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Motivation

Who recognizes these celebrities ?



Generative
Adversarial

Text-to-Image
Synthesis

Motivation

Introduction
Generative Models
Generative
Adversarial Nets
(GANs)

Conditional
GANs
Architecture
Natural Language
Processing
Training
Conditional GAN
training dynamics
Results
Further Results

Motivation

Who recognizes these celebrities ?

You can’t, they have been synthesized from
white noise.
Source : Progressive Growing of GANs for Improved Quality, Stability, and Variation (2017)
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Discriminative models : p(Y |X ) learn decision boundaries
Generative models : p(X ,Y ) learn distributions
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Introduction

Conceptually...

Mathematically...
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Vanilla GAN

G : RZ → RD×D and D : RD×D → {0, 1}
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Vanilla GAN

G : RZ → RD×D and D : RD×D → {0, 1}

Is is possible to control the output of a GAN in
a more meaningful way ?
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Vanilla GAN

G : RZ → RD×D and D : RD×D → {0, 1}

Conditional GANs

G : RZ×RT → RD×D and D : RD×D×RT → {0, 1}
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Introduction to Word Embeddings in NLP

I Map words to a high-dimensional vector space
I preserve semantic similarities :

I president-power ≈ prime minister
I king-man+woman ≈ queen.

I Technique for embedding descriptions : deep
symmetrical structural joint embedding (Reed et al.,
2016) ⇒ idea is the same : preserve semantic similarities
of sentences in the embedding space



Generative
Adversarial

Text-to-Image
Synthesis

Motivation

Introduction
Generative Models
Generative
Adversarial Nets
(GANs)

Conditional
GANs
Architecture
Natural Language
Processing
Training
Conditional GAN
training dynamics
Results
Further Results

Naive result

This does not work really well.
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Conditional GAN training dynamics

Conditional GANs have an additional error source
(unmatching description)
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Extensions and tricks

Matching-aware discriminator (GAN-CLS)
so far :

I (real image, correct description) - pairs
→ classified as 1

I (fake image, correct description) - pairs
→ classified as 0
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Extensions and tricks

Matching-aware discriminator (GAN-CLS)
so far :

I (real image, correct description) - pairs
→ classified as 1

I (fake image, correct description) - pairs
→ classified as 0

now :
⇒ add

I (real image, false description) - pairs
→ classified as 0
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Extensions and tricks

Learning with manifold interpolation (GAN-INT)
interpolate between embedding pairs

Build the arithmetic mean between embeddings
from the training set : tnew = βt1 + (1− β)t2
→ free training data
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Extensions and tricks

Inverting the generator for style transfer
inject style information by training the z vector
(background color, lighting etc.)

Train a style encoder network S : s ← S(x), x̂ ← G (s, φ(t))
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Extensions and tricks

Matching-aware discriminator (GAN-CLS) introduce new
types of samples

Learning with manifold interpolation (GAN-INT) interpolate
between embedding pairs

Inverting the generator for style transfer inject style
information (background color, pose etc.)
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Results - birds dataset
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Results - birds dataset - GAN-INT
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Results - more general dataset
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Results - style transfer on birds dataset
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Recent application examples

Source : High-Quality Face Image Super-Resolution Using Conditional Generative Adversarial
Networks (2017)
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"In my opinion, among many interesting recent
developments in deep learning, adversarial training
is the most important one."

Yann LeCun, Director of Facebook AI
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