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Abstract

Almost all recent algorithms in the field of machine learning or artificial intelligence
utilize neural networks. This work accompanies an introductory talk on their applica-
tions, predominatly in the field of computer vision. Some presented algorithms extract
high-quality information from visual input, others are more playful and show behavior
that could be interpreted as first steps towards creativity or imagination of computer
systems.
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1 Introduction

If we want to evaluate the potential risks of Artificial Intelligence (AI) on a sci-
entific basis, the obvious starting point is to understand how it is achieved.

1.1 Symbolic vs. "real” Al

In its early days, Al used to be logic driven and therefore basically a huge collection
of rules. The Oxford Dictionary defines Intelligence as “the ability to learn, understand
and think in a logical way about things”. Logic driven, symbolic Al improve by adding
more rules to its decision process. Systems could react on inputs but never abstract from
them, not to speak of actually making sense out of it. What we want is a system that is
able to improve intrinsically by getting more and more input. The idea behind Machine
Learning (ML) is learning a model from data - and the most powerful tool to do so turned
out to be via Artificial Neural Networks (ANNs). They tackle problems by considering
training examples and do not necessarily require task-specific programming. Depending
weather the input data is labeled or not, we distinguish between supervised and unsu-
pervised learning. Whereas the latter mostly aims to group (or ”cluster”) similar inputs
together, supervised algorithms predict labels which are classes for classification tasks
or continuous numbers for regression.

1.2 Fundamentald

The building block of ANNSs, a perceptron, is basically a computational graph: it mul-
tiplies every input with some number (weight) and adds all of them together with an
additional number (bias). We call that a "neuron”, which can be stacked together to
layers . To be not restricted to linear functions, we need to apply a nonlinearity to the
output of every neuron. The inputs of the network should be expressible in numbers
(e.g. data points or gray values) and we need as much output neurons as classes (for
classification tasks) or variables (for regression tasks). How good the resulting predic-
tions are, is measured by the loss function. In supervised learning, it is a metric to
determine how far away a prediction of the network is from the real value. To improve
the results the network-parameters (weights and biases) are altered in such a way, that
the loss decreases. Therefore, we want to follow the gradient of the loss in parameter
space. To know, which parameter accounted for how much of the final prediction, we
propagate backwards through the network by applying the chain rule.

The more layers such networks have, i.e. the deeper they become, the more flexibil-
ity and expressional power they get. The downside is that the number of parameters
increases rapidly. Especially for large input data as images, it has proven to be way
more efficient to restrict the input of a neuron to a smaller neighborhood of the previous
layer. Also, weights are shared between perceptrons of one layer, meaning that the same
function is learned for all neighborhoods. A layer of perceptrons can then be understood
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Figure 1: Schematic view of image classification using a CNN

as a filter that is convolved with the input which is why these types of ANNs are called
Convolutional Neural Networks (CNNs).

2 Applications

Since most of modern Al is based on ANNs, other talks within the scope of this
seminar can mostly be considered to also fall under the title ”Applications of Neu-
ral Networks”. Due to future elaborations on speech recognition, applications of
reinforcement learning etc., the focus of this work will lie on computer vision and
related tasks.

2.1 Image Classification

Classification of images is historically the task neural networks gained popularity for.
They were successfully used already in the previous century for recognizing text and
handwritten digits by [LeCun et al., 1998]. They almost sank into obscurity until
[Krizhevsky et al., 2012] won the ILSVRC-2012 competition with a deep CNN (five
convolutional layers and three fully-connected layers,). Due to a novel method called
dropout, they prevented their model from overfitting, made it more robust and therefore
the new state of the art. Since their publication, every winning team of ILSVRC (for
details on the challenge see [Russakovsky et al., 2014]) used CNNs.

The functional principle is shown in Fig. (I} which is still the basis to recent approaches
as |[Huang et al., 2016|. Processing the image through a CNN allows for a efficient repre-
sentation, a feature map. From there, scores for a given number of classes are calculated
through a fully connected classifier. Experience showed that generally best results are
achieved if the whole network is trained jointly.

2.2 Localization

If not only the dominant subject in a picture is asked for but also where it is located, we
speak of localization. This combines classification with regression but the functionality
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Figure 2: Schematic view of a localization task

Figure 3: Detection with the YOLO system (colors correspond to classes: green — dog,
pink — bike, orange — car, cyan — dining table)

stays unchanged (see Fig. . The network predicts now not just scores but four addi-
tional values that determine a bounding box. These can be learned by applying L2-loss
(as long as proper training data is available). One way of computing bounding boxes
more efficiently is presented by [Sermanet et al., 2013].

2.3 Detection

Locating objects gets a great deal harder if there is not always one target per image but a
variable number. One of the state-of-the-art detectors by |[Redmon and Farhadi, 2016],
Fig. utilizes again a CNN to get a feature map representation. The features are
assigned to discrete locations in the image with one class and some number of bounding
boxes. These boxes have a location, a class (given by the feature) and some confidence
which also is learned. Finally, only bounding boxes with the highest confidence are
displayed. These systems are fast enough to run in real time.
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Figure 4: Utilizing RNNs to generate image captions

2.4 Generating Text

Detecting objects in pictures is only the first step to actually understand the context
of a scene. There exists a variety of approaches to generate text to visual input, like
|[Karpathy and Fei-Fei, 2014], [Johnson et al., 2015] or [Lu et al., 2016]. Instead of just
detect objects from a fixed number of classes, a sequence of words from a large vo-
cabulary is generated. A meaningful and grammatically correct sentence can only be
produced if every new word depends on the already generated ones. A suitable archi-
tecture for such tasks are Recurrent Neural Networks (RNNs). As shown in Fig.
they have loops and get their own output as input in the next time step. Unrolled in
time this is basically a feedforward ANN again which can - in principal - be trained
jointly. In reality, this looping is prone to cause exponential vanishing or exploding
gradients of the loss function. A workaround to this problem was proposed already by
[Hochreiter and Schmidhuber, 1997] which is with slight variations still state of the art.
This idea generalizes to basically all natural language models. For example, translators
or question answering problems like in [Kumar et al., 2016] have vectors of words as in-
puts instead of arrays of gray values. How they process it and generate outputs follows
the same principles. Applications like these were covered in the talks of Enes Witwit
and Maximilian Miiller-Eberstein.

2.5 Game Engines

AT surpassing human performance in the board game Go and Atari 2600 games gained a
lot of media attention. CNNs are used for game engines to derive efficient representations
of the environment as shown by [Mnih et al., 2013]. From that, an agent can derive a
policy through reinforcement learning. How this works in detail was elaborated in the
talks held by Patrick Dammann and Florian Fallenbiichel.




Figure 5: Functional principle of artistic neural style

2.6 Neural Style

That computers are better in calculating and evaluating date is a long known fact;
creation of new things, like art was thought to be a human domain. Given the work
of |Gatys et al., 2015] we maybe have to reconsider. The Tiibingen working group used
simple CNN architectures to turn a photograph into an image with unchanged content
but the style of any painting of one’s choosing. Photograph and painting are fed into
CNNs, respectively. Then a new image is created from scratch where the activations of
single neurons should be as closely to the original picture and the pairwise activations
should match the ones of the painting. A measure how closely neurons are interconnected
is given by the Gram matrix which is the inner product between vectorized feature maps
in one layer. With that, the training loss can be written as a simple combination of
L2-distances of activations (Fig. |5)).

This can also be extended to combinations and mixtures of certain styles as seen in
[Dumoulin et al., 2016].

2.7 Deep Dream

Another example of how algorithms show behavior that could be considered as somehow
creative was demonstrated by a Google project called Deep Dream. They feed a picture
into a CNN, amplify the activations of some neurons and backpropagate how an image
with these new activations would have looked. After few iterations of this process results
as in Fig. [6] are observed. Starting from a picture of clouds, the network ”hallucinated”
identifiable but previously unseen objects.

2.8 Super Resolution

Neural networks can also be used to reconstruct - or rather make up - images from
little information. This has the potentially very serious application of identifying people
from low-quality image data. [Dahl et al., 2017] deal with dramatically underspecified
input data (cf. Fig E[) and recover plausible high resolution versions. To generate a
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Figure 6: Results of Google Deep Dream applied on an image of clouds
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Figure 7: Results and schematic algorithm of pixel recursive super resolution

reasonable result, the prediction has to look human-like while still matching up with
the input. Instead of presupposing strong priors, deep networks are trained end-to-end
on a dataset of celebrity faces. A conditioning CNN outputs probabilities for high-res
pixel values on basis of the input. Another network, a so called PizelCNN, iterates
predictions for the overall result. Learning priors of faces and their typical variations
gives impressive results. On the other hand training data is critical for the results which
is why its use for official investigations or the like is potentially dangerous.

2.9 Generate Images

Generating images (or any other kind of suitable data) in an unsupervised fashion
made a huge step by the introduction of Generative Adversarial Networks (GANs) by
|Goodfellow et al., 2014]. They basically consist of a Generator network G and a Dis-
criminator network D contesting with each other in a zero-sum game framework (Fig.
. G samples a vector z from latent space and generates a fake image x fqre. D receives
either x yqre or some actual picture x,.q sampled from a database and has to decide
weather it is real or not. Given the feedback of D being correct or fooled, both net-
works are trained until (in theory, actually training is eminently difficult) G(z) generates
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Figure 8: Generative Adversarial Networks, modified version of kdnuggets.com/2017/
01/generative-adversarial-networks-hot-topic-machine-learning.
html

Figure 9: The leftmost and rightmost pictures were not part of the training data. Still,
the network is able to find vectors z that correspond most likely to the inputs
By linear interpolation in latent space, G(z’) produces realistic images that
morph from one input to the other in high resolution.

1
perfectly realistic images and D with D(z tqke) = 5= D(%yeqr) only left to guess.

How powerful this approach is for generating realistic images, interpolating between
inputs or using D and G for other tasks, like feature extraction, was shown among others
by |[Radford et al., 2015] and [Berthelot et al., 2017] (one result in Fi.
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3 Outlook

All the examples in Sec. [3 demonstrate that neural networks are key to recent
progress in Al

The introduced concepts are by no means limited to the field of computer vision. Vi-
sual input can be generalized, so can acoustic signals be represented by waveforms and
be processed in similar ways (overview on speech recognition by [Hinton et al., 2012]).
There is progress in almost every field of science by applying ML-algorithms based on
ANNSs. Describing them would go beyond the scope of this work but considering progress
in computer vision gives already a good impression of the impact of neural networks.

Tasks like classification (Sec. can be further specialized for medical use like
diagnosing cancer (e.g. [Esteva et al., 2017]). Detecting objects in real time (Sec.
is crucial for self-driving cars. Image captioning (Sec. can be a new way for blind
people to see the world. Developing strategies and anticipation of future events is not
only helpful for games but for every decision making process.

If we talk about Al, we are not satisfied by a computer system that solves one specific
task above human performance. At least today, we expect more of it, like autonomous
problem solving or creativity. Algorithms that are capable of creating art (Sec. [2.6]) or
previously unseen or realistic (Sec. objects are a first step in this direction.
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