Mastering the game of Go with deep neural networks and tree search (Silver et al., 2016)

Florian Brunner

University of Heidelberg

sc223@uni-heidelberg.de

July 4, 2019
The Game of Go

Image 1: [2], Image 2: [3], Image 3: [4]
Timeline

- 1952 – computer masters Tic-Tac-Toe
- 1994 – computer masters Checkers
- 1997 – IBM’s Deep Blue defeats Garry Kasparov in Chess
- 2011 – IBM’s Watson defeats Jeopardy champions
- 2014 – Google algorithms learn to play Atari games
- 2015 – Wikipedia: "Thus, it is very unlikely that it will be possible to program a reasonably fast algorithm for playing the Go endgame flawlessly, let alone the whole Go game."
- 2015 – Google’s AlphaGo defeats Fan Hui (2-dan professional) in Go
"This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away."

– Silver et al., 2016

Figure: David Silver

Image 1: [5], Image 2: [6]
Overview

1. The Game of Go
 - Go Basics
 - Complexity of Go

2. The Architecture of AlphaGo
 - Monte Carlo Tree Search
 - Policy and Value Networks
 - Combining Neural Networks with MCTS
 - Playing Strength Evaluation

3. AlphaGo vs Lee Sedol
Go Basics

Image [7]
Go Basics
Go Basics

Image [7]

Florian Brunner

AlphaGo

July 4, 2019
Go Basics

Image [7]

Florian Brunner

AlphaGo

July 4, 2019
Why is Go so hard?

- Board size usually 19x19
- Almost every move is legal
- Average branching factor of Go: 250
- Amount of possible game states: 10^{171} (Chess: 10^{43})
Complexity of Go

<table>
<thead>
<tr>
<th></th>
<th>breadth</th>
<th>depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tic-Tac-Toe</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Checkers</td>
<td>2.8</td>
<td>70</td>
</tr>
<tr>
<td>Chess</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>Go</td>
<td>250</td>
<td>150</td>
</tr>
</tbody>
</table>

Table: Game tree’s breadths and depths

⇒ For Go: $b^d \approx 10^{360}$
Reducing Search Space

- **Reduce depth:** position evaluation
 - Truncate the search tree at state s and replace subtree below s by an approximate value function $v(s) \approx v^*(s)$

- **Reduce breadth:** sampling actions from a policy
 - Policy $p(a|s)$: probability distribution over possible moves a in state s
Monte Carlo Tree Search

- Use Monte Carlo rollouts to estimate the value of each state in a search tree
- Policy during search improved over time by selecting children with higher values
- Policy converges to optimal play asymptotically
Rollout policy p_{π}

- Training data: 8M board positions from games between human expert players
- Accuracy: 24.2%
- Time required to select an action: 2\(\mu s\)
Features (Rollout Policy p_π)

<table>
<thead>
<tr>
<th>Feature</th>
<th># of patterns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>1</td>
<td>Whether move matches one or more response pattern features</td>
</tr>
<tr>
<td>Save atari</td>
<td>1</td>
<td>Move saves stone(s) from capture</td>
</tr>
<tr>
<td>Neighbour</td>
<td>8</td>
<td>Move is 8-connected to previous move</td>
</tr>
<tr>
<td>Nakade</td>
<td>8192</td>
<td>Move matches a nakade pattern at captured stone</td>
</tr>
<tr>
<td>Response pattern</td>
<td>32207</td>
<td>Move matches 12-point diamond pattern near previous move</td>
</tr>
<tr>
<td>Non-response pattern</td>
<td>69338</td>
<td>Move matches 3×3 pattern around move</td>
</tr>
<tr>
<td>Self-atari</td>
<td>1</td>
<td>Move allows stones to be captured</td>
</tr>
<tr>
<td>Last move distance</td>
<td>34</td>
<td>Manhattan distance to previous two moves</td>
</tr>
<tr>
<td>Non-response pattern</td>
<td>32207</td>
<td>Move matches 12-point diamond pattern centred around move</td>
</tr>
</tbody>
</table>

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, >3) at each intersection of the pattern.
Supervised Learning Policy Network p_σ

- Training data: 30M board positions from games between human expert players
- Stochastic gradient ascent to maximize likelihood of selecting the same move as the human did
- Architecture: 13-layer network
- Accuracy: 55.7% vs 44.4% (state-of-the-art) (55.7% using board position and move history only)
- Time required to select an action: 3ms

Image: [1]
Reinforcement Learning Policy Network p_ρ

- **Goal:** Improve policy by policy gradient reinforcement learning
 Bias towards actually winning games rather than predictive accuracy

- **Architecture:** Identical to SL policy network
 weight initialization $\rho = \sigma$

- **Training:** games between current policy network and a randomly selected previous iteration of itself

- **Reward function only rewards for winning a game**

- **Performance:**
 - 80% of games won against SL policy network
 - 85% of games won against Pachi (using no search at all)
 - state-of-the-art, based on SL of convolutional networks, only won 11% of games against Pachi
Value Network v_θ

- **Goal:** Estimate a value function $v^P(s)$ that predicts the outcome from position s
- **Ideally:** optimal value function under perfect play $v^*(s)$
- **Instead:** approximate value function using value network $v_\theta(s)$
- **Architecture:** similar to policy network, however, output is a single prediction instead of a probability distribution
- **Training:** state-outcome pairs (s, z) using SGD and MSE

Image: [1]
Feature Planes (Policy Network and Value Network)

<table>
<thead>
<tr>
<th>Feature</th>
<th># of planes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone colour</td>
<td>3</td>
<td>Player stone / opponent stone / empty</td>
</tr>
<tr>
<td>Ones</td>
<td>1</td>
<td>A constant plane filled with 1</td>
</tr>
<tr>
<td>Turns since</td>
<td>8</td>
<td>How many turns since a move was played</td>
</tr>
<tr>
<td>Liberties</td>
<td>8</td>
<td>Number of liberties (empty adjacent points)</td>
</tr>
<tr>
<td>Capture size</td>
<td>8</td>
<td>How many opponent stones would be captured</td>
</tr>
<tr>
<td>Self-atari size</td>
<td>8</td>
<td>How many of own stones would be captured</td>
</tr>
<tr>
<td>Liberties after move</td>
<td>8</td>
<td>Number of liberties after this move is played</td>
</tr>
<tr>
<td>Ladder capture</td>
<td>1</td>
<td>Whether a move at this point is a successful ladder capture</td>
</tr>
<tr>
<td>Ladder escape</td>
<td>1</td>
<td>Whether a move at this point is a successful ladder escape</td>
</tr>
<tr>
<td>Sensibleness</td>
<td>1</td>
<td>Whether a move is legal and does not fill its own eyes</td>
</tr>
<tr>
<td>Zeros</td>
<td>1</td>
<td>A constant plane filled with 0</td>
</tr>
<tr>
<td>Player color</td>
<td>1</td>
<td>Whether current player is black</td>
</tr>
</tbody>
</table>

Feature planes used by the policy network (all but last feature) and value network (all features).
Training the Value Network

- **Naive approach:**
 - Predicting game outcomes from data consisting of complete games
 - Problem: Successive positions are strongly correlated
 - MSE ⇒ Train: 0.19 / Test: 0.37

- **Actual approach:**
 - Generate self-play data set (30M distinct positions)
 - Each position sampled from a separate game
 - Games played between RL policy network and itself until termination
 - MSE ⇒ Train: 0.226 / Test: 0.234
Evaluation Accuracies

![Graph showing evaluation accuracies for different policies.

- Uniform random rollout policy
- Fast rollout policy
- Value network
- SL policy network
- RL policy network

Mean squared error on expert games vs. move number.

Image: [1]
Putting It All Together

Rollout policy SL policy network RL policy network Value network

p_π p_{σ} p_ρ v_{θ}

Policy gradient

Human expert positions Self-play positions

Data

Neural network

Image: [1]
Action selection at timestep t

$$a_t = \arg\max_a (Q(s_t, a) + u(s_t, a))$$

$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$
Searching with Policy and Value Networks

Leaf evaluation

\[V(S_L) = (1 - \lambda)v_\theta(S_L) + \lambda z_L \]
Searching with Policy and Value Networks

\[N(s, a) = \sum_{i=1}^{n} 1(s, a, i) \]

\[Q(s, a) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i)V(s_i^L) \]

Image: [1]
AlphaGo’s Playing Strength

Image: [1]

Florian Brunner

AlphaGo

July 4, 2019
Example: How AlphaGo Selects Its Moves

Image: [1]
Why Use Policy and Value Networks?

- Value network and policy network work hand in hand

- Value network alone:
 - Would have to exhaustive compare the value of all children
 ⇒ Policy network predicts best move, narrows the search space

- Policy network alone:
 - Unable to directly compare nodes in different parts of the tree
 - Value network gives an estimate of winner as if the game was played according to policy network
 ⇒ Values direct later searches to moves that are actually evaluated to be better
Why Combine Neural Networks with MCTS?

- How does MCTS improve a Policy Network?
 - Recall: MCTS (Pachi) won 15% of games against Policy Network
 - Policy Network is just a *prediction*
 - MCTS and Monte Carlo rollouts help the policy adjust towards moves that are actually evaluated to be good

- How do Neural Networks improve MCTS?
 - The Slow Policy guides tree exploration more intelligently
 - The Fast Policy guides simulations more intelligently
 - Value Network and Simulation Value are complementary
AlphaGo vs Lee Sedol

Image: [8]
WHO WOULD WIN?

A highly intelligent world-class Go champion with years of experience who won 18 international awards

A poorly understood pile of linear algebra
Image: [9]
"It’s not a human move, I’ve never seen a human play this move. So beautiful. Beautiful. Beautiful."

– Fan Hui (2p)
AlphaGo Documentary

Image: [12]
Thank you for your attention!
[1] Silver et al. (2016)
Mastering the game of Go with deep neural networks and tree search
URL: https://vk.com/doc-44016343_437229031?dl=56ce06e325d42fbc72

URL: https://upload.wikimedia.org/wikipedia/commons/e/e3/Korean_Game_from_the_Carpenter_Collection%2C_ca._1910-1920.jpg

[3] Woman playing Go

[4] Go Board
URL: https://i1.wp.com/cdn0.vox-cdn.com/thumbor/cxHFEPUtYJkaAz2Uf0dV5qLtc90=/cdn0.vox-cdn.com/uploads/chorus_asset/file/6160055/akrales_160307_0970_a_0127.0.png
References II

[5] **AlphaGo Logo**
URL: https://blog.talla.com/hs-fs/hubfs/AlphaGo.png?width=3000&name=AlphaGo.png

[6] **David Silver**
URL: https://amp.businessinsider.com/images/56dfdf0cdd089521638b4689-750-562.png

What did AlphaGo do to beat the strongest human Go player?

[8] **Alpha Go vs Lee Sedol**
URL: https://compote.slate.com/images/9f656d7e-720a-4b84-aeca-154b07213300.jpg

[9] **Move 37**
https://qph.fs.quoracdn.net/main-qimg-6e771c6719fc2fda77bc1b68119cb756
[10] Fan Hui
https://media.wired.com/photos/592722acaf95806129f51b6c/master/pass/GW20160132503.jpg

https://qph.fs.quoracdn.net/main-qimg-04274753a6dc479b197000895a39df47

[12] AlphaGo Documentary
https://cdn-images-1.medium.com/max/1200/1*sf4ZeTwBq1061U4W49NBdQ.png