
Learning Deep Nearest Neighbor
Representations Using

Differentiable Boundary Trees

Explainable Machine Learning Report

PD Dr. Ullrich Köthe

Heidelberg University

Summer semester 2018

Author

Benedikt Kersjes

Introduction

1 Introduction

To explain the decisions of a machine learning model for a specific instance, it can be

useful to compare them to the results for similar instances. However, it is not trivial

to compute similar instances as it is necessary to define a suitable representation

of the instances and an appropriate distance metric. The Differentiable Boundary

Tree algorithm addresses the first problem by learning a representation which results

in simple class boundaries in the transformed feature space [2]. Therefore, the

algorithm improves the performance of the original Boundary Tree algorithm [1].

For the seminar, I was assigned the paper by Zoran et al. in which the Differentiable

Boundary Tree algorithm was introduced. As we had only limited time for our

seminar presentation, it was not possible to cover all parts of the topic in detail,

but it was necessary to concentrate on specific and hopefully interesting aspects. In

my seminar presentation, I concentrated on the procedure of the original Boundary

Tree algorithm and the derived Differentiable Boundary Tree algorithm which I

explained in detail. In addition to that, I focused on the experiments Zoran et al.

conducted on the derived algorithm. However, I just briefly explained the math

behind the differentiable version of the algorithm and also did not talk much about

the properties of the original algorithm.

To cover the remaining aspects of the topic, I decided to focus on them in this

report. Nevertheless, I think it is necessary to start with an explanation of the

original algorithm, as I already did in the presentation. Otherwise the report would

not be useful without having heard the talk before. Therefore, in the second section,

I will describe the Boundary Tree algorithm and some interesting properties, which I

did not mention in the talk. In the third section, I will focus on the math behind the

Differentiable Boundary Tree algorithm. Zoran et al. skip several intermediate steps

in their paper which might be useful for some people to understand the algorithm

in detail.

Page 1

Boundary Tree Algorithm

2 Boundary Tree Algorithm

The Differentiable Boundary Tree algorithm is build on the Boundary Tree algo-

rithm, which did not use representation learning and is therefore not as powerful

as the advanced Differentiable Boundary Tree algorithm. Nevertheless, it is impor-

tant to understand the original algorithm first before focusing on the Differentiable

Boundary Tree algorithm. The original algorithm was invented by Mathy et al. and

published in 2015 [1]. The description in this report is based on the original paper

[1], as well as on the description in [2].

The Boundary Tree algorithm is an online learning algorithm, that can be trained

and queried fast. A Boundary Tree is constructed by iterating over the training set

instance by instance. For each instance the current tree is traversed, starting at

the root node. To select the next node, the distance of the current node and all its

children are compared to the current instance. The next node is the node with the

smallest distance to the current instance. If the current node does not change, i.e.

the current node is closer to the current instance than all of its children, we stop

at this node. If we reach a leaf node, the algorithm also stops. The node at which

the algorithm stops is called the locally closest node, as it is closer to the query

node than all its ancestors and its direct children. The label of the locally closest

node is then compared to the label of the current instance. If the labels match, the

current instance is discarded and will not be added to the tree. If the locally closest

node and the current instance have different labels, the current instance is added

as child to the locally closest node. From this algorithm definition directly follows

the property, that each edge in the Boundary Tree crosses a boundary between two

classes, thus the name Boundary Tree.

Figure 2.1: Visualisation of the original Boundary Tree algorithm. The current tree
on the left, the traversion for the blue query point in the middle and the
resulting tree on the right.

Page 2

Boundary Tree Algorithm

Figure 2.1 visualizes a simple example of a Boundary Tree. The tree is trained on

a two class dataset (green and red). The boundary between the two classes is also

shown in the image. On the left, the current tree is shown, before the blue query

point is processed. In the center, the traversion through the tree for the blue query

point is visualized. In this example, the locally closest is a leaf node and has a

different class label than the query node. Therefore, the query node is added to the

tree, which results in the image on the right.

Mathy et al. who invented the Boundary Tree algorithm used the algorithm in a

ensemble setting, which they called Boundary Forest. The idea is to train multiple

Boundary Trees on the same training set. When a query point needs to be evaluated,

the output of all Boundary Trees is combined to determine the result. For instance,

in a classification setting, the majority vote could determine the predicted label.

For regression, one could take the average over all single tree outputs. Interestingly,

it seems to be sufficient for decorrelation to start each tree with a different instance

from the training set, i.e. to give each tree a different root node, to train each tree

with the root nodes of all other trees and to start online learning then [1]. This

means, after each tree has been trained with a small number of instances, all further

instances are in the same order for all trees. However, this does not seem to reduce

the algorithm’s overall performance.

Mathy et al. state, that a Boundary Tree has an interesting property, which they call

immediate one-shot learning. This means, that a Boundary Tree, which is trained

on a specific training instance and directly after that queried for the same training

instance, will definitely give the right answer for that instance. This is easy to prove,

as the path for the query point will be the same as for training on the same instance

before. If the labels of the locally closest node matched the training instance’s label,

the training instance would not have been added to the tree. Therefore, the tree

would be exactly the same and the output would be again correct. If the labels did

not match, the training instance would have been added as a child to the locally

closest node. This would also output the correct result, as the distance of the

query point to itself is of course smaller than the distance to the locally closest

node. Obviously, this property does only hold if no other node was inserted in the

meantime, but Mathy et al. found out, that the performance on the full training set

after training is still below 1% for all data sets they considered.

Page 3

Differentiable Boundary Trees

3 Differentiable Boundary Trees

In the original version of the Boundary Tree algorithm, the instances were repre-

sented in the original feature space. This is not very useful, especially when dealing

with pixel input. Of course it is possible to use another hand-crafted representation

for the data, but the optimal representation will highly depend on the application

and could therefore not be reused in most cases. Differentiable Boundary Trees

solve this problem by applying a transformation function on the data, which can be

learned by gradient descent on a cost function which is assigned to each Boundary

Tree.

The idea of the cost function is to calculate, how probable a path through the tree

is for a given query point. If this is done naively, the probability for the actual path

through the tree for a given query point is 1 and the probability for all other paths

is 0. For better generalization, the Differentiable Boundary Tree algorithm models

the transitions between nodes by stochastic events, which results in smoother path

probabilities.

The transition probabilities are defined for nodes in a transition neighbourhood.

A transition neighbourhood consists of a parent node and all its children. The

transition probability for a node gives the probability for the transition from the

parent node to that specific node. The probability depends on the distance between

the query point and the node. The higher the distance, the lower the transition

probability.

p(xi → xj|y) = SoftMax
j∈{i,child(i)}

(−d(xj, y)) (3.1)

Where i is the index of the root node of the neighbourhood and child(i) is a function

that returns the indices of all direct children of xi. There is also a probability to

stay at the current node if j = i. d(xj, y) is the distance between node xj and the

query point. Although the representation of the data is learned in this algorithm,

the distance function is still hand-crafted and can be defined arbitrarily. For their

experiments, Zoran et al. simply used the Euclidean distance and achieved quite

reasonable results [2].

Having defined this, the probability for a path follows directly by multiplying the

single transition probabilities, since the transitions are conditionally independent of

Page 4

Differentiable Boundary Trees

each other. This is due to the fact, that the distance of a node in the training set to

the query point is independent of the distance of any other node to the query point.

The transition probability only depends on these distances, thus the transitions are

conditionally independent of each other.

p(path|y) =
∏

i→j∈path

p(xi → xj|y) (3.2)

As we are interested in class probabilities, we calculate the probability for a class

given a specific path as follows:

p(c|path, y) = (
∏

i→j∈path

p(xi → xj|y))c(xfinal) (3.3)

Where c(xfinal) is the indicator function for the class label c. The probability for a

class label over all possible paths follows by taking the expectation over all paths.

p(c|y) = Epath|y(p(c|path, y)) (3.4)

However, this is computationally infeasible, since there is a infinite number of paths

through the tree. According to [2], the probability can be approximated by con-

sidering only the greedy path, which is the exact same path the original Boundary

Tree algorithm would take for a given query.

Epath|y(p(c|path, y)) ≈ p(c|path∗, y) (3.5)

p(c|y) = (
∏

i→j∈path∗
p(xi → xj|y))c(xfinal) (3.6)

Considering multiple paths however gives us softer class predictions, since we do

not only receive a probability for the class of the final node in our path, but for all

classes present in any of the final nodes of our paths. Therefore, we can also consider

all siblings (and the parent) of our final node, i.e. all nodes in the final transition’s

neighbourhood. We define path+ to be path∗ reduced by its last transition and xl

to be the final node of path+.

Page 5

Differentiable Boundary Trees

p(c|y) = (
∏

i→j∈path+
p(xi → xj|y)) ∗ (

∑
p(xl → xk|y)

xk∈{xl,sibling(xfinal),xfinal}

c(xk)) (3.7)

Multiplying this out would give us the sum of several paths, which brings us closer to

the expectation over all paths and is therefore a better and smoother approximation

of the class predictions. Note, that this probabilities will never sum up to 1, as the

expectation over all paths and all classes sums up to 1 and we are considering only a

small subset of all paths. Therefore, the probabilities are normalized to get a correct

distribution. Applying the logarithm gives us the following log probabilities:

log p(c|y) =
∑

i→j∈path+
log p(xi → xj|y) + log (

∑
p(xl → xk|y)

xk∈{xl,sibling(xfinal),xfinal}

c(xk)) (3.8)

If we have only two classes, at least one node of each class will be present in the

final node’s neighbourhood. This follows from the property, that each edge in the

tree crosses a boundary between two classes. Therefore, all siblings of the final node

are of the same class as the final node and their parent is of the other class. Thus,

all probabilities will be non-zero. For a problem with more than two classes, this

does not hold. In these cases we need to somehow handle possible zero probabilities

when applying the logarithm. The authors of [2] do neither mention this problem

nor provide code, so we cannot be sure, how they address this issue.

As we want to learn a better representation than the raw input representation, we

can apply a transformation function to all inputs which are learned by a neural

network.

log p(c|fθ(y)) =
∑

i→j∈path+
log p(fθ(xi)→ fθ(xj)|fθ(y))

+ log (
∑

p(fθ(xl)→
xk∈{xl,sibling(xfinal),xfinal}

fθ(xk)|fθ(y))c(xk))
(3.9)

Zoran et al. insert this last equation into the cross-entropy loss function to be able

to perform gradient descent on the parameters of the transformation network. An

important note is that all above equations require a fixed tree, which does not change

during training. Otherwise, paths and probabilities would change along with the

Page 6

Differentiable Boundary Trees

transformation function which could lead to undesired results [2].

To train on a single instance, Zoran et al. automatically construct a network ar-

chitecture, which consists of multiple parts that all share their weights. Each part

transforms the nodes of a transition neighbourhood and outputs one part of the log

probability of the path. Figure 3.1 illustrates an example network architecture.

Figure 3.1: Visualisation of an example architecture for a path with 4 transitions.

Page 7

Conclusion

4 Conclusion

The Differentiable Boundary Tree algorithm is a promising improvement of the

original Boundary Tree algorithm. It has a simple structure, can be queried fast

and provides a high accuracy for the experiments Zoran et al. conducted.

A disadvantage of the algorithm is, that the algorithm cannot be used in batched

training yet, as the network architecture depends on the path through the network

and is different for each training instance.

Page 8

References

5 References

[1] Charles Mathy, Nate Derbinsky, José Bento, Jonathan Rosenthal, and

Jonathan S Yedidia. The boundary forest algorithm for online supervised and

unsupervised learning. In AAAI, pages 2864–2870, 2015.

[2] Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. Learning deep

nearest neighbor representations using differentiable boundary trees. arXiv

preprint arXiv:1702.08833, 2017.

Page 9

	Introduction
	Boundary Tree Algorithm
	Differentiable Boundary Trees
	Conclusion
	References

