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1 Introduction

1 Introduction

Machine learning algorithms have received attention from a wide range of research
fields and businesses that deploy learned models in a huge variety of contexts. For
example, text and sentiment analysis in social media [Nak+16] or medical image
classification for disease detection and decision support [CLW17], [Zha+15]. How-
ever, assigning the responsibility for such tasks to models is only meaningful if they
can be trusted. The most common approaches to guarantee this include a variety of
summary statistics, e. g., accuracy and precision, calculated on validation and test
data sets to evaluate the reliability of a model along the training process.

Contrarily, by training an image classifier to separate images of huskies and wolves,
Ribeiro et al. [RSG16] demonstrate that summary statistics are not appropriate
indicators for faithfulness. In their training process, the training, validation and test
sets only contain images of huskies with snowy backgrounds leading to a classifier
that distinguishes wolves and huskies based on white background pixels. Yet, it
achieves perfect summary statistics during the validation making it an allegedly
trustworthy model. Considering this in a real scenario -happening by accident-
exemplifies that accuracy scores do not sufficiently indicate fidelity.

From an end-user’s perspective, a machine learning model embraces two notions
of trust. First, trusting a single prediction of a model, for example, when using
it in the context of decision making. Second, trusting the model as it is and all
of its predictions which is important when one decides for deploying a model. As
solution, [RSG16] proposes the LIME and SP-LIME methods to either evaluate the
trustworthiness locally w. r. t. to a model’s prediction or globally w. r. t. to the
model itself. These approaches complement common summary statistics to validate
a model. This report aims to elucidate the foundation behind LIME/SP-LIME and
to reflect on the experimental studies in [RSG16] where both methods are compared
to other recent approaches from literature.

The report continues in three chapters. First, Chapter 2 provides formal explana-
tions of LIME and SP-LIME. In addition, we present a custom example implemented
with the LIME framework. Second, Chapter 3 reviews user experiments with LIME
conducted by the authors. At last, Chapter 4 summarizes this report and provides
an outlook.
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2 Theoretical Foundations

2 Theoretical Foundations

Evaluating the fidelity of a machine learning model is a purely human-based de-
cision. Given the explanation of a model’s prediction, a user can decide whether
the model acts in a reasonable, intelligent manner which finally leads to trust in
the model. Herein, an explanation is represented by visual or textual artifacts that
give a comprehensible illustration of how the model arrives at a prediction given
certain inputs. In [RSG16], the authors formulate desired characteristics for such
explanation methods which they focused on when designing LIME/SP-LIME. So,
we summarize them in the following.

First, an explanation must be easily interpretable taking into account user’s lim-
itations. Thus, even non-experts should be able to understand how inputs lead to
a prediction. For example, a small set of features assigned with weights, that indi-
cate their importance for a certain prediction, is considered more interpretable than
gradient vectors [Bae+10] or a confusingly long list of features used in a simplified
linear model. Second, we expect an explainer to be model-agnostic, i. e. to work
with any model. Third, an explainer is supposed to be locally faithful, i. e. it
must precisely illustrate the model’s behavior in the vicinity of a single prediction.
Hence, an explanation should describe a correct local approximation of the model
being analyzed. Last, beyond explaining predictions, an explainer should provide a
global perspective which enables users to evaluate their trust not only towards
single predictions but also towards the complete model. This is done by selecting
few local explanations that are representatives of the model. If they are trusted, the
model can be trusted, as well.

In Section 2.1 and Section 2.2, we explain how these characteristics are realized in
LIME and SP-LIME, respectively.

2.1 LIME

For locally faithful explanations, i. e. predictions with respect to a single instance
and other instances in a close proximity, [RSG16] propose Local Interpretable Model-
agnostic Explanations (LIME). The core idea is to approximate the behavior of a
complex model f with regard to one instance x by an interpretable model g ∈ G. We
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2 Theoretical Foundations

let G be the set of possible interpretable models, such as linear models or decision
trees, that can immediately be transformed into visual or textual artifacts, making
them good explainers. In addition, g uses an interpretable representation x′ ∈
{0, 1}D′ instead of x as input. The reason for this is to avoid inherent complexity
that usually comes with original features, such as multiple color channels for each
pixel in image classification. Typically, x′ is supposed to give a comprehensible
binary representation of properties that instance x has or not, e. g., is there a head
in the image or a certain word in the text. Nonetheless, this step is not required if
x is already interpretable.

In LIME, the model being explained is defined as f : RD → R. For classification,
this is a binary classifier with f(x) being the posterior probability of one class. If
the classifier predicts multiple classes, it needs to be interpreted as binary classifier
for each class of interest. Similarly, we define g : {0, 1}D′ → R having the same
posterior output space. Further, let πx(z) denote a locality measure between x and
another instance z. Using this definition, we can express the approximation loss
with L(f, g, πx) that measures how well g approximates f in the proximity of x. To
enforce this local approximation via the loss function, [RSG16] suggests creating a
synthetic local data set Z ′ by sampling around the interpretable features x′. This
is done by randomly flipping each binary feature in x′ for a desired number of
times and adding the result to Z ′. As we expect the relation to be bidirectional
between original and interpretable features, a corresponding z can be found for each
z′ ∈ Z ′. If g behaves very similar on all z′ as f does with all z, then g is locally
faithful, resulting in a small value for L. The discrepancy between their behaviors
is expressed as loss L.

We derive the final objective function in LIME

ĝ = arg min
g∈G

L(f, g, πx) + Ω(g) (2.1)

with Ω(·) being an arbitrary complexity measure that enforces interpretability in
the objective function. For example, Ω(·) could describe the depth of a decision
tree or the number of non-zero weights in a linear model. With this objective, we
obtain a model ĝ that is both interpretable and locally faithful with respect to x.
Additionally, no assumptions about f have been made. Hence, LIME is model-
agnostic.

Sparse Linear Models We demonstrate LIME by taking the example of an image
classification task and sparse linear models as our class G of explainers. Consider a
convolutional neural network (CNN) f and an image x which gets classified correctly
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by f . Yet, explaining how f arrived at the decision dog is a complex process involving
convolutional filter masks, network weights, etc. However, if we use a sparse linear
model g(x) = w · x to approximate f at x, a non-zero weight will be assigned to
a few features xj indicating their importance for the decision. Thus, this gives a
simple explanation of f via g. Furthermore, the original x consists of multiple color
channels and many pixels which is considered rather complex than interpretable.
Hence, we replace them by interpretable representations x′ where each x′j is a binary
value indicating if a specific super-pixel (contiguous pixel patch) is contained in the
image. In the end, the complex prediction of the CNN f(x) is expressed by the
behavior of g(x′) and its weight vector.

First, we generate a local data set Z ′ based on x′ by randomly flipping the bits in
x′. Due to this random selection of super-pixels contained in x′, new instances z′

are generated which correspond to perforated images z where all super-pixels with
0 in z′ are removed in z. The locality of z regarding x is measured by πx(z) =
exp(−D(x, z)2/σ2) where D(·, ·) is a distance function for images, such as the L2-
distance. Given this, we define the approximation loss over all pairs of z, z′

L(f, g, πx) =
∑
z,z′

πx(z) ∗ (f(z)− g(z′))2 (2.2)

As we desire to minimize L, we obtain a weighted least squares problem which
has an analytical solution and efficient solvers, e. g., Cholesky, singular value or QR
decomposition. Yet, the objective function of LIME contains an additive complexity
term that, in this example, is defined according to [RSG16]

Ω(g) =∞∗ I[#non-zero components in w > K] (2.3)

Ω(g) becomes infinity for all interpretable models that have more than K non-zero
weights and 0 otherwise. Hence, by choosing this parameter properly, one gets the
top K most important pixel patches for the decision of f .

Both functions are inserted into the objective function, Equation 2.1. To derive the
optimal solution, [RSG16] utilize lasso regularization for feature selection until the
sparsity is high enough, i. e. #non-zero components in w ≤ K and thus Ω(g) = 0.
The remaining weighted least squares problem is solved with the selected subset
of features and all local instances in Z ′. The result is a sparse linear model ĝ
which approximates the decision f at x. The non-zero weights of ĝ representing the
importance of each super-pixel for this decision.

We demonstrate the effectiveness of their approach by explaining the decision of
Google’s Inception neural network using the image in Figure 1. Note the Inception
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(a) Original Image (b) Bell Pepper (c) Orange (d) Lemon

Figure 1: Explanations of top 3 classes predicted for original image a). First, bell
pepper with posterior p = 0.49 in b). Second, orange (p = 0.06) in c) and,
third, lemon(p = 0.02) in d)

net has multiple output classes. In consequence, an explanation for each class must
be given separately. In Figure 1, the explanations of the classes bell pepper, orange
and lemon are depicted. In our experiment, K is set to 10, i. e. in each explaining
image the 10 most influential super-pixels for the respective decision are displayed. If
the depicted super-pixels were not what we expected, for example, pixels of the bell
peppers were highly important when classifying oranges, we could easily conclude
that the model’s prediction is untrustworthy. We implemented this experiment using
the LIME framework [Lim]

2.2 SP-LIME

With LIME, single predictions of a complex model f are transformed into simple
explanations. If the fidelity of a complete model f is of interest, however, a global
explanation of f is required which can not be provided by a single explanation with
LIME. The solution is to form a representative set of explanations that give a global
perspective on the model. Therefore, one has to pick the most representative local
approximations ĝi of f with regard to instances xi. If all of these are trustworthy, the
model can be trusted, as well. In contrast, providing a close global approximation
rather than a global perspective is difficult as it requires to map the complex model
to a simple, interpretable one which is equally powerful.

Naturally, the larger the set of local explanations is the more precise the global
perspective is. Considering that checking every decision for its fidelity is not au-
tomatable, it can not be infinitely large. Let B denote the number of explanations
a human is willing to evaluate in order to accredit fidelity and X be the set of
instances xi with corresponding explanations ĝi. The goal is to select B instances
such that their explanations provide the most faithful representation of the model’s
behavior. Ribeiro et al. [RSG16] propose an extension of LIME for this purpose
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where they define a pick strategy, thus calling it Submodular Pick-LIME. Contin-
uing the example of sparse linear models, we elucidate how this selection strategy
works. First, the weights of each ĝi are grouped in an N × D′ matrix W with
N =| X | and D′ being the dimension of interpretable feature vector x′i. For each
elementWij =| wĝij

|. Consequently, a column j represents the weights for a specific
interpretable feature among different explanations. Let Ij denote the importance
score for column j which measures how often the feature is considered important
across different explanations. For instance in text classification, the authors propose
Ij =

√∑N
i=1 Wij. Thus, if I1 > I2, the interpretable feature in column 1 is more

influential for decisions of model f than the feature in column 2. The goal is to se-
lect B rows that have high coverage of different interpretable features and columns,
respectively. This means that the B corresponding explainers use different sets of
features for their explanations, thus approximating the f at different positions. We
denote the subset of rows (explainers) select from W as V . Formally, the coverage
being achieved with V is defined as

c(V,W, I) =
D′∑

j=1
I[∃i ∈ V : Wij > 0] ∗ Ij (2.4)

If the weight vectors of each ĝi are not sparse, the indicator term I[∃i ∈ V : Wij > τ ]
may be changed to use some threshold τ instead of 0. Our initial selection problem
is expressed as

V̂ = arg max
V,|V |≤B

c(V,W, I) (2.5)

The objective is a weighted coverage problem proven NP-hard in [Fei98]. For this
reason, [RSG16] present an iterative, greedy algorithm which chooses the row with
maximum coverage gain in each iteration and adds it to V . This strategy is always
close to the true optimum by a constant factor, see [KG14]. The complete calculation
scheme of SP-LIME is presented in Algorithm 1.

Algorithm 1 Submodular Pick (SP) see [RSG16]

Input: Instances X, Budget B
1: for xi ∈ X do
2: Wi ←LIME(xi)
3: end for
4: for j ∈ {1, ..., D′} do
5: Ij ←

√∑N
i=1 Wij

6: end for

7: V ← {}
8: while do | V |< B
9: î← arg maxi c(V ∪ {i},W, I)

10: V ← V ∪ {̂i}
11: end while
12: return V
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3 Evaluating LIME

Complementing their contribution of LIME and SP-LIME, [RSG16] conduct empir-
ical studies with simulated and real human subjects demonstrating the effectiveness
of their approach. In Section 3.1, we reflect on these studies and highlight major
points. Afterwards, Section 3.2 discusses advantages and open issues encountered
with LIME.

3.1 Empirical Studies

To evaluate LIME, other explanation approaches from literature (parzen by [Bae+10],
greedy1 similar to [MP14]) and a random explanation approach are compared. For
SP-LIME, each of the previous approaches is extended to give a global perspective
via submodular picks. To put the focus on evaluating the effectiveness of the pick
strategy, a random pick (RP) strategy is used as counter part. As the name in-
dicates, it selects local explanations randomly. Eventually, SP-LIME is compared
with SP-greedy, SP-parzen, SP-random, RP-LIME, RP-parzen, RP-greedy and RP-
random. All prediction tasks in their study are based on text data sets and text
classification.

One part of the studies comprises simulated user experiments. The first experiment
evaluates how faithful each approach is when highlighting the K most important
features to explain a model’s decision. Therefore, a sparse linear regression model
and a decision tree are trained artificially such that they utilize only a predefined
gold set of features for their decisions. Afterwards, LIME, parzen, the greedy and
random approach are used to explain a decision. The recall of gold features in their
explanation is used to compare all explainers, see Figure 2. It illustrates that more
truly important (gold) features of the sparse linear model f are identified via LIME
than by all other approaches.

In a second experiment, the most generalized classifier should be identified based
on picked explanations. The set of classifiers to choose from contains random forest
models with different generalization (train-test gap). For each method and classifier,
B explanations are generated being automatically checked for their trustworthiness

1We refer to [RSG16] for more information.
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Figure 2: Gold features rediscovered by an
explanation

Figure 3: Precision when deciding for
the best model

based on predefined criteria. For each explanation approach, the model with the
highest number of trustworthy explanations is selected. In Figure 3, we see how
often an approach led to a correct choice - with regard to different values of B.
Again, SP-LIME outperforms other methods. In addition, the graphs show that the
submodular pick strategy is effective, especially for small B < 20. For larger B, also
the random pick strategy works satisfyingly. The results of parzen and random are
completely off. So, they are not displayed at all.

The other part of the studies targets real human interaction involving 100 partic-
ipants on Amazon Mechanical Turk. In one experiment, machine learning non-
experts are asked to identify the better model out of 2 just by seeing B = 6 ex-
planations of the model’s decisions. The results in Figure 4 clearly show that with
SP-LIME 90% of the participants selected the true optimal model which is more
than any of the other explanation methods achieved.

The second experiment focuses on feature engineering via SP-LIME and RP-LIME.
Non-experts are iteratively asked to pick features which are marked as important
by multiple explanations but are semantically incorrectly used by model f . In the
next iteration f is trained without the incorrectly used features and gets explained
again. Already after three iterations, participants are able to improve f by 20% test
accuracy on average, see Figure 5. As expected, RP-LIME performs slightly worse
than SP-LIME.

3.2 Discussion

As demonstrated in the previous chapters, LIME and SP-LIME fulfill all desired
characteristics of explainers: interpretable, model agnostic, locally trustworthy and
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Figure 4: Average precision of partici-
pants that have to choose the
best of 2 models

Figure 5: Improvements in test accu-
racy achieved by ML lay-
men that used LIME for
feature engineering

globally representative. Moreover, the experiments show that this approach outper-
forms other black box methods from literature and it helps even layman to under-
stand and improve a model.

However, we discover difficulties when using SP-LIME in the context of image clas-
sification which has not been identified by the experiments as they focus entirely on
text analysis. The main issue concerning images is the mapping from multi-channel
pixels to interpretable features, i.e. super-pixels. For a single image, this can easily
be achieved by combining matching neighboring pixels as illustrated in Section 2.1.
Yet, for SP-LIME multiple instances with the same set of interpretable features are
required. Due to the tremendously high diversity of images, it is very unlikely to
find another image with the same super-pixels. An intuitive solution is to handcraft
semantic information of an image and represent them as interpretable features. Con-
sider, for example, two completely different images x1, x2 each depicting a dog at
different positions. To explain the classification for each image, LIME expects us
to define super-pixel which, of course, are very different for x1 and x2. Hence, we
cannot simply create a matrix W with SP-LIME. To circumvent this, we suggest
representing each super-pixel by its semantic meaning, i. e. by the content it dis-
plays. For instance, both, x1, x2, contain dog heads. Even though the respective
super-pixels of dog heads might be at different position and do not look the same,
they both represent the same semantic information. Such a uniform representation
among different instances enables using SP-LIME.

Nonetheless, this requires a significant manual effort as each super-pixel and its
meaning are manually determined.
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4 Conclusion

4 Conclusion

In this report, we reviewed the theory of LIME and SP-LIME by giving examples
of sparse linear models. Also, empirical studies evaluating LIME in practice were
explained and discussed. In conclusion, the paper [RSG16] presents a straightfor-
ward black-box approach to interpret any machine learning model. It stands out
due to its simplicity and effectiveness compared to other approaches from literature
in 2016.

For future work, the authors aim to evaluate decision trees as another family of
interpretable models. In their paper, they solely focus on linear explainers which
is why they motivate a comparison among different families of interpretable ap-
proximations. Furthermore, they would like design a pick strategy for images that
addresses the issues discussed in Section 3.2. At last, they desire to explore different
practical fields that could possibly benefit from explanation by LIME.
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