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Fundamentals



Good Old Fashioned (Symbolic) AI

Focused on logical reasoning instead of 
semantic cues. 

The AI, in itself, is a bunch of rules which it uses 
to arrive at a conclusion given a set of 
predicates. But the system knows nothing 
about the semantics of the rules/predicates. 

In the following, we consider the scenario where 
Carol works_at a restaurant as a waitress, Alice 
orders a pizza.
 

Predicates would be:
works_at(restaurant,waitress, Carol)
orders(Alice, pizza)

A rule could say: 
if works_at(restaurant,waitress, A) && orders(B, 
food) → then serves(A, food, B)

Conclusion: Carol serves pizza to Alice.
serves(Carol,pizza,Alice)

But what does it mean to order a pizza? 



Symbolic AI is not exactly very popular these days...



Machine Learning: A Framework for Data-
Driven AI

The Big Idea: Learn Models from Data. 

Example Problem: Given the number of years 
spent in college and work experience, predict if 
a person makes more or less than $50K/year. 

Given: Some training data obtained by polling 
(say) 100 individuals whether they make more 
than 50K a year and the time they’ve spent in 
college and at work. 
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Taxonomy of Machine Learning Algorithms

Machine Learning

Unsupervised Supervised Reinforcement

Classification Regression



Supervised vs. Unsupervised Learning

Unsupervised Learning

The label (i.e. the knowledge if the person 
makes more than 50K a year) is not known, but 
we could still find patterns in the data, e.g. by 
clustering. 

Supervised Learning

The label is given, and we require the model to 
predict a label given new input. 



Classification vs. Regression Problems

Regression

The label is a continuous number, specifying 
exactly how much the person makes.

Classification

The label is categorical, i.e. it says whether a 
person makes more or less than 50K. 



Neural Networks



They’ve been around 
for a while now...

Frank Rosenblatt and Colleague working on the Mark 1 Perceptron in the 
late 1950s.



The Perceptron as 
the Building Blocks 
of Neural Networks

The perceptron is the simplest 
possible neural network, also often 
called a neuron. 

Mathematically, it can be expressed as 
a scalar product between two vectors, 
followed by an application of some 
nonlinear function. 
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Stacking 
Perceptrons to 
make a Layer

A layer in a neural network is a stack 
of perceptrons. 

Mathematically, it can be expressed as 
a matrix multiplication followed by the 
elementwise application of a nonlinear 
function.
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Composing Layers 
to make a MLP

Multiple layers can be composed to 
make a multi-layered perceptron, or 
simply a fully-connected deep neural 
network.
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A multi-layer perceptron of 3 layers with (3, 2, 1) neurons. 



Automatic 
Differentiation

Production neural networks often 
have tens of millions of weights and 
bias parameters. Automatic 
Differentiation (or 
backpropagation) is crucial for 
training. 

Make Networks Train Again! 



Computational 
Graph

A computational graph is a graphical 
way of representing a mathematical 
expression. 

Why do we care? Neural networks can 
be expressed as computational 
graphs.
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Forward & 
Backward Pass

A forward pass through a node in a 
computational graph is the same as 
evaluating it for a given input. 

A backward pass through a node 
means to evaluate the gradient of 
some dummy function with respect to 
the input of the node from the gradient 
of the same function with respect to 
the output of the node. 

The gradients of this dummy function 
w.r.t to a given variable is called the 
delta of the variable.

f(x) yx f(x) dydx

Forward Backward



Forward & 
Backward Pass

A forward pass through a node in a 
computational graph is the same as 
evaluating it for a given input. 

A backward pass, on the other hand, is 
equivalent to computing the gradient 
of the output with respect to the input.
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AutoDiff and 
Neural Networks

Automatic differentiation can be used 
to compute the gradient of a loss 
function with respect to the 
parameters of the network. 

x1

x2

Input Prediction

Target

Loss

Loss = (1/2) * (Prediction - Target)2

d(Prediction) = Prediction - Target

d(w) = ..., d(b) = ...



Optimization with 
Gradient Descent

We have the gradients w.r.t the cost 
function. 

We use this gradient to descent into a 
(local) minimum of the loss function. 
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The optimization problem is anything but easy. 

But the optimization problem could look like anything between:

and

http://descriptor.blogspot.de/2012/11/non-convex-function-rastrigin.html
https://www.cs.bham.ac.uk/research/projects/ecb/displayDataset.php?id=150

http://descriptor.blogspot.de/2012/11/non-convex-function-rastrigin.html
https://www.cs.bham.ac.uk/research/projects/ecb/displayDataset.php?id=150


Click Me: 
http://imgur.com/a/Hqolp 

Sophisticated Gradient-Based Optimizers do tend to help...

http://imgur.com/a/Hqolp


Live Demo
http://playground.tensorflow.org/



Convolutional 
Neural Networks



The Idea: Local Connectivity

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 

In fully-connected layers: a 
perceptron sees all inputs. 

In convolutional layers: perceptrons 
only see a neighborhood of the input 

at a time. 

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


The Idea: Weight Sharing

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 

The perceptron layer A is shared between all neighborhoods of the input. 

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


The Idea: in 2D

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


The Idea: Max-Pooling

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 

Max pooling layers are often used to aggregate spatial context. 

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


The Idea: Implement with nD Convolutions

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


Popular Network Architectures

https://culurciello.github.io/tech/2016/06/04/nets.html

https://culurciello.github.io/tech/2016/06/04/nets.html


Live Demo



Learn more about Convolutional Neural Networks



Learn more about Convolutional Neural Networks



Recurrent 
Neural Networks



The Idea: Loops

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Recurrent Neural Networks have 
loops - they are fed their own output 

as an input in the next time step. 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


The Idea: Unrolling a RNN in time

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

A RNN can be unrolled in time to obtain a feedforward neural network.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


The Idea: What happens in a RNN Cell stays in a RNN cell.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Schematic diagram of a Long Short-Term Memory Network.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Applications



II.) Applications
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Specify some task...
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Image Classification
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Localisation
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Localisation
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Detection 
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(up to 90 frames/s)
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7x7 Classes 
+

7x7 B*(x,y,w,h,c)

e.g. YOLO - Redmon et al, 2016

NMS & thresholding
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Detection 
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Detection 
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Detection
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Redmon 
et al, 2017

pjreddie.com/
darknet/yolo/



Reinforcement Learning
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Flappy Bird
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gym.openai.com

credit: 
Lukas Palm



Image Captioning
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Image Captioning
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Image Captioning
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Karpathy et al, 2015



Dense Image Captioning and Attention

55Johnson et al, 2015



Dense Image Captioning and Attention

56Johnson et al, 2015 Lu et al, 2016



Dense Image Captioning and Attention

57Johnson et al, 2015 Lu et al, 2016 Socher, 2016 youtube.com/watch?
v=oGk1v1jQITw



RNNs: Generating Algebraic Geometry 
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stacks.math.
columbia.edu/
  16MB LaTex file



RNNs: Generating Algebraic Geometry 
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stacks.math.
columbia.edu/
  16MB LaTex file karpathy.github.io/2015/05/21/rnn-effectiveness/



Neural Style
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Gatys et al, 2015
deepart.io



Neural Style
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Neural Style
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Gatys et al, 2015
deepart.io



Neural Style - Interpolation
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Deep Dream
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inception 4c/outputoriginal image

github.com/google/deepdream



Deep Dream
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inception 4c/outputoriginal image

github.com/google/deepdream



Deep Dream
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youtube.com/ 
watch?
v=DgPaCWJL7XI

github.com/  
samim23/Deep 
DreamAnim 



Super Resolution
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Dahl et 
al, 2017



Super Resolution

69

Dahl et 
al, 2017



Super Resolution
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Dahl et 
al, 2017



Generative Adversarial Networks

71kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

xreal

xfake

pz(z)

pdata

z
Goodfellow 
et al, 2014



Generative Adversarial Networks

72kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
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GAN - Results
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GAN - Vector Arithmetic
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GAN - Vector Arithmetic
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GAN - Vector Arithmetic
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GAN - Vector Arithmetic
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train D & G on celebrity faces

find z that matches new 
images

linear interpolation in latent 
space

BEGAN: Boundary Equilibrium GAN

78
Berthelot et al, 2017
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Fooling CNNs

80Szegedy et al, 2014



Fooling CNNs

81Szegedy et al, 2014



Fooling CNNs

82Szegedy et al, 2014 Nguyen et al, 2015



Fooling CNNs

83Szegedy et al, 2014 Nguyen et al, 2015
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