UNIVERSITAT HEIDELBERG

Ist kiinstliche Intelligenz gefdhrlich?

SEMINAR

Homomorphic Encryption

Carine Dengler

SoSel7

Table of Contents

Mntroduction| 1
|Cryptography| 1
|Encryption Schemes| Lo oo 1
[Homomorphic Cryptography| 3
IMotivationl v o v v e e e 3
|Fully Homomorphic Cryptography| 3
Complexity| e 3
Somewhat Homomorphic Encryption Scheme| 4
omewhat Homomorphic Asymmetric Encryption Scheme| 5
|Bootstrappable Encryption Scheme|. 000, 5
|Fully Homomorphic Encryption Scheme| 6

7
ptD B 8
MOTIVARION « + « « v v v oo e e e 8
[Threat Models| 8
Architecturd. oo oo 8
SQL-aware encryption strategyl 0oL 8
|[Adjustable query-based encryption| 10

|Eez zzhainingl 10
.................................. 11
Conclusionl 11

Introduction

Over the course of the seminar it has emerged that wast amounts of data are
needed for an Artificial Intelligence to learn and evolve. However, not only has
it become clear that providers, such as Yahoo! [yah] are unable to protect their
users’ data, in light of the massive governmental surveillance programs, the ques-
tion has been raised to what extend they are (willingly or unwillingly) actively
participating in undermining their users’ privacy [msal. The only possible con-
clusion to this is to consider any and all data that is not secured by oneself or a
trusted intermediary to be possibly compromised and at risk of public disclosure
at any moment. To mitigate these threats to one’s privacy, the most secure way
is to encrypt as much data as possible. Doing so would however make it impos-
sible to mine massive datasets, such as medical records, for possibly benevolent
purposes, such as scientific studies. Therefore, the development, improvement
and use of techniques that allow for processing encrypted data are becoming
more and more important. The term paper presents two of these techniques,
namely fully homomorphic encryption [Genl0] and CryptDB [PRZB11].

Cryptography

[KLO§| defines (modern) cryptography as

the scientific study of techmiques for securing digital information,
transactions, and distributed computations.

Cryptographic techniques are used to protect confidentiality by denying an un-
authorised third party access to the data [Bucl6l, [PS17].

Encryption Schemes

Encryption schemes provide secret communication between two parties. There
are symmetric and asymmetric encryption schemes, which differ in the number
and purpose of keys used [KLOS8| [Bucl6].

Symmetric Encryption Scheme A symmetric encryption scheme is a
tuple (K, P,C, KeyGen, Enc, Dec) where

e K is the set of keys k, and is called the key space

e KeyGen is a probabilistic algorithm that, given a security parameter
A, generates a key k € K such that the bit-length |k| > A

e P is the set of plaintexts m, and is referred to as the plaintext space

C is the set of ciphertexts ¢, and is called the ciphertext space

FEncis the encryption algorithm that, given a key k encrypts a plaintext
m such that Enc(k,m) = c with c € C

e Dec is the deterministic decryption algorithm, that, given a ciphertext
c and a key k decrypts ¢ such that Dec(k,c¢) = m with m € P

e for every k = KeyGen()\) and m € P it holds that Dec(k, Enc(k,m)) =m

Enc may be either a deterministic or a probabilistic algorithm. If Enc is de-
terministic, the same plaintext is deterministically mapped to the same cipher-
text each time Enc is executed on it, whereas if Enc is probabilistic, the same
plaintext may be mapped to one of several different ciphertexts, out of which
one is randomly chosen. A deterministic encryption scheme is considered to be
less secure than a probabilistic encryption scheme, given that an attacker can
determine whether a given ciphertext encrypts a given plaintext by running
Enc.

To send Bob an message m, Alice uses the secret key k to encrypt it, and
sends the resulting ciphertext ¢ to Bob. Upon receiving the ciphertext, Bob in
turn uses k to decrypt ¢ which yields the plaintext message m. Since k is used
to both encrypt and decrypt (hence the name symmetric encryption scheme),
Alice and Bob have to share it beforehand. The Diffie-Hellman key exchange is
an example for a method that can be used to share keys in a secure manner
over an insecure channel [Bucl6l [Eck14l [Genl0) [KLO8, [PRZB11].

Asymmetric Encryption Scheme An asymmetric encryption scheme is clo-
sely related to a symmetric encryption scheme and is a tuple
(K, P,C, KeyGen, Enc, Dec) where

e given a security parameter A\ € N, KeyGen generates a pair of keys
(pk, sk) € K such that |pk| and |sk| > A

e pk is called the public key, whereas sk is called the secret key

Enc is the encryption algorithm that, given a key pk encrypts a plaintext
m € P such that Enc(pk,m) =c with c € C

Dec is the deterministic decryption algorithm that, given a secret key sk
decrypts a ciphertext ¢ € C such that Dec(sk,c) = m with m € P

for every key pair (pk, sk) = KeyGen(\) and m € P holds that
Dec(sk, Enc(pk,m)) =m

As with a symmetric encryption scheme, Enc is either a deterministic or a
probabilistic algorithm.

Alice now uses Bob’s public key pk to encrypt the message m, and sends the
resulting ciphertext ¢ to Bob. Bob then decrypts ¢ using his secret key sk to get
the original message m. Given that now the public key pk is used to encrypt,
while the secret key is used to decrypt (hence asymmetric encryption scheme),
Bob only has to keep sk secret, while he may openly distribute pk to anyone
wishing to communicate confidentially with him [Bucl6l [KT.0S].

Homomorphic Cryptography

Motivation

Widespread use of cloud computing raises the question whether it is possible to
delegate processing of data without giving access to it. Encrypting one’s data
with a conventional encryption scheme to protect one’s privacy seems to un-
dermine the benefits of cloud computing, since it is impossible to process the
data without the decryption key. However, encrypting the data with a so-called
homomorphic encryption scheme allows for (some) meaningful manipu-
lations on the encrypted data. A fully homomorphic encryption scheme
on the other hand imposes no limitations on the manipulations that can be
performed [Genl0)].

Fully Homomorphic Cryptography

A given (asymmetric) encryption scheme is extended by an algorithm Fwval and
a set F of permitted functions f such that

if Eval(pk, f,c1,...,c,) = c then Dec(sk,c) = f(my,...,my,)
with ¢; = Enc(pk,m;), m; € P, i=1,...,n, n€N

A function f € F can be handled by the encryption scheme. Fval is generally
undefined for any function f ¢ F. The compact ciphertexts requirement
states that the amount of computation to decrypt ¢ as well as the size of ¢
are completely independent of f. The encryption scheme is said to be fully
homomorphic if it can handle any function f, fulfills the compact ciphertexts
requirement and Fwval is efficient, i.e. polynomial in the security parameter
A € N [Genl0).

Complexity

The complexity of Fwval is on the one hand dependent on the security parameter
A and on the other hand on the complexity of the function f that is being
evaluated. The complexity of f can be measured as the number of steps T’y of
a Turing machine that computes f. Furthermore, if f can be computed in T
steps on a Turing machine, it can be expressed as a boolean circuit with Sy = T’
gates. These gates can be evaluated by adding, subtracting and multiplying
mod?2:

Va,y € {0,1)

AND(z,y) =z -y

OR(z,y) =1— (1 —x)(1—y)
NOT(z) =1—x

Eval’s runtime is at least linear in the number of input ciphertexts n, since it
has to touch all of them to prevent leaking information about the underlying
plaintexts’ relation to f. In addition, given that f is represented as a fixed circuit,
the number of output wires and therefore the size of the output must be fixed in
advance, so that the output must be either truncated or padded [Genl0].

Somewhat Homomorphic Encryption Scheme

To construct an encryption scheme that can handle a limited set of permitted
functions F, the symmetric encryption scheme is modified such that KeyGen,
Enc and Dec operate as outlined below.

KeyGen(\) = p s.t. p is a A?-bit odd integer

For a bit m € {0,1},
Enc(p,m) = m’ + pq

s.t. m’ is a random A-Dbit integer with m’ = m mod 2, and ¢ is a random \3-bit
number.

Dec(p, ¢) = ¢ mod p mod 2

cmod p is the noise associated to the ciphertext c¢; if ¢ is a ciphertext output
by Enc (in contrast to a ciphertext output by Fwval), it is called a fresh cipher-
text, since the associated noise is small (). Given such a fresh ciphertext, the
decryption algorithm Dec is correct because ¢ mod p = m/, which has the same
parity as m.

The encryption scheme supports the operations

Add(ey,e0) =1 + ¢
Sub(cr,c2) =1 — ¢o

Mult(cl, CQ) =C1-*C2

such that to evaluate a boolean function f with input ciphertexts ¢y, ..., c,
1. f is expressed as a boolean circuit C' with XOR and AND gates

2. the circuit C1 is constructed by replacing the XOR and AND gates in C' by
addition and multiplication gates

3. the multivariate function f! corresponding to C'' is computed on the ci-
phertexts c1, ..., ¢, and its result c is output

It must however be pointed out that the Add, Sub and Mwult operations increase
the noise associated to the output ciphertext. For ciphertexts cq,...c, with
associated noises m/}, ..., m! and some integer ¢’

Dec(p, fT(cl,...,cn))
= fT(017.-.,Cn) mod p mod 2
= fT(m/,...,m!) mod 2

= f(ml,...,mn).

Whereas Dec is no longer correct if the noise |fT(m/,...,m})| is greater than

£. Therefore, the encryption scheme can only handle the functions f for which

|fT(m},...,m.)| is always less than 2 if cy,..., ¢, are of bit-length of at most

2
A bits [Genl0)].

Somewhat Homomorphic Asymmetric Encryption Scheme
To use the somewhat homomorphic scheme to construct a fully homomorphic
scheme, it is turned into an asymmetric encryption scheme such that

e the secret key sk is p

e the public key pk is a list of encryptions of 0 with length polynomial in A

e Enc encrypts m € {0,1} by adding a random subset sum of pk to m

If the ciphertexts in pk have small enough noise, the ciphertext resulting from
Enc(pk, m) will also have small enough noise and Dec is still correct [Gen10)].

Bootstrappable Encryption Scheme

An homomorphic encryption scheme that is able to handle its own decryption
function is said to be bootstrappable. As will be seen further below, this pro-
perty can be used to construct a fully homomorphic encryption scheme.

The decryption algorithm Dec of the somewhat homomorphic asymmetric en-
cryption scheme is

Dec(p, c) = (¢ mod p) mod 2
= LSB(c) XOR LSB(LIE)D

where |-] rounds to the nearest integer. Given that both LSB and XOR are trivial
to implement in a boolean circuit, the encryption scheme is bootstrappable if
it can handle the function f = Lﬂ The noise of the output ciphertext of c}%
however is too large, so that to get a bootstrappable encryption scheme, the
decryption algorithm has to be simplified.

To this end, a new key generation algorithm KeyGen* with parameters o and
[is introduced:

1. KeyGen(A) is run to get key pair (pk, sk)

2. aset Y = {y1,...yg} of rational numbers in [0, 2) is generated such that
there is a subset S C {1,..., 3} of size a such that },_qy; =]lj mod 2

3. sk* is set to the vector € {0,1} with Hamming weight « that encodes S
4. pk* is set to (pk,Y)

KeyGen* therefore includes a hint (the set Y') about the secret integer p to the
key pair output by KeyGen.

The hint Y introduced above is now used by the new encryption algorithm Enc*
to postprocess a ciphertext ¢ output by Enc:

1. run Enc(pk, m) to get ciphertext ¢

2. for i € {1,...,8}, z; = cy; mod 2, keeping only ~ log « bits of precision
after the binary point

3. set ¢* to (¢, 2) with 2= (21,...,23)

Finally, the new decryption function Dec* has less remaining work due to the
postprocessing of c:

Dec*(sk*,c*) = LSB(c) XOR LSB(|) _ s;izi])

K3

If o is set small enough, the encryption scheme can handle |}, s;z;| and is
therefore bootstrappable [Genl0)].

Fully Homomorphic Encryption Scheme

As has been mentioned, the accumulation of noise eventually causes the decryp-
tion function to no longer be correct. For the encryption scheme to be fully
homomorphic, it must therefore be able to keep the noise from getting large
enough for this to happen.

Given distinct keys (pk;, sk;) with i = 1,... and the encryption ¢; of the bit m
under pky, as well as the vector of the encryptions of the bits of skq under pks
Skl

Recrypt(pks, Dec, sky,c¢1) = ¢

such that

¢ is the vector of the encryptions Enc(pks, c1;)
over the bits c;; of ¢; and
¢ = Ewval(pka, Dec, sky, ¢1).

Since the encryption scheme is bootstrappable, Recrypt outputs a new encryp-
tion of m under the public key pko while removing the inner encryption. De-
crypting the inner encryption removes the noise associated to it, but Recrypt
simultaneously adds new noise. If the newly added noise is however less than the
noise that has been removed and is still small enough to allow performing ano-
ther operation, the encryption scheme can be made fully homomorphic.

To this end, Dec is augmented by a further gate (Add, Mult, Sub). The public
key of the encryption scheme is composed of a series of public keys pky, pks
and the encryptions of the associated secret keys ski, ska, ... such that sk; =
Enc(pkit1, sk;). Any function f may now be represented as a circuit whose gates
are arranged into levels that are being stepped through sequentially.

The modified somewhat homomorphic asymmetric encryption scheme is finally
assumed to also be circular-secure, which means that it is safe to reveal the
encryption of the secret key sk under pk. That way, the public key can be
composed of a single public key pk for all levels as well as a single secret key
sk encrypted under pk instead of distinct public keys pk; for each circuit level
and a chain of encrypted secret keys sk;. Without this property, the complexity
of the key generation algorithm would be growing linearly with the maximum
circuit depth, which violates the requirement that it is efficient, that is to say,
polynomial in the security parameter A [Genl0].

Summary

The answer to the question whether it is possible to delegate processing data
without giving access to it may is mixed. Although it has been shown that
arbitrarily processing encrypted data is possible in theory, it is prohibitively
expensive and therefore unfit for practical use [Genl0l [PRZB11].

CryptDB

Motivation

Applications using database management systems (DBMS), in particular online
applications, are vulnerable to data theft, be it through an malicious database
administrator or an attacker exploiting vulnerabilities in the underlying softwa-
re. CryptDB provides data confidentiality for such applications [PRZB11].

Threat Models

Two threats are addressed; the first threat is an attacker with administrative
access to the DBMS, such as, but not limited to, the database administrator.
The attacker is assumed to be passive; they change neither issued queries, nor
query results or data in the DBMS. The second threat is an attacker that not
only gains control over the DBMS, but possibly over the application server and
the proxy as well [PRZB11].

Architecture

The typical architecture of database-backed applications, namely an DBMS ser-
ver and a separate application server, is extended by a database proxy. The proxy
intercepts and rewrites all SQL queries the application server issues so that the
DBMS can execute them on encrypted data. The proxy anonymizes the table
and column names and encrypts the constants. It then sends the query to the
DBMS server, from which it afterwards receives the encrypted query results,
which it decrypts and sends to the application [PRZB11].

SQL-aware encryption strategy

CryptDB takes advantage of the fact that a SQL query is composed of a set of
well-defined primitive operators to encrypt data in a way that allows the DBMS
to execute the queries using standard SQL [PRZBI11].

Random (RND) RND is a probabilistic encryption scheme. While it pro-
vides the maximum security of all the encryption schemes used in CryptDB,
it does not allow any computation to be performed efficiently on the cipher-
text.

For example, if the application issues no queries that compare data
in a column, or that sort a column, the column should be encrypted
with RND.

suggests however that a SELECT query without a filter can be executed nonet-
heless [PRZBII].

Deterministic (DET) DET is, as the name suggests, a deterministic encryp-
tion scheme. As such it provides a slightly weaker security than the probabilistic
RND, since it generates the same ciphertext for the same plaintext and conse-
quently leaks which encrypted values correspond to the same data item. This
on the other hand allows to perform equality checks on the encrypted values
and therefore allows to execute queries such as e.g. SELECT with equality predi-
cates [PRZB11].

Order-preserving encryption (OPE) The OPE encryption scheme gua-
rantees that, for any values x and y, and any secret key k, if x < y, then
OPE(z) < OPE)(y). That way order relations between encrypted values
can be established and queries such as e.g. MIN, MAX and SORT may be run
on the data. It is however a weaker encryption scheme than both DET and
RND [PRZB11].

Homomorphic encryption (HOM) HOM is a further probabilistic encryp-
tion scheme and allows for performing certain operations on the encrypted da-
ta. To support summation, the Paillier cryptosystem is implemented, which
permits summation over encrypted values, since the product of two values en-
crypted with it equals the sum of the values, such that HOM (z) - HOM (y) =
HOM (z + y). That way, SUM aggregates and averages may be computed, as
well as values incremented. Alongside RND, it is considered one of the strongest
encryption schemes [PRZBII].

Join (JOIN and OPE-JOIN) Joins involving equality and order checks
(equi-joins and range joins respectively), are supported to a degree. To minimize
revealing information about the encrypted data, it should not be possible for the
DBMS server to join columns for which a join was not requested. Columns that
are never joined should therefore be encrypted with different keys. In case the
queries are known beforehand, the concerned columns may be encrypted with
matching keys if the queries are known beforehand. If this is not the case, to join
two columns, they have to be re-encrypted with the same key. Unfortunately,
it is not possible to re-adjust the key for range joins, requiring these queries to
be declared ahead of time. The encryption scheme providing equi-joins on the
other hand allows for re-adjusting the column keys [PRZBII].

Word search (SEARCH) SEARCH provides full-word keyword searches
on encrypted text. The columns’ texts are split into keywords, from which the
duplicates are removed and whose positions are then randomly permutated. The
words are then encrypted and padded to the same size. While the encryption
scheme is nearly as secure as RND, it leaks the number of encrypted keywords,

making it possible for an attacker to guess the number of distinct or duplicate
words [PRZBTI].

Adjustable query-based encryption

CryptDB uses onions of encryption to adjust the encryption scheme depending
on queries issued by the application at runtime. The data should be encrypted
with the most secure encryption scheme that allows for executing a specific
query on it.

Each data item is encrypted in one or more onions of encryption, each of which
consists of nested encryption layers. The outer layers provide better security,
while the inner encryption layers provide more functionality. The layers of each
onion provide different operations which may not be ordered. Due to this and to
performance considerations, multiple onions are needed. The Eq onion supports
SELECT queries with equality conditions as well as equality joins, while the Ord
onion e.g. supports range joins, ORDER BY and SORT. The Search onion allows
for keyword searches and the Add onion provides e.g. SUM aggregates.

In a single-principal setup, all values in the same column are encrypted with
the same key. Different keys are used across tables, columns, onions and onion
layers. That way, the proxy does not have to compute separate keys for each row
in a column, and the DBMS server cannot learn additional relations between
the columns.

Each onion is encrypted with the most secure encryption scheme at the begin-
ning. For the Eq and Ord onions, the outermost layer is therefore RND, HOM
for the Add onion and SEARCH for the Search onion. With each query the
proxy receives, it determines the onion layer needed to run the respective que-
ry, and strips off encryption layers accordingly by sending the corresponding
key(s) to the DBMS server. It should however be noted that the least-secure
encryption layer is never stripped off; it is also possible to specify a different
threshold layer. Onion decryption happens only when a query requests a new
class of computation on a column. Once an encryption layer has been stripped
off, the column remains in that state [PRZB11].

Key Chaining

In case of a single-principal setup, the proxy stores a secret master key, from
which all keys are derived. In a multi-user setup on the other hand, all keys are
derived from user passwords. Given an access control policy, the proxy derives
the onion keys from the password provided by the user, such that the DBMS
server may only execute queries on data the respective user has access to. The
user’s key is deleted when the user logs out, ensuring that an attacker cannot
decrypt the user’s data without knowing their password.

Access to data items is specified using entities called principals, who can ex-
plicitly delegate privileges between themselves. Each principal is an instance
of a principal type defined beforehand (such as e.g. users or groups). External
principals are associated with end users who authenticate themselves to the ap-
plication in order to obtain the privileges of their principal. Internal principals
on the other hand can only obtain privileges through delegation.

10

For any subset of data items the principal(s) having access to it may be spe-
cified by annotating the SQL schema. Furthermore, rules for how to delegate
privileges, as well as the conditions under which the delegations may occur, can
be determined. The privileges are delegated using the speaks-for relation; if Bob
speaks for Alice, he has access to Alice’s key and therefore to the same data
items as Alice.

Each principal is associated with a secret key, which consists of a symmetric key
and a public-private key pair. The external principals’ keys are stored encrypted
with the respective end user’s password. As has been stated above, if Bob speaks
for Alice, he needs to have access to Alice’s key. To this end, an encryption of
Alice’s key under Bob’s key is separately stored.

Usually, a principal’s symmetric key is used to encrypt data. But if they are not
logged in, CryptDB does not have access to the user’s key. In this case, CryptDB
may encrypt any data using the concerned user’s public key. Upon logging in,
the user may then decrypt the data using their private key and re-encrypt it
using their symmetric key if need be [PRZBTI].

Summary

CryptDB attempts to balance the trade-off between privacy and performing
operations on encrypted data. While on the one hand relaxing data confidentia-
lity requirements to allow for processing the data, CryptDB on the other hand
ensures that

e sensitive data is never decrypted past the least-secure encryption layer
and therefore never available in plaintext

e the DBMS server cannot execute queries involving computation classes for
which the concerned encryption layer(s) have not been stripped off yet

e the data of inactive users is safeguarded in case the application server,
DBMS server and/or proxy are compromised

CryptDB therefore guarantees strong and practical confidentiality concerning
the discussed threats [PRZBI1I].

Conclusion

Both FHE and CryptDB address the raised concerns. While FHE is still largely
theoretical due to performance issues, it proves that processing encrypted data
in an arbitrary manner is in fact possible. CryptDB on the other hand provides
a practical approach to protect end user’s privacy [Genl0, PRZB11].

11

References

[Buc16]
[Eck14]
[Gen10]
[KLO8|

[nsa]

[PRZB11]

Johannes Buchmann. FEinfihrung in die Kryptographie. Springer
Spektrum, 2016.

Claudia Eckert. IT-Sicherheit. Oldenbourg Wissenschaftsverlag
GmbH, 2014.

Craig Gentry. Computing arbitrary functions of encrypted data.
Communications of the ACM, 2010.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Crypto-
graphy. Chapman & Hall/CRC, 2008.

Nsa prism program taps in to user data of apple, google and
others. https://www.theguardian.com/world/2013/jun/06/us-tech-
giants-nsa-data.

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. Cryptdb: Protecting confidentiality with encryp-
ted query processing. 2011.

Ronald Petrlic and Christoph Sorge. Datenschutz. Springer Fachme-
dien Wiesbaden GmbH, 2017.

Yahoo hack: 1bn accounts compromi-
sed by biggest data breach in history.
https://www.theguardian.com/technology /2016 /dec/14 /yahoo-
hack-security-of-one-billion-accounts-breached.

12

	Introduction
	Cryptography
	Encryption Schemes

	Homomorphic Cryptography
	Motivation
	Fully Homomorphic Cryptography
	Complexity
	Somewhat Homomorphic Encryption Scheme
	Somewhat Homomorphic Asymmetric Encryption Scheme
	Bootstrappable Encryption Scheme
	Fully Homomorphic Encryption Scheme

	Summary
	CryptDB
	Motivation
	Threat Models
	Architecture
	SQL-aware encryption strategy
	Adjustable query-based encryption
	Key Chaining

	Summary
	Conclusion

