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1 Introduction

The chosen paper is "Network Dissection: Quantifying Interpretability of Deep Visual

Representations." from B. Zhou et. al. [2] of Topic 3: Feature Visualization of the

seminar. The paper didn’t propose some fancy network structure but conduct empirical

studies on common properties of neural networks. It tried to explain the function of

each unit with the help of a broadly densely labeled dataset, as they measure the align-

ment between units and images in this dataset.

Over last few years deep convolutional neural networks (CNNs) have been used widely

in computer vision especially for visual recognition and they have achieved the state-of-

the-art performance, which accelerates the research in this field greatly. However, being

one of the most powerful and sophisticated tool we have, CNNs were often criticized

as black boxes for their lack of interpretability, since they have millions of unexplained

model parameters, which we can’t find a proper way to explain as we explain those

early engineered representations such as Harris Corner, SIFT and HOG. Although peo-

ple may still be able to explain how does the network works in the first few layers for

some units,they can’t manage to do for all the units inside a CNN.

1.1 Related Work

To understand what happened inside CNNs, some previous methods have been devel-

oped. The behavior of a CNN can be visualized by sampling image patches that maximize

the activation of hidden units [7] [8]. The earlier layers capture the simple features

such as edge, corner or texture, while the later layers capture more complicated and se-

mantically meaningful concepts such as dog head, or truck. Variants of backpropagation

are also be used to identify or generate salient image features [4]. They back project

the weights learned by our networks back onto the image space to see what have been

learned insides. The discriminative power of hidden layers of CNN features can also

be understood by isolating portions of networks, transferring them or limiting them,

and testing their capabilities on specialized problems [1]. The visualization approaches

digest the mechanisms of a network down to images which themselves must be inter-

preted, and motivate to match representations of CNNs with labeled interpretations.

Most relevant to this paper’s work are explorations of the roles of individual units

inside neural networks. [8] shows that individual units behave as object detectors in a
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scene-classification network determined by human evaluation. [5] automatically gen-

erated prototypical images for individual units by learning a feature inversion mapping,

which contrast the approach of automatically assigning concept labels from this paper.

They have revealed that CNNs may be learning spontaneously the disentangled rep-

resentation, which aligns its variables with a meaningful factorization of the underlying

problem structure, for example, object detector units emerge within network trained to

recognize places, and part detectors emerge in object classifier network, without any

explicit instruction telling them to understand the task in any interpretable way.

1.2 Motivation

To quantify the interpretability, an usual way used by neuroscientists to solve similar

problems in biological neurons is to explain it with some ideas we already know, which

includes three steps:

1. Identify a broad set of human-labeled visual concepts. (Broden Dataset)

2. Gather hidden variables’ response to know concepts. (Distribution of individual

unit activation beyond a certain threshold)

3. Quantify alignment of hidden variable-concept pairs. (Calculate the Intersection

over Union - IoU value between them, namely individual hidden units in network

and single concepts in Broden dataset)

Past experience shows that an emergent concept will often align with a combination

of several hidden units or vice versa - partly disentangled [1] [3], while we want to

assess how well a representation is disentangled. Therefore, the authors define the

interpretability in terms of the alignment between single units and single interpretable

concepts.
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2 Dataset & Methods

Following the three steps mentioned above. The authors draw concepts from a new

broadly and densely labeled image dataset that unifies labeled visual concepts from a

heterogeneous collection of labeled data sources, described in subsection 2.1. They then

measure the alignment of each hidden unit of the CNN with each concept by evaluation

the feature activation of each individual unit as a segmentation model for each concept.

They define the interpretability of a certain layer by counting the the number of unique

visual concepts aligning with a unit in this layer, as detailed in subsection 2.2

2.1 Broden: Broadly and Densely Labeled Dataset

To be able to ascertain alignment with bot low-level concepts such as colors and higher-

level concepts such as objects, a new heterogeneous dataset has been assembled.

The Broadly and Densely Labeled Dataset (Broden) unifies several densely labeled image

datasets, see Table 1. These datasets contain examples of a broad range of objects,

scenes, object parts, textures, and materials in a variety of contexts, and most of them are

segmented down to pixel level except textures and scenes which are full-image concepts.

Category Classes Sources Avg sample
scene 468 ADE 38
object 584 ADE, Pascal-Context 491
part 234 ADE, Pascal-Part 854
material 32 OpenSurfaces 1,703
texture 47 DTD 140
color 11 Generated 59,250

Table 1: Statistics of each label type included in the dataset

The purpose of Broden is to provide a ground truth set of exemplars of normalized

and cleaned visual concepts, which means every class corresponds to an English word

based on merging synonyms, disregarding positional distinctions such as ’left’ and ’top’

and avoiding a black list of 29 overly general synonyms (such as “machine” for “car”).

Besides, multiple Broden labels can apply to the same pixel. For example, a blue pixel

of a sea scene can has a color label "blue" as well as a scene label "sea".
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Figure 1: Samples from the Broden Dataset. The ground truth for each concept is a pixel-wise
dense annotation.

2.2 Scoring Unit Interpretability

The proposed Network Disscetion method compares every single unit inside the given

CNN with every visual concept in Broden as a binary segmentation task.

The activation map Ak(x) of every internal convolutional unit k is collected for every

input image x in the Broden dataset. For each unit k, the top quantile level Tk is deter-

mined such that P(ak > Tk) = 0.005 over every spatial location of the activation map in

the dataset. Ak(x) is then thresholded into a binary segmentation: Mk(x)≡ Ak(x)≥ Tk,

selecting all regions for which the activation exceeds the threshold Tk. All these segmen-

tation are evaluated against every concept c in the data set by computing intersections

Mk(x)∩ Lc(x), for every (k, c), unit-concept pair.

The score of each unit k as segmentation for concept c is reproted as a data-set-wide

intersection over union score

IoUk,c =

∑

|Mk(x)∩ Lc(x)|
∑

|Mk(x)∪ Lc(x)|
(1)

The value of IoUk,c is the accuracy of unit k detecting concept c, if it exceeds a thresh-

old. Although the number of units as detectors is affected by different threshold, the the

relative ordering remain stable. To quantify the interpretability of a layer, the authors

count the number of unique concepts aligned with units inside this layer, which is called
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unique detectors.

Figure 2: Demonstration of how the IoU value is evaluated for a certain unit.

Given the IoU as an objective confidence score for interpretability, we are able to

compare the interpretabilities of different representations across different layers as well

as different networks, which also conducts the structure of the following experiment

section. However, we must notice that, since the Broden dataset is a dataset pre-defined

by the authors, if a unit matches a human-understandable concept that is absent in

Broden, then it will not score well for interpretability. Future expansion of Broden may

ease this drawback.
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3 Experiments and Results

The authors test the Network Disscetion on a collection of CNN models with different

network structures and supervision of primary tasks, see table below.

Training Network Dataset or task
none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.
GoogLeNet ImageNet, Places205, Places365.
VGG-16 ImageNet, Places205, Places365, Hybrid.
ResNet-152 ImageNet, Places365.

Self AlexNet

context, puzzle, egomotion,
tracking, moving, videoorder,
audio, crosschannel, colorization,
objectcentric.

Table 2: Tested CNN models. Hybrid contains both part of ImageNet and part of Places365.
Self represent self-supervised learning, there is a really great video by Alexei Efros in-
troduced it. https://www.youtube.com/watch?v=YhYsvD6IfKE last accessed 18,Aug,2018

Outline of Experiments. They begin with human evaluation as a validation to the

method. Then they test whether it is meaningful to assign an interpretable concept to

an individual unit, which they found it’s not and concluded that interpretability is not

an inevitable result of the discriminative power of a representation. By analyzing all the

convolutinoal layers of two AlexNets as trained on ImageNet and as trained on Places,

the hypothesis that detectors for higher-level concepts at higher layers and lower-level

concepts at lower layers was confirmed, besides, more detectors for higher-level con-

cepts emerged under scene training compared to object training. After that, they showed

that different network architectures such as AlexNet and VGG-16 and different super-

and self-supervised training yield various interpretability. Finally, they showed the im-

pact of different training conditions, examined the relationship between discriminative

power and interpretability and investigated possible way to improve the interpretability

of CNNs by increasing their width (units number).

3.1 Human evaluation

They use Amazon Mechanical Turk (AMT) to evaluate the results found by Network

Disscetion. Raters were shown 15 images with highlighted patches showing the most
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activated regions selected by each unit, at the meantime they were ask a yes/no ques-

tion, that whether a given phrase generated by Network Disscetion describes most of

the image patches. Results are the table below.

conv1 conv2 conv3 conv4 conv5
Interpretable units 57/96 126/256 247/384 258/384 194/256
Human consistency 82% 76% 83% 82% 91%
Network Dissection 37% 56% 54% 59% 71%

Table 3: Human evaluation of Network Disscetion. Interpretable units are those where raters
agreed with ground-truth interpretations, namely the number of units that the rater
think they represent the image. Within this set the portion of interpretations assigned by
Network Dissection were rated as descriptive, based on IoU score. Human consistency
is based on a second group evaluation of ground-truth labels.

The result suggests that humans are better at recognizing and agreeing upon high-

level concepts such as objects and parts, rather than the shapes and textures that emerge

at lower layer.

3.2 Axis-Aligned Interpretability

Two possible hypotheses may explain the emergence of interpretability in individual

hidden layer units:

1. The overall level of interpretability should not be affected by a change in rotation

in feature space. This reveals that interpretations of single units in the natural

basis may not be a meaningful way to understand a representation.

2. The overall level of interpretability is expected to drop under this change, which

means that the natural basis represents a meaningful decomposition learned by

the network.

Hypothesis 1 is the default assumption supported by [6]. Under this hypothesis, if we

change the basis to a representation learned by CNN, the overall level of interpretability

should not be affected or at least not that much.

The team tested this by applying a random orthogonal transformation Q on the conv5

layer of an AlexNet trained on Places205. The rotation Q is drawn uniformly from

SO(256) by applying Gram-Schmidt on a normally-distributed QR = A ∈ R2562
with
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positive-diagonal right-triangular R.

They found that the number of unique detectors, namely the interpretability of a layer

they defined, in Q f (x), is 80% fewer than it in f (x), where f (x) represents above-

mentioned conv5 of AlexNet. The finding rejects hypothesis 1 and is consistent with

hypothesis 2.

In addition, they’ve also tried the rotation with a factor α on Q, where 0 ≤ α ≤ 1, to

see how the intermediate rotations affect the interpretability.

Figure 3: Interpretability over changes in basis of the representation of AlexNet conv5 trained
on Places. The vertical axis shows the number of unique interpretable concepts that
match a unit in the representation. The horizontal axis shows α, which quantified the
degree of rotation.

However, each rotated representation has exactly the same discriminative power as

the original layer. They concluded that the interpretability of CNNs is not an axis-

independent property, and it is neither an inevitable/ necessary result of the discrim-

inative power of a representation, nor is a prerequisite to discriminative power. Instead,

the interpretability is more likely to be a different quality from discriminative power that

must be measured separately to be understood.

10



Pingchuan Ma
Network Dissection:

Quantifying Interpretability of Deep Visual Representation

3.3 Layer levels

Using network dissection, they analyzed and compared the interpretability of units

within all the conv layers of AlexNet trained on Places and ImageNet. The results are

summerized in Figure 4

Figure 4: A comparison of the interpretability of all five convolutional layers of AlexNet, as
trained on classification tasks for Places (top) and ImageNet (bottom). At right, three
examples of units in each layer are shown with identified semantics. The segmenta-
tion generated by each unit is shown on the three Broden images with highest activa-
tion. Top-scoring labels are shown above to the left, and human-annotated labels are
shown above to the right. Some disagreement can be seen for the dominant judgment
of meaning. For example, human annotators mark the first conv4 unit on Places as a
‘windows’ detector, while the algorithm matches the ‘chequered’ texture.

We can see that the predicted label match the human annotation well, though some-

times capture different description of a visual concept. The result confirmed the intu-

ition, color and texture concepts dominate at lower layers such as conv1 and conv2,

while more object and part detectors emerge in higher-level layer conv5.

3.4 Architectures and supervisions

How do the representations of different network architectures and training supervisions

affect the interpretability of the learned representations? The author tested Network

Dissection on different models listed in Table 2. For simplicity they compared only the

last conv layer of each models, since here is where semantic detectors emerged Figure 5.
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Figure 5: a).Interpretability of ResNet > VGPlaces205 G > GoogLeNet > AlexNet, and in terms
of primary training tasks, we find Places365 > > ImageNet.
b). Interpretability varies widely under a range of self-supervised tasks, and none
approaches interpretability from supervision by ImageNet or Places.

Figure 6: The two highest IoU scored units are shown. Deeper networks also have a higher IoU
score. Besides, the detectors in deeper network detect more compact and general-
ized concepts than those shallower networks. Although the IoU scores are pretty low
compared to those supervised object detectors, they are spontaneous learned by our
intermediate hidden units. So it’s pretty impressive.

Conclusions. Networks with complex architecture have usually more interpretability.

And models trained on Places have more unique detectors than those trained on Ima-

geNet. Because scene is composed of multiple objects, it may be beneficial for more ob-

ject detectors to emerge in CNNs trained to recognize scenes. There also more low-level

concepts emerge in self-supervised model. Apparently supervision from a self-taught pri-

mary task is much weaker at inferring interpretable concepts than supervised learning

on a large annotated dataset.
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3.5 Training conditions

Different training conditions such as number of training epoch, dropout, batch-normalization,

and different way to initialize, are known to affect the representation learned by CNN.

In this subsection the baseline model Places205-AlexNet was compared with its variants.

Figure 7: Results of different training conditions.

Conclusions. 1.for different random initializations, the models converge to similar lev-

els of interpretability, both in unique number and total number, see repeat 1 3 in Fig-

ure 7. 2. For dropout, there are more texture and color detectors emerge but fewer

object detectors. 3. And batchnorm seems to decrease interpretability significantly.

This may give us a hint that the discriminative power may not the only thing we need

to measure for a representation. And the loss may caused by the reason that batchNorm

smooths out scaling issues and allows a network to easily rotate axes of intermediate

representations during training. While it speeds up the training, it may also have an

effect similar to random rotations analyzed before, that destroy interpretability. How to

find a balance between them should be an important further work.
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3.6 Discrimination vs. Interpretability

People easily treat discriminative power and interpretability as the same thing. How-

ever, in this section they showed actually we’d better take them as two different qualities

of a CNN into account.

Activations from the higher layers of CNNs are often used as generic visual features,

showing great discrimination and generalization ability. For this task, they took several

networks, train them on standard image classification datasets for the discriminative

ability. And then extract the highest conv layer, and train a linear SVM on dataset ac-

tion40 for action recognition task, and compute the classification accuracy.

Figure 8: There is a positive correlation between them. Thus the emergence of detectors may
also improve discriminative power. Interestingly, the best discriminative representa-
tion for action40 is the representation from ResNet152-ImageNet, which has fewer
unique object detectors compared to ResNet152-Places3365. The possible explana-
tion maybe that the accuracy depends not only on the number of detectors but also on
whether these detectors are suitable for the primary task.

3.7 Layer Width vs. Interpretability

From AlexNet to ResNet, CNNs have grown deeper in the quest for higher accuracy.

Depth has been shown to be important to high discriminative power, and we have seen

before the interpretability increase as well. However the width (units per layer) has been

less explored. Increasing width-significantly increase computational cost, while brings

only small improvement in accuaracy. To explore how it affects our interpretability, they

14



Pingchuan Ma
Network Dissection:

Quantifying Interpretability of Deep Visual Representation

build another version of AlexNet - AlexNet-GAP-Wide, as they removed FC-layers, tripled

the number of units in conv5, i.e. 256 to 768 units, finally put a global average pooling

layer after conv5 and fully connect the pooled 768-features activations to the final class

prediction.

Figure 9: The impact of network width on interpretability. Accuracy is similar, but many more
concept detectors emerged, both in terms of unique detectors and total number. After
that they also tried increase to 1024 and 2048 at conv5, but the number did not change
significantly, this may indicated that a limit on the number of disentangled concepts
that are helpful to solve the primary task, which is consistent with the explanation
from Figure 8
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4 Conclusion

The paper proposed a general framework - Network Dissection, based on a densely

labeled dataset (Broden) to quantify the interpretability (based on the definition given

by the authors) of any CNNs. The related experiments reveal that:

• Interpretability is not an axis-independent phenomenon, which is consistent with

the hypothesis that interpretable units indicate a partially disentangled represen-

tation.

• Deeper CNNs architectures appear to allow a greater interpretability. Besides, the

interpretability also depends on the concepts in the dataset used for training the

model.

• Representation at different layers of CNNs disentangle different categories of mean-

ing. In other word, the lower/higher the layer level is, the lower/higher level of

concepts it contains. For example, detectors such as edge, corner and texture tend

to emerge at some earlier layers, while concrete concepts of object and parts tend

to emerge at later layers.

• Different training techniques and conditions lead to a significant change of in-

terpretability of representation learned by hidden units. For example, a self-

supervised learning model has less more interpretability than a supervised learn-

ing model.

• Interpretability and discriminative power are two qualities that need to be mea-

sured separately, though they have a positive correlation.

They defined the interpretability as the number of unique detectors, and then based

on this assumption performed different experiments, which I consider may not that

convincing, because of the self-defined standard. Nevertheless, personally I think the

paper is quite a good example to demonstrate how to conduct a systematic analysis

work. It didn’t contain any fancy method, but a more intuitive approach.
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