

#### **CLIMATE ATTRIBUTION SCIENCE:**

CAN WE DETERMINE WHICH EXTREME WEATHER EVENTS ARE 'CAUSED' BY GLOBAL WARMING? 28.11.2019 Peter Lippmann Seminar: How do I lie with statistics? Supervision: Prof. Dr. Ullrich Köthe

### WEATHER - NOW MORE EXTREME THAN EVER?

Venice floods: Climate change behind highest tide in 50 years,

uly 2019 was the hottest July and the hottest month on record globally since temperature records began in a year of many record-breaking

says mayor

temperatures as heat waves hit many parts of the world.

## At least 13 wildfires are burning in California Hurricane Dorian: thousands may still be missing as death toll hits 43



### THE ROLE OF CLIMATE CHANGE



### THE ROLE OF CLIMATE CHANGE



#### **OVERVIEW**

#### 1) What is climate attribution science?

2) Weather as complex phenomenon

3) How is it done in practice?

4) Conclusion and Outlook

### ASKING THE RIGHT QUESTIONS

"Was this extreme weather event caused by climate change? – Yes or No ?"

**BUT:** WEATHER IS A **MULTICAUSAL** and **COMPLEX** PHENOMENON!

- Did (anthropogenic) climate change make an extreme weather event more likely?
- Did it make it more severe?
- And if so, how much?

CLIMATE ATTRIBUTION SCIENCE

### WHAT ARE EXTREME WEATHER EVENTS?

- Extreme Cold
- Heat waves
- Droughts



- Precipitation
- Storms

Floods





### WHAT DOES IT RELY ON?

1. Sound physics:

#### CLIMATE

- thermodynamical trends
- global mean temperature
- water vapour in the atmosphere
- sea level

#### WEATHER

- small noisy dynamics
- chaotic (unpredictable)



Robust predictions based on simple physics causations:

- $\checkmark$  Higher temperatures  $\rightarrow$  more evaporation
- $\checkmark$  Warmer atmospheres hold more moisture  $\rightarrow$  heavier rain/snow
- ✓ Warmer oceans feed more energy into hurricanes

### WHAT DOES IT RELY ON?

#### 2. Historical observations:

- How are the frequency and characteristics of extremes changing?
- Problems: Extreme events are rare by definition → very few previous events
  - records exist only for a few decades  $\rightarrow$  new 'extremes' appear frequently

Need to complement each other

#### 3. Computer simulations:

- Necessary since no climate experiments possible
- Require profound **understanding of mechanisms and influences** behind weather extremes

# WHAT ARE POSSIBLE OUTCOMES OF ATTRIBUTION STUDIES?

- The extreme weather event was made more likely/more severe due to anthropogenic climate change.
- (2) The extreme weather event was made **less likely/less severe** due to anthropogenic climate change.
- (3) Anthropogenic climate change **did not play a detectable role** in the frequency and characteristic of the event.
- (4) With our current understanding and tools, we **could not asses** whether and how the event was influenced by anthropogenic climate change.

#### **OVERVIEW**

1) What is climate attribution science?

2) Weather as complex phenomenon

3) How is it done in practice?

4) Conclusion and Outlook

### **'COMPLEX' — BUT WHAT DOES THIS MEAN?**

- Reductionism dominating approach in the 20<sup>th</sup> century
- $\rightarrow$  The complex world is **nothing but** the sum of its parts.
- Complexity dominating approach in the 21<sup>st</sup> century?
- $\rightarrow$  The complex world is **more than** the sum of its parts.



**Concretely:** Complexity is the study of systems consisting of many interacting units that give rise to <u>emergent behaviour</u> which cannot be understood by studying a single unit in isolation. [Ref. A]

### THE SAND PILE METAPHOR

Build a sand pile on a table of **finite size** *L* using:

- 1. Add a sand grain to the first site (i = 0)
- 2. If the local slope  $Z_i$  at site *i* exceeds critical slope  $Z_{i,crit}$ :
  - ightarrow let grain topple down to next site
  - $\rightarrow$  assign new critical slope to site  $i : \mathbf{Z}_{i,crit} \in \{1, 2\}$



















First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = \mathbf{1}$ .

#### Define avalanche size s



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = \mathbf{1}$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S


First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = 1$ .

#### Define avalanche size S



First, set all critical slopes to 1, i.e. for all  $i : \mathbf{z}_{i,crit} = \mathbf{1}$ .

#### Define avalanche size S

as total number of relaxations induced by a single grain.

 $\rightarrow$  This model behaves trivially in the steady state.



Now, choose critical slopes randomly with

- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .

After building up the sand pile, find a configuration like this -



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



Now, choose critical slopes randomly with

• 
$$P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$$

•  $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .



- $P(\mathbf{z}_{i,crit} = \mathbf{1}) = 1/2$   $P(\mathbf{z}_{i,crit} = \mathbf{2}) = 1/2$ .
- $\rightarrow$  Avalanches of very different sizes appear.



### AVALANCHE SIZE PROBABILITY DISTRIBUTION

• Avalanche size s = total number of relaxations induced by a single grain



#### NUMBER OF RAINFALLS PLOTTED VS. EVENT SIZE



based on data from METEK covering the period 1.1.1999 to 1.7.1999 at the Baltic coast Zingst, Germany.



# **INTERPRETING THE METAPHOR**

- Avalanche sizes follow a power law distributions (also Pareto-distribution)
  - $\rightarrow$  they appear everywhere in nature and our everyday lives:
    - Earthquake magnitudes
- wealth distributions

finance

- networks like the WWW
- Sand pile displays Self-Organised Criticality:

Smallest inputs (a single grain) produce avalanches of all orders of magnitude

#### Extreme events are unlikely but not unusual! In other words:

In many systems, extreme events need no special "cause" or initialisation. They are inherently part of the system.

## **MODIFYING THE SAND PILE MODEL**

- This raises the following questions:
  - $\rightarrow$  Are weather extremes just natural variability?
  - $\rightarrow$  Can we somehow influence the occurrence of extreme events in our sand pile toy model?
- Note: One can make the sand pile model more realistic by
  - Building sand piles in two dimensions
  - Allowing for uneven (perhaps changing) ground
- However, in the case of a rain-fall model, one may **increase the evaporation**:

 $\rightarrow$  at each step add for instance 4 grains to the pile instead of 1.

## **MODIFYING THE SAND PILE MODEL**



#### **OVERVIEW**

1) What is climate attribution science?

2) Weather as complex phenomenon

3) How is it done in practice?

4) Conclusion and Outlook

## ATTRIBUTION OF EXTREME WEATHER TWO APPROACHES

Did anthropogenic climate change make an extreme weather event more likely / more severe?



Simulation and observation of weather extremes

## 1.) **PROBABILISTIC APPROACH** – procedure

Models are used to estimate the **probabilities** of occurrence of an event

 p1
 p0

 with human-caused climate changes
 VS.
 without these changes

 (FACTUAL WORLD)
 VS.
 (COUNTERFACTUAL WORLD)

Examples:  $\rightarrow$  simulate evolution of mean temperature in atmosphere with and without anthropogenic emissions

simulate occurrence of extreme rain events with and without additional water vapour in atmosphere


## 

#### 1.) **PROBABILISTIC APPROACH** – INTERPRETATION

Given  $p_1$  and  $p_0$ . What are their interpretation in terms of attribution science?

Two commonly used measures:

Risk Ratio  $RR = \frac{p_1}{p_0}$ 

Fraction of Attributable Risk  $FAR = 1 - \frac{p_0}{p_1}$  [Ref. C]

Example: Did we only experience a specific dice outcome only because one has manipulated it?

# I.) PROBABILISTIC APPROACH – INTERPRETATION

Risk Ratio 
$$RR = \frac{p_1}{p_0}$$
 Fraction of Attributable Risk  $FAR = 1 - \frac{p_0}{p_1}$ 

Example: Did we only experience a specific dice outcome only because one has manipulated it?
 C) For us relevant manipulation:

→ 
$$FAR = 1 - \frac{1/6}{3/6} = \frac{2}{3}$$
  
→  $RR = \frac{3/6}{1/6} = 3$ 

"Out of 3 events that happened in the factual world 2 would not have happened in the counterfactual one."

"Manipulating the dice increased the risk of getting a 4 by a factor of 3."

#### **1.) PROBABILISTIC APPROACH** – AN EXAMPLE

TASK: Attribution of the flood-inducing extreme precipitation in south Louisiana in August 2016



- repeat simulation with small changes in the initial conditions to estimate uncertainties and sensitivities
- combine many models and different studies to ensure the obtained result is not particularly sensitive to the definition of an event

[10]

#### **1.) PROBABILISTIC APPROACH** – AN EXAMPLE

• TASK: Attribution of the flood-inducing extreme precipitation in south Louisiana in August 2016



"In the most accurate analyses, the regional probability of 3-day extreme precipitation increases by more than a factor of 1.4 due to anthropogenic climate change." [Ref. D]



#### 2.) PATHWAY APPROACH - PROCEDURE

- NOW: Attribution of an individual weather event
- Schematic pathway of a hurricane:



too chaotic to simulate reliably





[11-16]

- Condition the simulation on location at which storm formed, wind directions, atmospheric pressure, ...
- Then ask: How would the event have played out in a counterfactual world?
- > How might its intensity have changed because of changes in SST or atmospheric humidity along its path?
- > If the hurricane made landfall, how was the coastal flooding increased by long-term sea level rise?

#### **2.) PATHWAY APPROACH** – AN EXAMPLE

- Attribution study from 2013: Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900
- Compared actual impacts of Hurricane Katrina in New Orleans
  VS. impacts of similar hypothetical hurricane occurring around 1900.
- Result:

"Surge simulations suggest that flood elevations would have been **15 to 60 % lower** around 1900 than the conditions observed in 2005.

This drastic change suggests that **significantly more flood damage** occurred in 2005 than would have occurred if sea level and climate conditions had been like those around 1900." [Ref. E]

#### **OVERVIEW**

1) What is climate attribution science?

2) Weather as complex phenomenon

3) How is it done in practice?

4) Conclusion and Outlook

#### **CONCLUDING REMARKS**

- Tough question: Is anthropogenic climate change to some extend responsible for extreme weather events?
- Climate Change does and will impact people, ecosystems and economy.
  To us it becomes concrete in extreme weather events.
- Fundamental Problem of Causal Inference: There is only one world! Key Challenge: How does one obtain the counterfactuals?
- → SIMULATIONS turn out to be extremely powerful!
- → Understanding the SCIENCE and mechanisms behind an event is thus the bread and butter of all attribution studies.

### THANK YOU FOR YOUR ATTENTION!

#### REFENCES

**[A]** K. Christensen, Nicholas R. Moloney; Complexity and Networks: Complexity from the book Complexity and Criticality, Imperial College Press, 2015, <u>https://doi.org/10.1142/p365</u>

**[B]** National Academies of Sciences, Engineering, and Medicine; Attribution of Extreme Weather Events in the Context of Climate Change, 2016, Washington, DC: The National Academies Press., e-print: <u>https://doi.org/10.17226/21852</u>

[C] A. Hannart, J. Pearl, F. E. L. Otto, P. Naveau, M. Ghi; Causal Counterfactual Theory For The Attribution Of Weather And Climate-Related Events, 2016, DOI:10.1175/BAMS-D-14-00034, e-print: <u>https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-14-00034.1</u>

[D] Van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S., Vecchi, G. A., Singh, R. K., Arrighi, J., and Cullen; Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change, 2017, Hydrol. Earth Syst. Sci., 21, 897–921, e-print: <a href="https://www.hydrol-earth-syst-sci.net/21/897/2017/hess-21-897-2017.pdf">https://www.hydrol-earth-syst-sci.net/21/897/2017/hess-21-897-2017.pdf</a>

[E] Jennifer L. Irish, Alison Sleath, Mary A. Cialone, Thomas R. Knutson, Robert E. Jensen; Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900, 2013, DOI 10.1007/s10584-013-1011-1, e-print: <u>https://www.climatecentral.org/outreach/alert-archive/IrishSleath\_etal2014.pdf</u>



#### **IMAGES FROM:**

[1] https://www.walesonline.co.uk/news/uk-news/spain-flooding-flights-travel-uk-16919971

- [2] https://www.forbes.com/sites/jimgorzelany/2016/01/21/winter-driving-101-how-not-to-get-stuck-in-snow/#6c34438030b7
- [3] <u>https://economictimes.indiatimes.com/news/politics-and-nation/government-ready-with-crisis-management-plan-for-</u>

drought/articleshow/69684018.cms?from=mdr

- [4] <u>https://calmatters.org/explainers/californias-worsening-wildfires-explained/</u>
- [5] https://www.cbsnews.com/news/hurricane-florence-north-carolina-passed-law-in-2012-climate-change-storms-more-damaging/
- [6] https://sciencestruck.com/water-cycle-project-ideas
- [7] <u>https://baden-wuerttemberg.nabu.de/umwelt-und-leben/basteln-forschen-spielen/kinderfragen-beantworten/teilzwei/21883.html</u>
- [8] http://home.uchicago.edu/~ahmedb/talks/ccny\_math.pdf
- [9] <u>https://slidebazaar.com/items/pareto-principle-powerpoint-template/</u>
- [10] https://www.cbsnews.com/pictures/deadly-flooding-in-louisiana/
- [11] <u>https://www.kissclipart.com/butterfly-outline-clipart-monarch-butterfly-clip-a-ny2gfs/</u>
- [12] <u>https://www.kissclipart.com/falling-leaves-clipart-autumn-leaf-color-twig-wl49y4/</u>
- [13] https://www.iconfinder.com/icons/2882343/leaves in wind pleasant weather spring season symbol spring winds weather icon
- [14] https://ya-webdesign.com/transparent450\_/drawing-detail-cloud.png
- [15] https://www.weather.gov/images/jetstream/synoptic/hi\_lo.png
- [16] https://thumbor.forbes.com/thumbor/711x509/https://specials-
- images.forbesimg.com/imageserve/5d72bcc244f2b2000803e282/960x0.jpg?fit=scale
- [17] https://wallpaperaccess.com/full/448244.jpg
- [18] https://www.vectorstock.com/royalty-free-vector/set-of-realistic-white-dice-isolated-vector-20320059

#### PETER LIPPMANN — CLIMATE ATTRIBUTION SCIENCE