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REGULATIONS

- Enforcement date: 25 May 2018

- Regulation instead of Directive
= Similar to national laws

- Fines up to €20 million or 4 % of global
revenue

- Regardless of company location
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EU REGULATION 2016/679



Basis for processing
- Consent must be explicit for purpose
- e.g: calls recorded for training
- Records of processing activities
- purpose
. operator
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Responsibility and accountability
- Explanation of algorithmic decision

- recommendation systems
- credit/insurance

- Human intervention (at least safeguards)
- Respect data subjects rights/freedom

- Non-discriminating
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- Right of access
- e.g. Facebook export tool
- Right to erasure
- Data breaches
- 72 h disclosure time
- Pseudoanonymisation
- encryption keys stored on other system
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Overview

- Data Protection Officer for every organization
- Responsibility and accountability

- Lawful basis for processing

- Pseudoanonymisation

- Handling of data breaches

- Right of access

- Right to erasure

= Data protection and privacy by design
= Overhaul of standard algorithmic techniques
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- Fines only enforceable with international treaties
- Blockchain vs. right to erasure
- No official "checklist”

- Big Data is not neutral

- side-channels even if features removed
- biases from training set
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Example: Unintended Discrimination

= vg— white
& [awowltvesod
- Favor groups g °
. é < - non-white
- Data size 500 :
- Default 95% probability B
i T T T T

- Representation of 0 10 20 % 40 50

non-w h |te Non-white % of population
- Less uncertainty Discriminating underrepresented groups in
training set with a risk avers logistic regression
classifier.
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- Postal code

- revealing racial information
- info on loan defaulting

- Consumer buying history — comparable to medical exam for life insurance

= Meaningful solutions require understanding how result was inferred.
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Outlook

- Companies are planning since years

- Chance to rectify current algorithms

- Better than human counterparts after this?

- Have to start planning algorithms with GDRP in mind

collect less data <= better predictions
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Explainable Learning Challenge




Challenge Overview
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Design of an Explainable Learning Challenge for Video Interviews - Objectives

Explainability/interpretability:
- Why is decision preferred over others
- How confident is the algorithm
- How were parameters selected

- Provide text description of reasoning

Explainable Learning Challenge
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Challenge

Video: Spoken word:
- Gestures - Intonation
- Facial expressions - Pitch

- Transcript of video

= “job-interview” prediction

social characteristics — Extraversion, Agreeableness, Conscientiousness,
Neuroticism and Openness
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Applications

- Recruiters

= need explanation of decision %
- Negotiators o=
- Security gates —
- Surveillance g
- Military
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Pro & Con Compared to Human Decision

Would you accept algorithms denying your job applications?
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Pro & Con Compared to Human Decision

Advantages: Disadvantages:
- objective assessment - algorithm must be explainable
- replicable solution - built to mimic human decisions
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Employed Data Set

- 10000 of 155 clips from 3000 Youtube Videos
- Labeled by humans (Amazon Mechanical Turk)

- Voice transcription (Human transcription service)
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Evaluation Process

1. Interview recommendation
2. Explanatory mechanism

- Textual description why decision was made
- Understand-ability
- Rational and scientifically common?

3. Code sharing
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Proposed Attempts for Explanation of Employed Algorithms

This is to evaluate the quality of participants submission (below in yellow).
Please answer all questions on the scale 0-5, 5 is best.

« Clarity: Is the text understandable / written in proper English?
« Explainability: Does the text provide relevant explanations to the hiring decision

« Soundness: Are the explanations rational and, in particular, do they seem
scientific andlor related to behavioral cues commonly used in psychology?

Submission ID: submission2
The candidate is talking about himself. He looks quite friendly and but the room is
really not. Finally it is not sure that he is imaginative due to the monotony of its speech 1 would not recommend him for an interview.
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Approaches




Example Parts of Pipelines Used

Input image Histogram of Oriented Gradients

Selection of techniques used:

- Face detection
- Frame differences

- Support vector regression

- Deep convolutional network — =
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Pipeline of the Winning Paper of the Second Round

Video Blog Transcript

Motion Energy Image
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Transcript
Preprocessing
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Final prediction
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Presented Explanation of Winning Paper

Approaches
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* ASSESSMENT REPORT FOR VIDEO 2c42A4Z7qPE.001T.mp4: =

R R R R e i e b e R i R e R A e e i e e R e b e R e e i e e S R e e i b S

On a scale from 0.0 to 1.0, | would rate this person’'s
interviewability as 0.497947.
Below, | will report on linguistic and visual assessment

of the person.
Percentiles are obtained by comparing the person against
scores of 6000 earlier assessed people.
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Presentation: Human-Explainable Features for Job Candidate Screening Prediction, Achmadnoer et. al.



Presented Explanation of Winning Paper

ok o o ok ek ok ok o o ok ok Rk ok ok o
* USE OF LANGUAGE =
Sk o o ok ek ko ok ok ok Rk ok ok o

Here is the report on the person’s language use:

*% FEATURES OBTAINED FROM SIMPLE TEXT ANALYSIS #*x%
Cognitive capability may be important for the job.
| looked at a few very simple text statistics first.

*%x%x Amount of spoken words *xx

This feature typically ranges between 0.000000 and 90.000000.
The score for this video is 29.000000 (percentile: 25).

In our model, a higher score on this feature typically leads
to a higher overall assessment score.
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Presentation: Human-Explainable Features for Job Candidate Screening Prediction, Achmadnoer et. al.



Presented Explanation of Winning Paper
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* VISUAL FEATURES =*
Kook ok ko ko ok ok ko kok ok ok ok ok ok ok

n ” o,

Here is the report on what | could "see

*%x% Action Unit 12: how often was the Llip corner pulled? xxx
This feature typically ranges between 0.000000 and 1.000000.
The score for this video is 0.148148 (percentile: 82).

*%% Action Unit 12: how much was the Llip corner pulled on average?
This feature typically ranges between 0.000000 and 2.880709.
The score for this video is 0.333867 (percentile: 81).
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Conclusion




Explainability achieved?

- Understandable for an expert

- Unclear if really compliant with GDRP

- Neural networks not explained

- Most of the submitted entries did not use deep learning
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Conclusion



Thanks!

Thank you for your attention!
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