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Motivation



What is 
Causality? 





If this hurts your brain, you already 
know what causality is.

We’ll see why.  



Why Causality? 

Consider two random variables: the Altitude (A) and the Temperature (T) of a 

city in Austria. The corresponding joint distribution can be expressed as: 

P(A, T) = P(A | T) P(T)

-- or equivalently --

P(T, A) = P(T | A) P(A)

But are they intuitively equivalent? Intuitively, does P(T | A) feel more or 

less fundamental than P(A | T)? 



Why Causality? 

Somehow, P(T | A) feels right (hopefully), in the sense that: 

* if we manage to magically elevate a city while keeping all other laws of 

physics constant, we would expect the temperature of that city to drop. 

* if we manage to magically cool the entire city, the remaining laws of 

physics do not imply that the city elevates itself. 

There is this asymmetry that we intuitively latch on to - in doing so, we 

infer causally that altitude causes temperature, or A → T. In other words, A 

is the cause and T is the effect. 
Fine-print: The asymmetry need not be temporal. 



Magical Interventions

All we have to do now is to replace the word “magically” (we don’t do that 

around here) with interventionally and we’re on to something. In math: 

If A → T: 

P(A | do(T)) = P(A)

but not vice versa.

do(X) is the act of performing a localized intervention on the random 

variable X (i.e. magically changing its value without affecting any other 

laws of physics). 

But what makes a law of physics?



The Generating Mechanism and Structured Causal Models

When we talked about the laws of physics, what we meant more generally was 

the mechanism that generated the effect E (temperature) from the cause C 

(altitude). The big idea here is that the mechanism that we use to generate 

effect from cause itself does not depend on the cause.

In math, 

C ~ P(C)

E = fZ ~ P(Z)(C)

where fZ is a deterministic mechanism function of the cause C and Z models 

stochasticity in the mechanism independent of the cause, i.e P(C) 丄 P(Z). 



WHAT IF I TOLD YOU

THAT YOU KNEW THIS ALL ALONG?







Your brain makes the assumption that the 
objects you see do not depend on the 

mechanism of how you see.

The “how” includes the vantage point and 
illumination. In this example, the assumption 

fails. 



Special Case: The Additive Noise Model

Take the structured causal model, and require that the mechanism is a 

deterministic function of the cause plus an additive noise, ergo:  

C ~ P(C)

E = fZ ~ P(Z)(C) = f(C) + Z

A causal relationship following this model would leave a statistical 

signature on the joint probability distribution P(C, E). In other words, 

it’s possible to tell cause from effect just by looking at observations, or 

samples from P(C, E), i.e. without actually having to perform interventions. 

In causality jargon, the problem of causal discovery is identifiable.



Example of a Causal Signature on the Joint Distribution

Say X is the cause and Y 

is the effect, and we have 

the SCM: 

Y = X + Z

where P(X) 丄 P(Z). It’s 

impossible to construct

X = f(Y) + Z’

with P(Y) 丄 P(Z’). 



If there’s a statistical 
signature of causal influence, 

can we learn to find it? 
Given a model powerful enough, apparently.



Enter Neural Networks. 

NNP(X,Y)

(X → Y)? 

(Y → X)? 

The joint distribution P(X, Y) is fed to a network which is 

tasked with predicting the causal direction of the variables.  



How do we feed a distribution to a Neural Network? 

x1, y1

x2, y2

x3, y3

ɸ

ɸ

ɸ

+ ψ

(X → Y)? 

(Y → X)? 

Samples Embedding Average Classifier Result

Feed it Samples!



This architecture has been reinvented over and over again.



Where do we get the training data? 

Remember our old friend, the additive noise model: 

C ~ P(C)

E = f(C) + Z

Now, 

* set P(C) to a mixture of gaussians,

* set P(Z) to a random gaussian, 

* set f to a cubic hermite spline and sample its 

parameters.  

* compute E to obtain a sample from P(C, E). 

* assign label 1 to (C, E) and 0 to (E, C). 
A cubic hermite spline



Where do we get the validation data? The Tübingen Datasets

Samples from the Tübingen datasets: 107 P(X, Y) real (non-synthetic) 

distributions with corresponding labels for causal directions. 



Experiments & 
Results



Generalizing to the Tübingen Datasets

* Train the network (the “Neural 
Causal Coefficient”) on synthetic 
data generated by the Additive 
noise model. 

* Validate on the Tübingen 
datasets. 

* State of the Art on the Tübingen 
Datasets (with 79% accuracy)

* Previous state of the art was at 
75% accuracy. 



Detecting Causal Signals in Images

“Does the presence of the car cause the presence of the wheels?”



Does the presence of a bridge cause 
the presence of cars on it? 



This is not what an intervention would 
probably look like.



General Task

Given features fl ∊ R
512 from a feature extractor (e.g. the convolutional 

layers of an off-the-shelf network), use the NCC to predict the direction and 

strength of the causal relation between a given feature and the (pre-softmax) 

output from the classifier ck ∊ R
20 corresponding to a given class. 

Feature 
Extractor

fl ∊ R
512

Classifier ck ∊ R
20



Definitions

* Causal features: features that cause the presence of an object in the scene.

* Anticausal features: features that are caused by the presence of an object 

in the scene. 

* Object features: features that are most activated inside the bounding box 

around the object of interest. 

* Context features: features that are most activated outside the bounding box.



Claim

“There exists an observable statistical dependence between 

object features and anticausal features.”

“The statistical dependence between context features and 

causal features is non-existent or much weaker.”



Interpretation of the Claim

Features that are most activated in the bounding box around 

the object of interest are those that are often caused by the 

presence of the object in the scene. 

Features that are most activated outside the bounding box do 

not necessarily cause the presence of the object in the scene.



Proxy for Object and Context Features

Feature 
Extractor

Feature 
Extractor

|-| Object Feature Ratio

Relative difference



Proxy for Object and Context Features

Feature 
Extractor

Feature 
Extractor

|-| Context Feature Ratio

Relative difference



Results
The figure shows the object and 
context feature ratios of the top 1% of 
causal and anticausal features as 
predicted by the NCC model. 

“The average object feature scores 
associated to the top 1% anticausal 
feature scores is always higher than the 
average object feature score 
associated to the top 1% causal 
features.“

“Such separation does not occur for 
context feature scores.”




