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Motivation



Motivation

• There is too much data to annotate everything for supervised learning.

• Even if we could label all the data, this would be very costly.

• Unsupervised learning helps to make use of the available data.
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Histogram of Oriented Gradients



Histogram of Oriented Gradients (HOG)

• HOGs give a feature representation of images.

• They can be visualized intuitively.

• They are a good starting point for our later method since their behaviour is

closely connected to the behaviour of CNNs.
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Detecting Edges by Image Gradients

(a) input image (b) pixelwise gradients

5



Building Histograms from Image Gradients
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(c) histogram of gradients (d) pixelwise gradients
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Obtaining the Full HOG

• Repeat this process on a sliding window over the whole image.

• Concatenate all obtained histograms to a long feature vector.

• Linear discriminant analysis can be used to suppress background gradients.
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Visualization of the total HOG
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Distances Between HOGs

• HOGs are basically d dimensional vectors that represent an image in an abstract

feature space.

• We denote The projection from an image x to its HOG-vector HOG (x) with φ.

• We can compute the euclidean distance ||φ(x)− φ(y)|| between HOGs of images

x and y .

• It turns out that this distances are quite reliable for very close or very distant

images, but not for images with a “mediocre” distance.
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The Concept



The Concept

• We can represent pictures by their HOGs.

• This allows detection of very similar/unsimilar pictures.

• HOG similarities are unreliable on a “mediocre” scale.

Idea: Use similarity learning with HOG-similarity as starting point, to enhance the

performance for images with unclear similarity (mediocre distance).
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Surrogate Classification

In this approach we implement similarity learning as a “surrogate classification” task.

• We obtain surrogate classes from the reliable (i.e. very close) similarities with

clustering.

• We use a CNN to learn a projection into an abstract feature space, that

reproduces those classifications.
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How to Use Our Data?

Since only few samples in a common dataset are close enough to form a surrogate

class, we do not use the vast majority of our data.

Idea: We can use this data if we obtain partial orderings to model more “fine grained”

similarities.
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Architecture Scheme

Clustering

max G
CNN

min L

HOGs
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Summary

So our method is based on two different steps.

• Learn representations in an abstract feature space, starting with the HOG.

• Compute groupings into surrogate classes based on the distances in the current

feature space.

These steps get repeated, by a “joint optimization process” implemented with a

convolutional neuronal network with a “recurrent” training process.
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Method



Some Notation

• X = (x1, . . . , xn)T , xi ∈ Rp is our dataset of images.

• θ are the parameters defining the state of a CNN.

• φθ : X → R1×d is the projection into the feature space, represented by the CNN

given by θ.
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Schematic Method
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Partial Ordering (repetition)

Partial Ordering

A partial order is a binary relation ≤ over a set X meeting the following requirements

(x , y , z ∈ X ):

1. x ≤ x (reflexivity)

2. if x ≤ y and y ≤ x , then x = y (antisymmetry)

3. if x ≤ y and y ≤ z , then x ≤ z (transitivity)

A set X with a partial ordering ≤ is called a partial ordered set or poset.
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Partial Ordering (advantages)

In our representation space a partial ordering has several advantages:

• It does not have to be defined for all pairs of elements of our space.

• It gives a measure of distance with respect to a common comparison point.
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Poset Example
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Poset Definition

Poset

A Poset Pc with respect to a surrogate class c is the set {. . . , xj , . . . , xk , . . . } of all

unclassified Points xj , xk that satisfy the following condition for all xi ∈ Cc :

e−||φ
θ(xi )−φθ(xj )|| > e−||φ

θ(xi )−φθ(xk )|| ⇔ j < k ∀ j , k .

Where Cc denotes the points assigned to a surrogate class c . Since elements of Cc

are close to each other, compared to other elements, it is enough to represent each

class by its medoid.
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How to Train the Model?

Our Objective function has to fulfil two goals:

1. Guarantee the classification of elements of Cc as respective surrogate classes.

2. Change the feature space in a way, that pulls samples towards their ”near”

surrogate classes and away from others.
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CNNs objective function

So we need to define a central loss function L combining two different losses with the

mentioned attributes.

L(X , y ,R; θ) =
1

n

n∑
i=1

L1(xi , yi ; θ) + λL2(xi ,R; θ)

X : Data matrix

y : Surrogate class vector

R : Nearest surrogate classes tensor

λ : Hyper-parameter for the poset loss

θ : Parameters of the Network (optimization parameter)

22



Classification Loss

L1(xi , yi ; θ) = − log
e
tθi,yi

C−1∑
j=0

et
θ
i,j

1yi 6=−1

Where tθi ,yi represent the logits of sample i given θ.

xi CNN

tθi ,1
tθi ,2
. . .

tθi ,C−1
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Poset Loss

L2(xi ,R; θ) = − log

Z∑
z=1

e
−1
2σ2

(||φθ(xi )−φθ(r zi )||
2
2−γ)

C ′∑
j=1

e
−1
2σ2

(||φθ(xi )−φθ(rj )||22)

Z : Number of nearest classes taken into account for every xi .

C’: Number of surrogate classes in the current batch.

γ : Margin between the surrogate classes.

σ : Standard deviation of the current assignment of samples to surrogate classes.
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Grouping

There are two interdependent processes, that have to be modelled for training:

• Find a new grouping in the current state of the representation.

• Calculate a new representation, based on new groupings and posets.

For now we have an optimization function for the calculation of a representation with a

CNN.
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Recap the Method Scheme
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Grouping “quality score”

To model the grouping step we construct a function that penalizes large distances

inside of a cluster.

G(X ;φθ
m−1

, y (m−1)) =
C−1∑
c=0

∑
i :yi=c

∑
j :yj=c

e(−||φ
θ(xi )−φθ(xj )||2)

( ∑
j :yj=c

1

)2

We maximize this function by the choice of y .

y (m) = argmax
y

G(X ;φθ
(m−1)

, y (m−1))

s.t.
∑
i :yi=c

1 > t, ∀c ∈ {0, . . . ,C − 1}
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Summary of the concept
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Experiments



Experiments

Evaluation of the method is based on two classical tasks.

• Human pose estimation

• Object recognition
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Human pose estimation

Human pose estimation is evaluated with three Datasets:

1. Olympic Sports

(zero-shot posture retrieval)

2. Leeds Sport Pose

(zero-shot and semi supervised)

3. MPII-Pose

(semi supervised posture estimation)
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Olympic Sports
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AUC Score

AUC score

The AUC score of a classifier is equal to the probability, that the classifier will rank a

randomly chosen positive example higher than a randomly chosen negative example.

P(score(x+) > score(x−))
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AUC Olympic Sports
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PCP Score Leeps Sport Pose

PCP (percentage of correct parts) means the percentage of correctly classified body

parts.
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PCK MPII
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Thanks for your attention.
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