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Abstract 

This report explains a multiagent learning algorithm, which converges in self play to a Nash equilibrium 

and learns a best response against stationary opponents. AWESOME makes much less assumptions as 

previous learning agents. It was the first algorithm which is guaranteed to achieve these two properties 1. 

Converging to Nash equilibrium in self-play, 2 learn best response against stationary opponents. 
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Introduction: 
 

First we will explain some basics, so that we stake out the conditions for AWESOME. 

Which includes Nash equilibria, learning in games in general, the setting (which means we are defining a 

stage game) and how a stage game should be played. 

Then extract two properties form these conditions, first that the algorithm converges to a Nash equilibrium 

in self-play and second, that the algorithm learn to play a best response strategy against stationary 

opponents. These properties are minimal, so that every multiagent learning algorithm which fails one of 

these is unsatisfactory. 

We point out why AWESOME is more preferably than another learning agent called WoLF-IGA, which 

has to make some more assumptions to learn properly, which makes WoLF-IGA less general. 

Nevertheless, AWESOME also have to make a few assumptions. 

Like it’s only able to play repeated games, for example one of the 2-person games (rock-paper-scissors), 

and it assumes that the game is learned already. So AWESOME can focus on learn to play optimally. And 

last it assumes that the algorithm can compute a Nash equilibrium. 

Which leads us to the methods of AWESOME to achieve both of these minimal properties. 

So we are introducing AWESOME’s null hypotheses.  

There are two null hypotheses, between which AWESOME cycles via a type of state machine. 

This means AWESOME uses them to check if it should play the equilibrium or a best response against a 

stationary opponent. 

When both of these hypotheses are rejected AWEOSME restarts itself completely. 

The truth of a hypothesis is tested at the end of each epoch, so AWESOME didn’t adapt too fast. 

To guarantee the convergence over time the epoch length is increased and the criteria for rejecting a 

hypothesis are tightened. 

AWESOME also restarts, when it detects that its own actions signal non-stationary, for synchronization 

with the other agents. 

Later we show the implementation of AWESOME and explain the code with the previous discussed logic. 

Then we will compare AWESOME against another learning agent named Fictitious-Play in some 

meaningful cases. 
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Basics 
 

Learning in games: 
Learning in games is a key capability in AI research, because it allows you to train an algorithm in a 

virtual world without having to be mindful of all real world conditions. In addition the training phase can 

be repeated very easy, which gives the possibility to make many different training attempts. 

Learning is especially important in multiagent settings, where the other agent’s behavior is not known. 

The agents can learn to play against copies of itself, which is called self-play. 

Learning in games can be splitted into two important aspects, first learning the game itself and second 

learning how the opponent is behaving and play optimally against him. 

Learning the game means, that the agent don’t know the game structure, the rules and has to explore the 

game itself. 

Learning how to play optimally against opponents is the second aspect.  

We assume that the agent know the game already and can focus on that the agent just need to learn how to 

play optimally against its opponents. 

 

Nash equilibria: 
As mentioned before in the introduction, AWESOME needs to compute a Nash equilibrium of every game 

it is playing. 

Basic idea of a Nash equilibrium is to characterize a rational decision for players in which none player 

knows how the others choose their decisions. The player can only consider how the others might play. 

A Nash equilibrium describes game situations between two or more player in which none of the players 

can improve by changing their choice of actions. Nash equilibria are given in non-cooperative games, 

which means that the players compete against each other. It is therefore also said that a Nash equilibrium 

is in a sense ‘stable’. Every player agrees with his strategy, even in hindsight and would choose these 

actions again. 

It comes to a Nash equilibrium, when all players play the best possible response against the behavior of 

the opponents. So a Nash Equilibrium is a combination of strategies of more than just one player. 

A strategy can consist of more than just one action. 

Basically we differentiate Nash equilibria into two different types, pure strategies and mixed strategies. 

In pure strategies the player will always responds with the same best response to the chosen strategies of 

the opponents strategies. These types of Nash equilibria are characterized by constant or lesser reward for 

all players. Which means a player cannot gain more reward by only changing his own strategy. 

In contrast to pure strategies the player makes no direct decisions in mixed strategies. He leaves his choice 

to a probability distribution over his action set. The mixed strategy is a Nash equilibrium when none of the 

players can improve his reward by only changing his own strategy. 

Every finite game has a Nash equilibrium in mixed strategies. While in pure strategies it is possible that 

there is no equilibrium. [1] 
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Setting & playing a stage game: 
The multiagent learning algorithm in this paper only deals with repeated stage games. That’s why we have 

to define the environment for AWESOME. 

For our discussion we use finite stage games with a finite number of agents. Finite stage game means, that 

there is a limited number of actions an agent can choose from. 

Which leads us to: a stage game is defined by 𝑁 agents who play repeatedly. Each agent has its own 

action set  𝐴𝑖  for agent 𝑖, which in general not must be the same for all agents. Furthermore each agent 

has its own utility function 𝑢𝑖. The utility function describes the usefulness of each played action. 

In a stage game an agent chooses a strategy to play. A strategy is a probability distribution 𝜋𝑖 over the 

action set 𝐴𝑖 of agent 𝑖. It’s indicating which action the agent will choose in this round. It is important to 

notice, that all agents choose their actions independently. Similar to the Nash equilibria a strategy can be 

divided into two different types. First the pure strategies, second mixed strategies. Pure strategies are 

characterized by the fact that all their probability mass, of the probability function, relates to just one 

single action. Mixed strategies consists of more than one action, each one with an own probability. Which 

means the agent plays a different distribution every epoch. Every non-pure strategy is a mixed strategy. 

As mentioned above each agent choose one action in each round, many rounds sum up to one epoch. 

And a game consists of many epochs, since it is a repeated game.  

There is an example of an unnamed stage 

game. It’s a two-player three-action game, 

which AWESOME is able to play. 

Each block of figure 1 consists of two numbers, 

which represents the reward for a player if he 

chooses this action and win the round. The 

second number is for player One, the one who 

chooses the actions on the upper side of the 

diagram. The first is for player Two.  

Most of the time we will focus on the first two 

actions A and B. 

There is a Nash equilibrium in mixed strategies 

for the actions A and B, because they are 

complete symmetrically. 

If we assume that player one (the player on the 

upper side of the diagram) choose action A the 

best response for the second player is to play 

action B. Because his reward will be two, and vice versa. 

There is also a Nash equilibrium for a pure strategy when we take in the third action C. 

We see that, when both players choose action C, none of the two players can increase their reward by 

changing only his own action. 

Figure 2 describes the case that both players are playing the mixed strategy equilibrium, and since both 

actions are symmetrically the probability of each action is 50%. 

When both players are completely rational, none of them would change their probability distribution. But 

when we are playing against a bit less clever opponent, who chooses his probability function as described 

in figure 3, we can see that we should always choose action A. Just because we are gaining the highest 

reward in most cases by choosing action A. 

Figure 1, example of a stage game 
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Figure 2, example of a mixed strategy Nash equilibrium                         Figure 3, example of a less clever opponent 

AWESOME faces this problem, because AWESOME plays the equilibrium or adapt when it detects that 

everybody is playing stationary. 

And in the case described above AWESOME is playing against a stationary opponent with a mixed 

strategy, which means AWESOME will adapt to its best response. 
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Method 
 

Properties and removed assumptions: 
The example form above shows why we want, that a satisfactory multiagent learning algorithm should 

learn to play optimally against stationary opponents or converge to a Nash equilibrium in self-play. 

From this we extract two minimal properties for our agent. 

1) Learning to play optimally against stationary opponents, or even opponents, which might become 

stationary, or called rationality 

2) Converge to a Nash equilibrium in self-play. 

Intuitively, the properties formalize that an agent should learn a best response when possible. 

An agent that at least fails one of these minimal properties is unsatisfactory, that’s why they are our 

absolute minimum we want to achieve. 

However, long time there has been no algorithm that was able to satisfy both of these properties in general 

repeated games. The best one, who came closest to achieve both of these properties, was WoLF-IGA. 

Described in the paper “Multiagent learning using a variable learning rate” by Bowling & Veloso, 2002. 

The so called WoLF-principle is varying the learning rate of the multiagent. That’s why the agent is 

learning fast when he is losing and slowly when he is winning. The name WoLF means, win or learn fast. 

Which is a very natural method, to learn quickly when the agent realizes he performs too poor. 

The second part is IGA, which simply stands for infinitesimal gradient ascent. 

AWESOME’s advantage is that it removes the following assumptions from WoLF-IGA completely: 

a) there is a maximum of two players 

b) each player has just two, or less, actions to choose from 

c) the agent can observe the strategy of the opponent 

d) the agent can use the gradient ascent of infinitesimal small step sizes 

Not to forget, that AWESOME also fulfill the two minimum properties, for every finite number of actions 

and/or agents and AWESOME doesn’t need to observe the complete strategy of its opponents. The agent 

can deal with just recognizing the played actions. [2] 

 

AWESOME: 
This section will present the methods to implement the basic ideas described before. 

Notice that AWESOME makes some assumptions, like: 

a) it only deals with repeated games 

b) it assumes that the structure of the game is known 

c) the agents can compute a Nash equilibrium of the stage game 

To achieve this AWESOME has two null hypotheses. 

The algorithm of AWESOME is also self-aware, which means AWESOME is able to detect the continuity 

of its own actions and restart itself completely, if it detects nonstationarity. 
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Null Hypotheses: 
A null hypothesis is the assumption about the population to be tested in the context of a hypothesis test. 

Or in other words, a null hypothesis gives a general statement of whether two measured phenomena are 

related to each other. A null hypothesis is always assumed to be true, until the contrary was shown. 

The basic idea for AWESOME is trying to adapt to the other agents when they appear to be stationary, but 

otherwise retreat to a precomputed equilibrium strategy. That’s why AWESOME maintains at every point 

one of these two null hypotheses. 

As shown in figure 4 AWESOME will start and assume, in the first null hypothesis, that everybody is 

playing the precomputed equilibrium strategy for the stage game. When the agent detects, that it’s not true 

AWESOME reject the equilibrium hypothesis and moves to the stationary hypothesis, which means that 

AWESOME assume that all other agents are playing a stationary strategy. When the second strategy is 

rejected too, AWESOME will restart itself completely. 

The current hypothesis is evaluated in every epoch. [3] 

 

 

Equilibria: 
AWESOME’s goal is to learn an equilibrium of a repeated game. The basic advantage of learning an 

equilibrium of a repeated one-shot game, which is a game that naturally is not repeated, is that the 

equilibria are natural and simple, always exists and are robust to changes in the averaging schemes. 

(Indirect quote from original paper, S. 3) 

A repeated one-shot game is also called a supergame, which are divided into finite games and infinite 

games. 

But there are also equilibria in general repeated games and it is possible that these equilibria are 

completely different from the one-shot repetition equilibrium. These equilibria are based on the 

competition between the players, because the players are tuning their future gameplay behavior on the 

currently chosen actions. 

 

 

 

 

Figure 4, null hypotheses structure 
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First Approach: 
Because AWESOME can’t observe the other players actions, just the played actions, we have to specify 

how to reject a hypothesis. 

Since AWESOME gains its ‘rewards’ in epochs it can compare, at the end of each epoch, the actual 

played actions against the equilibrium, which was precomputed before. Usually the algorithm assumes 

that the actions are chosen because of the strategy, when the distance between the two action distributions 

is small enough.  

For this purposes we define: 

𝑃ℎ
𝑎: percentage of action 𝑎 which comes from the historical distribution 

𝑃𝜋
𝑎: percentage of action 𝑎 which comes from the mixed strategy 

𝑃ℎ𝑝𝑟𝑒𝑣
𝑎 : percentage of action 𝑎 which comes from the historical distribution, without current epoch 

As mentioned above AWESOME computes: 

max
𝑎𝑖

|𝑃ℎ
𝑎𝑖 − 𝑃𝜋

𝑎𝑖|  <  𝜖𝑒 

For accepting or rejecting the equilibrium hypotheses, 𝜖𝑒 is a threshold for acceptance. 

Analog for the stationary hypothesis: 

max
𝑎𝑖

|𝑃ℎ
𝑎𝑖 − 𝑃ℎ𝑝𝑟𝑒𝑣

𝑎𝑖 |  < 𝜖𝑠 

Where we are computing the difference between the percentage of actions chosen from the historical 

distribution and the actions of the history without the current episode. We are also using a different 

threshold 𝜖𝑠. 

This first approach keeps the number of iterations (games per epoch) constant, as well as our two 

thresholds 𝜖𝑒 and 𝜖𝑠 for rejecting a hypothesis. 

The main problem with this is, that there is a constant probability that the chosen actions do not appear 

from the equilibrium strategy. Which leads AWESOME to eventually restarting itself, so AWESOME will 

never converge to its equilibrium. 

And second AWESOME can’t detect if a strategy is drawn from the precomputed equilibrium or not. 

 

Fixing & Solution: 
Both problems can be fixed easily. 

By adjusting the thresholds 𝜖𝑒 and 𝜖𝑠 we can 

change the maximum distance to choose an 

action from.  

When we decrease the thresholds and increase 

the number of iterations for each epoch, we 

gain the desired effect of tightened boundaries. 

So the probability that an action is chosen 

from a non-hypothesis distribution will 

decrease. As shown in figure 6. 

 

Figure 5, bounds of acceptance 
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The Implementation:  
In this section I present the implementation of the 

AWESOME algorithm, but first I have to explain 

some of the needed variables and functions, which 

are used in the implementation. 

𝜋𝑝
∗ : player 𝑝’s equilibrium strategy 

𝐴𝑃𝑃𝐸: ‘all players playing equilibrium’, true 

when assuming equilibrium hypothesis 

𝐴𝑃𝑆: ‘all players stationary’, true when assuming 

stationary hypothesis 

𝛽: true if equilibrium is rejected just before, to get 

an extra chance 

𝑡: index of epoch 

𝜙: current strategy of the AWESOME algorithm 

𝜖𝑒
𝑡 , 𝜖𝑠

𝑡, 𝑁𝑡: thresholds and epoch length for epoch 𝑡 

𝑎: is an action 

𝜇: difference between best and worst outcome 

|𝐴|: number of actions 

𝑛: number of players 

𝑉: return the utility of a played action or strategy, 

for a the strategy of the opponent 

First the algorithm starts to compute the 

equilibrium strategy for each player 𝑝. Then 

AWESOME will start its infinity loop, because 

theoretically AWESOME will play the game 

forever, and initializes all its action lists, 

hypothesis and the epoch counter.  

Next, while 𝐴𝑃𝑆 is true, it will play 𝑁𝑡 times its 

strategy 𝜙 and update the history for each player. 

Since 𝐴𝑃𝑃𝐸 is true AWESOME will compare the 

strategies against the currently played actions of 

player 𝑝 (equilibrium hypotheses test). If 

AWESOME detects a non-equilibrium strategy, it 

will reject the equilibrium (𝐴𝑃𝑃𝐸 ∶= 𝑓𝑎𝑙𝑠𝑒), and 

choose a random action as new strategy. 

Since 𝐴𝑃𝑃𝐸 is false now, AWESOME will check 

the stationary hypotheses for now and eventually reject it as well and restart or choose a better action 𝑎 to 

play. 

 

 

 

Figure 6, implementation of the AWESOME algorithm 
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Comparison: 
Now we are comparing AWESOME against 

an algorithm called fictitious play. 

Fictitious play is a very simple algorithm for 

learning in games, it just plays the best 

response to the opponent’s play, which is 

calculated form the historical distribution. 

The algorithm can be applied to random 

games, because it only requires to see the 

opponent’s actions, instead of the full 

strategy, and fictitious play will converge to 

a best response for all stationary opponents. 

For comparison we use the game Rock-

Paper-Scissors, with an opponent who plays 

the mixed strategy 0.4-0.6-0 (rock-paper-

scissors). Which means he chooses with a 

probability of 40% the rock. 

In the diagrams of figure 7 we see that we 

compare 3 different types of agents. 

1) the empirical distribution, for the 

complete history of actions 

2) the empirical distribution, only the last 

500 round 

3) the mixed strategy (only AWESOME) 

In the first graph we see, that fictitious play 

converges to the best response really fast, 

just because the algorithm is optimized to 

play against stationary opponents. While 

AWESOME plays the equilibrium strategy 

and reject it at the 700th epoch and then plays 

the best response. For both of AWESOME 

historical distributions it also takes many 

rounds to converge. Because of the other 

actions it played before it rejected the 

equilibrium hypotheses. 

In the second graph are the results for a 

situation in which each agent plays against a 

copy of itself. 

Both algorithm perform quite well, while 

fictitious play converges to the equilibrium, 

AWESOME has never rejected it. But both 

500 round moving distributions cannot converge, because they choose from a mixed strategy a fixed 

number of times. And the empiric distribution will not equal with the distribution of actions. 

 

Figure 7, comparison of AWESOME and fictitious play 
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The third graph shows result for a different game named Shapley’s game, see 

figure 8. With this game we can illustrate how fictitious play will fail in self-

play situations. 

Both fictitious play agents start to cycle, the length of the cycles increases and 

that’s why the 500-round moving distribution will never converge, because it 

probably set all its probability on a single action is therefore quite far away 

from the equilibrium. 

AWESOME for his part is still playing the equilibrium strategy. 

 

Conclusion: 
 

As mentioned in this report, AWESOME is the first learning algorithm, which provides both minimal 

desired properties for the discussed multiagent settings. AWESOME is able to converge to a Nash 

equilibrium in self-play situations and otherwise plays a best response against stationary opponents.  

At any point in the ongoing game AWESOME assumes one of two null hypothesis, first that everybody is 

playing the equilibrium, or second that everybody is playing stationary. Otherwise AWESOME will 

restart itself completely. 

AWESOME’s criteria are evaluated at the end of each epoch. 

The length of the epochs is getting longer and longer, and the thresholds for rejecting a hypothesis are 

tightened. 

AWESOME was a theoretical work, but experiments has shown, that AWESOME performs quite well in 

actual game situations.  

 

  

Figure 8, Shapley's game 
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