 2018

Relevant information not reported

- Authors created list of 53 parameters, that a challenge should report
- 43% of parameters were not reported for 50% of all tasks
- Examples of not reported parameters:
 - 08%: Rank aggregation method
 - 85%: If provided training data was supplemented with other data
 - 66%: Description of gold standard annotations
 - 45%: Annotation aggregation method (Multiple annotators)
 - 19%: Annotator expertise level

- 97 different metrics were used (half of them only on single task)
- 77% No justification for metric use
- 57% Use of single metric to determine winner
- 10 different methods for determining final rank

- Minor changes in metrics
- Different aggregation methods
- Different annotators
- Removing one test case
- Lack of missing data handling

- Rank correlation coefficient
- Ordinal association between two measured quantities.
- Takes first ranking as starting point
- Looks how often does the second ranking break the first

$$\tau = \frac{S}{\frac{n(n-1)}{2}}$$
$$\tau \in [-1;1]$$

S = concordants - disconcordants

	First	Second	Third	Fourth
Result A	1	2	3	4
Result B	4	1	2	3
Pairs	(1,4)	(2,1)	(3,2)	(4,3)

S = concordants - disconcordants

	First	Second	Third	Fourth
Result A	1	2	3	4
Result B	4	1	2	3
Pairs	(1,4)	(2,1)	(3,2)	(4,3)

Compar	e				concordant	disconcordant
(1,4)	(2,1)	(3,2)	(4,3)	_		3
(2,1)	(3,2)	(4,3)			2	
(3,2)	(4,3)				1	

Figure 3: Ranking robustness, metric based [Maier-Hein et al. 2018]

Figure 4: Ranking robustness, mean or median [Maier-Hein et al. 2018]

Figure 5: Ranking robustness, aggregation method [Medic]

Figure 6: Ranking robustness, annotator (HD) [Maier-Hein et al. 2018]

Observer 1 Observer 2

Figure 7: Ranking robustness, annotator (DSC) [Maier-Hein et al. 2018]

- Bootstrap experiments on single-metric rankings
- Compare robustness of variables
- Resample (1000 times) check if original winner is still the winner

Bootstrapping experiments

Figure 8: Robustness comparison median vs mean [Medic]

Bootstrapping experiments

Figure 9: Robustness comparison aggregation methods [Medic]

Structure

1 Competitions overview

- What's it about
- Important techniques

2 What's going wrong?

- No real standards...
- Ranking robustness (Everybody wins)

3 What to do?

4 Conclusion

Recommended best practices

- Incomplete reporting
 - \rightarrow Instantiate full parameter list
- Low annotation quality
 - $\rightarrow~$ Use multiple annotators
 - \rightarrow Provide clear guidelines for annotations
- Suboptimal metric(s)
 - \rightarrow Sound metric for task/challenge goal
 - \rightarrow Be aware of biases
 - \rightarrow Maybe check for ranking robustness
- Ranking and uncertainty
 - $\rightarrow\,$ Metric-based aggregation > case based aggregation
 - \rightarrow Mean > Median
 - \rightarrow Quantify the uncertainties, (annotations, rankings)
 - \rightarrow Report inter-observer variability
 - $\rightarrow\,$ Perform bootstrapping to quantify ranking stability

Structure

1 Competitions overview

- What's it about
- Important techniques

2 What's going wrong?

- No real standards...
- Ranking robustness (Everybody wins)

3 What to do?

4 Conclusion

- Competitions are very popular for benchmarking
- Winner might not be the best
- Consider other factors than challenge ranking
- Transparency is key
- Research for good standard practices needed
- Incentives to use these practices needed.

Thank You for Listening Any Questions?

- Hoffmann, Frank, Torsten Bertram, Ralf Mikut, Markus Reischl, and Oliver Nelles (2019). "Benchmarking in classification and regression". In: *WIREs Data Mining and Knowledge Discovery* 9.5, e1318. eprint: https:
 - //onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1318.
 URL: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/widm.1318.
Maier-Hein, Lena et al. (2018). "Is the winner really the best? A
critical analysis of common research practice in biomedical
image analysis competitions". In: CoRR abs/1806.02051. arXiv:
1806.02051. URL: http://arxiv.org/abs/1806.02051.