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The Game

Image 1: [2], Image 2: [3], Image 3: [4]
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Timeline

1952 — computer masters Tic-Tac-Toe

1994 — computer masters Checkers

1997 — IBM’s Deep Blue defeats Garry Kasparov in Chess
2011 — IBM’s Watson defeats Jeopardy champions

2014 — Google algorithms learn to play Atari games

2015 — Wikipedia: "Thus, it is very unlikely that it will be possible to
program a reasonably fast algorithm for playing the Go endgame
flawlessly, let alone the whole Go game.”

2015 — Google's AlphaGo defeats Fan Hui (2-dan professional) in Go
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Timeline

e e

+0,2 AlphaGo

"This is the first time that a computer program
has defeated a human professional player in the
full-sized game of Go, a feat previously thought
to be at least a decade away.”

— Silver et al., 2016

Figure: David Silver

Image 1: [5], Image 2: [6]
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Overview

€ The Game of Go
@ Go Basics
@ Complexity of Go

© The Architecture of AlphaGo
@ Monte Carlo Tree Search
@ Policy and Value Networks
@ Combining Neural Networks with MCTS
@ Playing Strength Evaluation

© AlphaGo vs Lee Sedol
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Go Basics
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Complexity of Go

Why is Go so hard?

Board size usually 19x19

Almost every move is legal

Average branching factor of Go: 250
Amount of possible game states: 10171 (Chess: 10%3)
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Complexity of Go

breadth depth

Tic-Tac-Toe 4 9
Checkers 2.8 70
Chess 35 80
Go 250 150

Table: Game tree's breadths and depths

— For Go: b9 ~ 10399
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Reducing Search Space

@ Reduce depth: position evaluation

e Truncate the search tree at state s and replace subtree below s by an
approximate value function v(s) ~ v*(s)

@ Reduce breadth: sampling actions from a policy
o Policy p(a|s): probability distribution over possible moves a in state s
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Monte Carlo Tree Search

@ Use Monte Carlo rollouts to estimate the value of each state in a
search tree

@ Policy during search improved over time by selecting children with
higher values

@ Policy converges to optimal play asymptotically
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Rollout policy p,

@ Training data: 8M board positions from games between human expert
players

@ Accuracy: 24.2%

@ Time required to select an action: 2us
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Features (Rollout Policy p;)

Feature # of patterns  Description

Response 1 Whether move matches one or more response pattern features
Save atari I Move saves stone(s) from capture

Neighbour 8 Move is 8-connected to previous move

Nakade 8192 Move matches a nakade pattern at captured stone

Response pattern 32207 Move matches 12-point diamond pattern near previous move
Non-response pattern 69338 Move matches 3 x 3 pattern around move

Self-atari 1 Move allows stones to be captured

Last move distance 34 Manhattan distance to previous two moves

Non-response pattern 32207 Move matches 12-point diamond pattern centred around move

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, >3)

at each intersection of the pattern.

Table: [1]
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Supervised Learning Policy Network p,

@ Training data: 30M board positions from games

Pop @ls)
between human expert players

@ Stochastic gradient ascent to maximize likelihood of L. v
selecting the same move as the human did %

@ Architecture: 13-layer network

@ Accuracy: 55.7% vs 44.4% (state-of-the-art)
(55.7% using board position and move history only)

@ Time required to select an action: 3ms

Image: [1]
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Reinforcement Learning Policy Network p,

@ Goal: Improve policy by policy gradient reinforcement learning
Bias towards actually winning games rather than predictive accuracy

@ Architecture: ldentical to SL policy network
weight initialization p = o

@ Training: games between current policy network and a randomly
selected previous iteration of itself

@ Reward function only rewards for winning a game

@ Performance:

o 80% of games won against SL policy network

o 85% of games won against Pachi (using no search at all)

o state-of-the-art, based on SL of convolutional networks, only won 11%
of games against Pachi
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Value Network vy

Goal: Estimate a value function vP(s) that predicts
the outcome from position s v )

Ideally: optimal value function under perfect play v*(s)

Instead: approximate value function using value
network vy(s)

Architecture: similar to policy network, however,
output is a single prediction instead of a probability
distribution

Training: state-outcome pairs (s, z) using SGD and
MSE

Image: [1]
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Feature Planes (Policy Network and Value Network)

Feature # of planes  Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1  Whether a move at this point is a successful ladder escape
Sensibleness 1  Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

Table: [1]
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Training the Value Network

@ Naive approach:

e Predicting game outcomes from data consisting of complete games

e Problem: Successive positions are strongly correlated
o MSE = Train: 0.19 / Test: 0.37

@ Actual approach:

o Generate self-play data set (30M distinct positions)
Each position sampled from a separate game

Q
e Games played between RL policy network and itself until termination
o MSE = Train: 0.226 / Test: 0.234
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Evaluation Accuracies
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Putting It All Together

Rollout policy SL policy network RL policy network Value network
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Image: [1]
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Searching with Policy and Value Networks

a Selection b Expansion c Evaluation d Backup
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Image: [1]
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Searching with Policy and Value Networks
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Searching with Policy and Value Networks
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AlphaGo's Playing Strength
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Example: How AlphaGo Selects Its Moves

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
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Why Use Policy and Value Networks?

@ Value network and policy network work hand in hand

@ Value network alone:

e Would have to exhaustive compare the value of all children
= Policy network predicts best move, narrows the search space

@ Policy network alone:

e Unable to directly compare nodes in different parts of the tree

e Value network gives an estimate of winner as if the game was played
according to policy network
= Values direct later searches to moves that are actually evaluated to
be better
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Why Combine Neural Networks with MCTS?

@ How does MCTS improve a Policy Network?

o Recall: MCTS (Pachi) won 15% of games against Policy Network

e Policy Network is just a prediction

e MCTS and Monte Carlo rollouts help the policy adjust towards moves
that are actually evaluated to be good

@ How doe Neural Networks improve MCTS?

e The Slow Policy guides tree exploration more intelligently
o The Fast Policy guides simulations more intelligently
e Value Network and Simulation Value are complementary
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AlphaGo vs Lee Sedol

Lee Sedo!

% B

ogle DeepMind
Challenge Match

8 - 15 March 2016
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AlphaGo vs Lee Sedol

WHO WOULD WIN?
Iﬁ_a:
AlphaGo

A highly intelligent world-

class Go champion with A poorly understood
years of experience who pile of linear algebra
won 18 international

awards
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Game 2 — Move 37 (AlphaGo)
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Game 2 — Move 37 (AlphaGo)

"It's not a human move, |'ve never seen a
human play this move. So beautiful. Beautiful.
Beautiful.”

— Fan Hui (2p)

Image: [10]
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Game 4 — Move 78 (Lee Sedol) — "God's Touch”
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AlphaGo Documentary
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Thank you for your attention!
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