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Fundamentals



Good Old Fashioned (Symbolic) Al

Focused on logical reasoning instead of
semantic cues.

The Al, in itself, is a bunch of rules which it uses
to arrive at a conclusion given a set of
predicates. But the system knows nothing
about the semantics of the rules/predicates.

In the following, we consider the scenario where
Carol works_at a restaurant as a waitress, Alice
orders a pizza.

Predicates would be:
works_at(restaurant,waitress, Carol)
orders(Alice, pizza)

A rule could say:
if works_at(restaurant,waitress, A) && orders(B,
food) — then serves(A, food, B)

Conclusion: Carol serves pizza to Alice.
serves(Carol,pizza,Alice)

But what does it mean to order a pizza?



| Am Devloper v
@iamdevloper

You say: "We added Al to our product"
| hear: "We added a bunch more IF
statements to our codebase"

2/10/17, 7:07 AM

434 RETWEETS 765 LIKES

« X

Symbolic Al is not exactly very popular these days...




Machine Learning: A Framework for Data-

Driven Al

The Big Idea: Learn Models from Data.

Example Problem: Given the number of years
spent in college and work experience, predict if
a person makes more or less than $50K/year.

Given: Some training data obtained by polling
(say) 100 individuals whether they make more
than 50K a year and the time they've spent in
college and at work.
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Taxonomy of Machine Learning Algorithms

Machine Learning




Supervised vs. Unsupervised Learning

Unsupervised Learning Supervised Learning
The label (i.e. the knowledge if the person The label is given, and we require the model to
makes more than 50K a year) is not known, but predict a label given new input.

we could still find patterns in the data, e.g. by
clustering.



Classification vs. Regression Problems

Regression Classification

The label is a continuous number, specifying The label is categorical, i.e. it says whether a
exactly how much the person makes. person makes more or less than 50K.



Neural Networks
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The Perceptron as ||
the Building Blocks

of Neural Networks

The perceptron is the simplest
possible neural network, also often

called a neuron. Nonlinearity

Mathematically, it can be expressed as
a scalar product between two vectors,
followed by an application of some
nonlinear function.




Stacking
Perceptrons to
make a Layer

A layer in a neural network is a stack
of perceptrons.

Mathematically, it can be expressed as
a matrix multiplication followed by the
elementwise application of a nonlinear
function.
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Composing Layers
to make a MLP

Multiple layers can be composed to
make a multi-layered perceptron, or
simply a fully-connected deep neural
network.

Input

Prediction

A multi-layer perceptron of 3 layers with (3, 2, 1) neurons.



Automatic
Differentiation

Make Networks Train Again!

Production neural networks often
have tens of millions of weights and
bias parameters. Automatic
Differentiation (or
backpropagation) is crucial for
training.



Computational
Graph

A computational graph is a graphical
way of representing a mathematical
expression.

Why do we care? Neural networks can
be expressed as computational
graphs.

= f((a * b) +



Forward &
Backward Pass

A forward pass through a node in a
computational graph is the same as
evaluating it for a given input.

A backward pass through a node
means to evaluate the gradient of
some dummy function with respect to
the input of the node from the gradient
of the same function with respect to
the output of the node.

The gradients of this dummy function
w.r.t to a given variable is called the
delta of the variable.

Forward

Backward



Forward &
Backward Pass

A forward pass through a node in a
computational graph is the same as
evaluating it for a given input.

A backward pass, on the other hand, is
equivalent to computing the gradient
of the output with respect to the input.
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AutoDiff and
Neural Networks

Automatic differentiation can be used
to compute the gradient of a loss
function with respect to the
parameters of the network.

Input

Prediction

N
/

Target

Loss = (1/2) * (Prediction - Target)?
d(Prediction) = Prediction - Target

d(w) = ..., d(b) = ...



Optimization with
Gradient Descent

We have the gradients w.r.t the cost
function.

We use this gradient to descent into a
(local) minimum of the loss function.

Loss Function

J(w)

\ _— Gradient

Global cost minimum

__ei// Jmin(w)
>
w
Parameter

w — W - learning_rate * dw



But the optimization problem could look like anything between:

f(X,Y)

and

http://descriptor.blogspot.de/2012/11/non-convex-function-rastrigin.html
https://www.cs.bham.ac.uk/research/projects/ecb/displayDataset.php?id=150

The optimization problem is anything but easy.



http://descriptor.blogspot.de/2012/11/non-convex-function-rastrigin.html
https://www.cs.bham.ac.uk/research/projects/ecb/displayDataset.php?id=150

Sophisticated Gradient-Based Optimizers do tend to help...

SGD — SGD
Momentum — Momentum
NAG — NAG
Adagrad — Adagrad
- Adadelta ~ Adadelta
— Rmsprop Rmsprop

-1.0

Click Me:
http://imgur.com/a/Hqolp



http://imgur.com/a/Hqolp

Live Demo



Convolutional
Neural Networks



The Idea: Local Connectivity

In fully-connected layers: a

==
perceptron sees all Inputs. ‘ ‘ 6 ‘ ‘ 6 ‘ ‘ ‘

In convolutional layers: perceptrons *

only see a neighborhood of the input :
at a time.

http://colah.qgithub.i ts/2014-07-Conv-Nets-Modular,


http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

The Idea: Weight Sharing

i

A A

The perceptron layer A is shared between all neighborhoods of the input.



http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

The Idea: in 2D

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

The Idea: Max-Pooling

Max pooling layers are often used to aggregate spatial context.

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Popular Network Architectures

Inception-v4
80 - :
Inception-v3 ‘ : " ResNet-152
5 |ResNet-50 . : ' VGG-16 VGG-19
T ResNet-101
. ResNet-34
= 70 ” ResNet-18
=
@ GoogLeNet
5 ENEt
§ 65
"g‘L o BN-NIN
"~ 60 4 5M 35M  65M  95M  125M  155M
BMN-AlexMNet
55 AlexNet
50 . . . . . . , .
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

https://culurciello.github.io/tech/2016/06/04/nets.html



https://culurciello.github.io/tech/2016/06/04/nets.html

Live Demo



CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2017

i N
S ! |
— airplane
. — horse
- ¢ |
.|_ — deer
“ - ship
[ |

*This network is running live in your browser

Learn more about Convolutional Neural Networks



Conv Nets: A Modular

Perspective

Posted on July 8, 2014

neural networks, deep learning, convolutional neural networks, modular neural networks

Learn more about Convolutional Neural Networks




Recurrent
Neural Networks



The Idea: Loops

as an input in the next time step.

Recurrent Neural Networks have T
. loops - they are fed their own output A

http: lah.qithub.i ts/2015-08-Understanding-LSTM


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The Idea: Unrolling a RNN in time

h) h O
! 1 1
A A [ A -] A
6 ® © © -

A RNN can be unrolled in time to obtain a feedforward neural network.

>

h)
!
A
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The Idea: What happens in a RNN Cell stays in a RNN cell.

Schematic diagram of a Long Short-Term Memory Network.

http://colah.github.io/posts/2015-08-Understanding-LSTMs,



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Applications



II.) Applications




Specify some task...

desired
thing

predicted
thing

39

input
e.g. picture, video,
waveform, text, ...




Specify some task...

desired
thing

train I
predicted
thing

40

input
e.g. picture, video,
waveform, text, ...




Image Classification

CAT

feature map

e.g. 7x7x512

cross entropy
loss

41




Localisation

feature map

e.g. 7x7x512
X,Y,w,h

L2-distance




Localisation

CAT

feature map

e.g. 7x7x512

X,Y,w,h

L2-distance

43




Detection

feature map
e.g. 7x7x512

NMS & thresholding

e.g. YOLO - Redmon et al, 2016

44




Detection

feature map
e.g. 7x7x512

NMS & thresholding

e.g. YOLO - Redmon et al, 2016

45




Detection

dog

bicycle

car

dining table

feature map
e.g. 7x7x512

NMS & thresholding

e.g. YOLO - Redmon et al, 2016
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Detection

bicycle
car
dining table

feature map
e.g. 7x7x512

NMS & thresholding

e.g. YOLO - Redmon et al, 2016
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Detection

= (og

bicycle

car

dining table

feature map
e.g. 7x7x512

NMS & thresholding

e.g. YOLO - Redmon et al, 2016

48




Detection

Redmon
et al, 2017

pjreddie.com/
darknet/yolo/

49



Reinforcement Learning

\

C NN fully future reward | = ACTIONS
connected

estimation (probabilities)
layers

Q-learning

left, up, shoot,
NO-ORP...

Q*(S,G) = ma’Xﬂ'E[Rt‘St = S5,a; = Q,T

Mnih et al, 2013

50
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gym.openai.com

credit: video025500

Lukas Palm




Image Captioning

feature map

e.g. 7x7x512

0 = argmax (IZ) log p(y|; 6)
Y




Image Captioning

“straw” “hat”

738

Yt

oh

hy

ha:

It

START “straw” “hat”

feature map

e.g. 7x7x512

0 = argmax (IZ) log p(y|; 6)
Y

53




Image Captioning

"little girl is eating piece of cake." ‘baseball player is throwing ball
in game.”

‘a young boy is holding a ‘a cat is sitting on a couch with a
baseball bat " remote control."

“woman is holding bunch of
bananas.

‘a woman holding a teddy bear in
front of a mirror”

Karpathy et al, 2015

‘black cat is sitting on top of
suitcase.”

o ————————SS—SSE ]
‘a horse is standing in the middle
of a road”

54



Dense Image

— il
woman wearing a black shirt. teddy
bear is brown. chair is black. glass of

e. table is brown. woman with
brown hair. paper on the table.

A man and a woman sitting
at a table with a cake.

Johnson et al, 2015

Captioning and Attention

55




Dense Image

woman wearing a black shirt .L,Ud\
bear is brown. chair is black.
wine. table is brown. woman W|th
brown hair. paper on the table.

A man and a woman sitting
at a table with a cake.

Johnson et al, 2015

Captlonmg and Attention

a liule girl sitting on a bench holding an
umbrella.

a yellow plate lopped with meat and
broccoli.

two b1rds birds sitting on top of a tree branch.

Lu et al, 2016

56




Dense Image Captioning and Attention

woman wearing a black shirt. teddy
bear is | chair is black.

table is brown. woman with
brown hair. paper on the table.

A man and a woman sitting
at a table with a cake.

Johnson et al, 2015

-

a liule girl sitting on a ben d 'Lg

umbrella.

o =

two birds sitting on top of a tr;oehﬂmch.

Lu et al, 2016

o o

What color are Answer: green
the bananas ?

Did the player hit

the ball ?
Socher, 2016 youtube.com/watch?
v=0Gk1v1jQITw

Answer: yes



RNNs: Generating Algebraic Geometry

3

X

stacks.math.

columbia.edu/
16MB LaTex file

58



RNNs: Generating Algebraic Geometry

T

y
!

stacks.math.
columbia.edu/

16MB LaTex file

Proof. Omitted. |

Lemma 0.1. Let C be a set of the construetion.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
Op, = 0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox(F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of @-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77. (]
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let 4 C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

X sV sV sV AV gV aX
be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox (U) which is locally of
finite type. O

This since F € F and x € G the diagram

S§—»

l

3

Oy

N

’
=a —s

gor,

=0 ——a X

Spec(Ky) Morse  d(Ox,,,.G)

is a limit. Then @ is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

o

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of I, [m]
Proof. This is clear that G is a finite presentation, see Lemmas 77,

A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxo — Fz -UOxpu) — 0%;0x,(0%,)
is an isomorphism of covering of Qy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition 77 and we can filtered set of
presentations of a scheme Oy -algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. m}

If F is a finite direct sum Oy, is a closed immersion, see Lemma 77, This is a
sequence of F is a similar morphism.

karpathy.github.io/2015/05/21/rnn-effectiveness/




Neural Style
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Gatys et al, 2015
deepart.ig0




Econtent(ﬁ) z, l) = (szl = RZJ)Q Gatys et al, 2015
0. deepart. 181




Econtent(ﬁ, z, l) = (szl] = P,LZJ)Q Gatys et al, 2015
0. deepart. 182
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ast_Multi
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tensorflo

Dumoulin et63

al, 2016
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Deep Dream

k.'

github.com/google/deepdream

net.forward(end=end) def objective L2(dst):

: . ;
objective(dst) ———p dst.diff[:] = dst.data

net.backward(start=end) 65




Deep Dream

"Admiral Dog!"

"The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

=t R T = TR github.com/google/deepdream

objective(dst) ———p : ==
net.backward(start=end) dst.diff[:] = dst.data

def objective L2(dst):

66




Deep Dream

youtube.com/
watch?
v=DgPaCWJL7XI

github.com/
samim23/Deep
DreamAnim

67



Super Resolution

8 x 8 input ground truth

pG(y l X) m
' Dahl et
g al’ 2017




Super Resolution

8 x 8 input 32 x 32 samples ground truth

. prior network
\ (PixelCNN)

. HR logits
image 4| H H H H }ﬁ

Oladl '
.
image

conditioning
network (CNN)

Dahl et
al, 2017

rdtdrd

69



(s

q ¢ Enhance that death sphere

Super Resolution o

8 x 8 input ground truth

11 )
i B
i Fi

® »
Thats all the resolution §
Y we have, making it
{ vigger deesnt make it  FEVA <1 )
{

Dahl et
al, 2017




Generative Adversarial Networks

Real
Samples
pdata [
Latent
Space
— Xreal
4).\?\)._, IsD
5 ‘. Correct?
® . .
¥
G Xfake
p,(2) ——P—
Z G " Generated
enerator Fake : |
Samples Goodfellow
§ ' : et al, 2014
e b e TUTIE TTATNTS

Fine Tune Training

kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html 7 1



Generative Adversarial Networks

Real
Samples .
min max V (G, D)

Fr G D

- V(G,D)=_ E [og(Dx)]+ E [log(l— D(G()))

Latent pdata X~ Pdata z~pz(2)
Space
—_ Xreal
4).\7\)._, IsD
5 ‘. Correct?
o | . P
X ¥
G fake
p.(2) — P
Z G " Generated
enerator Fake : |
Samples Goodfellow
! ' etal, 2014
e b e AUTIE TTATING

Fine Tune Training

kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html 7 2



GAN - Results

Smiling woman Neutral woman Neutral man

Samples
from the <
model




GAN - Vector Arithmetic

Smiling woman Neutral woman Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic

74




GAN - Vector Arithmetic

Smiling woman Neutral woman Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic




GAN - Vector Arithmetic

Glasses man No glasses man No glasses woman

Radford et al,
ICLR 2016

76




GAN - Vector Arithmetic

Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al,
ICLR 2016




BEGAN: Boundary Equilibrium GAN

train D & G on celebrity faces

find z that matches new
images

linear interpolation in latent
space

Berthelot et al, 2017
78



BEGAN: Boundary Equilibrium GAN

train D & G on celebrity faces

find z that matches new
images

linear interpolation in latent
space

Berthelot et al, 2017
79



Fooling CNNs

correct +distort ostrich
Szegedy et al, 2014

80




Fooling CNNs

correct +distort ostrich
Szegedy et al, 2014
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Foollng CNNs

A
/ : i
[ g poraun | s | — oo — o ]

------ { ' it
------ o I

{
------ 'I -
_______

_____

correct +distort ostrich
Szegedy et al, 2014

i

Nguyen et al, 2015
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peacock ‘

- -
- . -
- = -
-0 = = 4
- o -
- o = o
- o = -
- =N |
- = = -
- - -

correct +distort ostrich [_veomawr | remaccows | poscocc | amcanorey ]
Szegedy et al, 2014 Nguyen et al, 2015 83
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