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Introduction

Automatic Speech Recognition (ASR)

Definition Automatic transformation of spoken language by
humans into the corresponding word sequence.
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Introduction

Speech recognition as classification problem

audio wave classes
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Introduction

ASR Applications

What are the applications for ASR and what do they imply?
@ Dictation (Lawyer, Doctor, ...)
o Control devices/systems (Mobile, car, ...)
@ Language translation

e Education (Teach reading)
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Introduction

ASR Applications

What are the applications for ASR and what do they imply?

Dictation (Lawyer, Doctor, ...)

Control devices/systems (Mobile, car, ...)

@ Language translation

Education (Teach reading)

Depending on the application we face different problems and
challenges

@ Does training data fit our purpose?

@ What are the enviromental acoustical settings for our
application?

o ...
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Introduction

ASR Advantages

Speed
o Keyboard 200-1000 characters per minute
e Speech 1000-4000 characters per minute

No need of using hands or eyes

Communication with systems/devices naturally
Portable
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Introduction

ASR Disadvantages

@ Locational requirements

o Not usable in locations where silence is required
o Not usable in loudy enviroments

@ Error rate still to high

5/59



Introduction

Difficulties
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Introduction

Difficulties

Variability
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Introduction

Difficulties

Size Number of word types in vocabulary

Speaker speaker-independency, adaptation to
speaker characteristics and accent

Acoustic environment Noise, competing speakers,
channel conditions (microphone, phone line, room
acoustics)

Style Planned monologue or spontaneous
conversation.Continuous or isolated speech.
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Introduction

Difficulties

Figure: The word "Sieben” recorded three times

8/59



Introduction

History

o 1952 Bell Labs single speaker digit recognition

@ 1968 Dynamic Time Warping (DTW) for Speech Recognition
by Vintsyuk

e 1969 Hidden Markov Models (HMM) by Leonard Baum

@ 1997 Long short-term memory (LSTM) by Hochreiter and
Schmidhuber

@ 2006 Connectionist Temporal Classification (CTC) by Graves
et al.

@ 2007 LSTM Models trained by Connectionist Temporal
Classification (CTC) outperforms traditional systems in
certain applications
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e Architecture



Standard ASR Pipeline

Acoustic Model

Language Model

[l

Word sequence
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e Preprocessing



Preprocessing

Why do we need signal processing?

Need a form of signal we can work with easily

Extract relevant information

Filter unnecessary information

o Speaker-dependent information
o Acoustical enviroment
o Microfon

Reduction of data size
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Preprocessing

Spectogram

“Hello world”
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Figure: Deep Learning School 2016 (Talk: Adam Cotes, Baidu)
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Preprocessing

Spectogram
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Figure: Deep Learning School 2016 (Talk: Adam Cotes, Baidu)
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Preprocessing
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Preprocessing

Make signal processing intelligent again

Using audio wave as raw input for model training
@ Sainath et al., Interspeech 2015
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Decoding
Acoustic Model

Fundamental Equation of Statistical Speech Recognition

o Let X be a sequence of acoustic feature vectors
o Let W denote a word sequence

o Let W* denotes the most likely word sequence

W* = argmaxy P(W|X)
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Fundamental Equation of Statistical Speech Recognition

o Let X be a sequence of acoustic feature vectors
o Let W denote a word sequence

o Let W* denotes the most likely word sequence

W* = argmaxy P(W|X)
P(XIW)P(W)
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Decoding
Acoustic Model

Fundamental Equation of Statistical Speech Recognition

o Let X be a sequence of acoustic feature vectors
o Let W denote a word sequence

o Let W* denotes the most likely word sequence

W* = argmaxy P(W|X)
P(X]W)P(W)
P(X)
= argmax P(X|W) P(W)

W e —r

Acoustic model Language Model

= arg max (Bayes Theorem)
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Decoding
Acoustic Model

Approach

There are two approaches for developing an acoustic model

@ Hidden Markov Model
@ Neural Networks
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Decoding
Acoustic Model

Stochastic process

Definition (Markov chain of order n)

P(Xt41 = se11|Xe = st,..., Xo = 0)
= P(Xer1 = Se1| Xe = S, o, Xepy1 = St—ny1)
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Decoding
Acoustic Model

Hidden Markov Model (HMM)

Suppose you cannot observe the states .

PUH) 1-PIH

[
(a)
O HHTTHTHHTTH...

PR ¢
s11z20211221

MEADS TALS
a
oy
® 1 2 O HMMTTHTHHTTH

-0z
PUHIAP,  PIH)Py
PITI= 1P, P+ 1-Py

rzi1z2212212..

PHHTTHTHNTTH

© +31233112313

o

STATE

S L B
P B, Py Py
PUTY 1By 4Py 1Py
Fig. 2. Three possible Markov models which can account
for the results of hidden coin tossing experiments. (a) 1-coin
model. (b) 2-coins model. (c) 3-coins model.

Figure: A Tutorial on Hidden Markov Models by Rabiner
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Decoding
Acoustic Model

HMM Definition A = (A; B; )

@ N is number of states in the model. S is the set of states
S =(51,...,5n) and the state at time t as g;

@ M is number of disctinct observations per state. Observations
are denoted by V =vq,..., vy

State transition probability distribution A; = {a;;} where

aj = Plgr11=Sjlq: = S|, 1 <i,j <N

Observation symbol probability distribution in state j,
B = {bj(k)}, where

bj(k) = Plvk at tlgr =S|, 1 <j < N,1< k<M

Initial state distribution 7 = {m;}, where m; = P[q1 = Sj] for
1<i<N
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Decoding
Acoustic Model

HMM Assumptions

P(sy | s1) P(s2 | 82) P(s3 | 53)

Q S S S
@P(mm LP(s2 | 5N 2 P53 | S P(sE\ss)\/\ B )
(x| s1) pxls) | pls)
X X X

Figure: Probabilistic finite state automaton (Renals and Bell, ASR
Lecture, Edinburgh)

© Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it
@ Markov process A state is conditionally independent of all
other states given the previous state
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Decoding
Acoustic Model

Output Distribution

P(s1 | s1) P(s2] 82) P(s3 | 53)

Q S s S
@Pmm WL, N P(sE\s3)< E>
(x| s1) px| s2) p(x | s3)
X X X

Figure: Probabilistic finite state automaton (Renals and Bell, ASR
Lecture, Edinburgh)

o bi(x) = p(x|s;) = N(x; 1/, V) (Single multivariate Gaussian)
o bi(x) = p(x|sj) = SM_, ¢imN (x; /™, TJ™) (M-component
Gaussian Mixture Model)
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Decoding
Acoustic Model

The three HMM Challenges
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Decoding
Acoustic Model

The three HMM Challenges

@ Evaluation Given a HMM A, an Output O — What is the
probabilty that O is an Output of the HMM A: P(O|\)?
Forward or Backward Algorithm
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Decoding
Acoustic Model

The three HMM Challenges

@ Evaluation Given a HMM A, an Output O — What is the
probabilty that O is an Output of the HMM A: P(O|\)?
Forward or Backward Algorithm

@ Decoding Given a HMM A, an Output O. Find a sequence of
States § = Sj1, - - -, s;T for which holds S= argmaxsP(S, O|\)
Viterbi Algorithm
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Decoding
Acoustic Model

The three HMM Challenges

@ Evaluation Given a HMM A, an Output O — What is the
probabilty that O is an Output of the HMM A: P(O|\)?
Forward or Backward Algorithm

Q Decoding Given a HMM A, an OutputAO. Find a sequence of
States S = sj1,. .., sj7 for which holds S = argmaxsP(S, O|\)
Viterbi Algorithm

© Training Given a HMM A\ and a set of Training Data O. Find
better Parameters \’ such that P(O|\) < P(O|X)

Baum Welch Algorithm
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Decoding

Acoustic Model

1. The Forward Algorithm

Goal Estimate P(O|)\)

@ We need to sum over all possible state sequences
S1,5,...,ST that could result in the observation sequence O

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploit the Markov Assumption)

@ Forward Probability c(s;):the probability of observing the
observation sequence oy, ..., 0; and being in state s; at time t:

ar(sj) = p(x1, ..., xe, S(t) = sj|A)
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Decoding
Acoustic Model

1. The Forward Algorithm

Q Initialization
ao(s) =1

ag(sj)) =0if s; # 5
© Recursion

N
ae(sp) = Z:Oét—l(si)aijbj(ot)

© Termination

N
p(O|A) = at(se) =Y _ar(si)aie

i=1
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Decoding

Acoustic Model

Forward Recursion

a;-1(Sk)
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Decoding

Acoustic Model

1. The Backward Algorithm

@ Initialization
Br(i)=1,1<i<|s|

@ Recursion

S|
i)=Y Bjlori1)ajfen(i) , 1<i<|S], 1<t < T
j=1
© Termination "
S

O|)\ ZTFJ o1 ,61
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Decoding
Acoustic Model

Viterbi approximation

@ Instead of summing over all possible state sequences we
change the summation to a maximation in the recursion

Vt(Sj) = max; Vt_l(s,-)a,-jbj(xt)
@ This change in the recursion gives us now the most probable

path

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Decoding

Acoustic Model

Viterbi approximation
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Decoding
Acoustic Model

Viterbi approximation

Backpointers to the previous state on the most probable path
t-1 t bt(s;) = 55 t+l
bj(x;)— Vi(si)
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Decoding
Acoustic Model

2.Decoding: The Viterbi Algorithm

@ Initialization

Vo(S/) =1
Vo(sj)) =0 if s; # 5
bto(Sj) =0

@ Recursion
Vi(s) = max Ve-a(si)aiby(or)
bt(s;) = arg r’rielxlx Vi—1(si)ajibj(ot)
© Termination
P* = Vr(sg) = Ti;%( Vr(si)aie
sT = btr(qe) = arg rlnlzyalx Vr(si)aie
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Decoding
Acoustic Model

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path
t-1 t bt (s;) = 5; t+l
bj(xt Vi(s:)

bty 1(sy) = si
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Decoding

Acoustic Model

3.Training:Baum-Welch Algorithm

O Forwad procedure
Let a;(t) = P(Y1 = y1, ..., Ye = yt, Xt = i]0), the probability
of seeing the yi, yo, ..., y+ and being in state i at time t.

© Backward procedure
Let ﬁ,( ) (Yt+1 Yid1y ey Y = yT|Xt = i,9) that is the
probability of the ending partial sequence y;.1, ..., yT given
starting state i at time t.

@ Update

. — — a’(t)ﬁi(t)
e = POC= Y0 = o e

, Xe =i, Xe1 = j|Y,0 ai(t)ayBi(t + 1)bj(ye+1)
5]( ) ( t / t+1 — ./’ ) 5\[21 ZJN:]_ a,(t)auﬁj(t+1)bj()
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Decoding
Acoustic Model

3.Training:Baum-Welch Algorithm

Update parameters

= i(1)
3k = Zt 1 U(t)
D P 71())

* Z;rzl 1}’t:Vk7i(t)
b*(v,) =
) ==
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Decoding

Acoustic Model

Neural networks for acoustic models

Goal create a neural network (DNN/RNN) from which we can
extract transcription y. Train with labeled pairs (x, y*).

i A A L i i i Al i L ol A L o

0

Figure: Deep Learning School 2016 (Adam Cotes, Baidu)
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Decoding
Acoustic Model

Recurrent Neural Network (RNN)

LA S A {

@A A A A ®

® ©® - ®

Figure: http://colah.github.io/posts/2015-09-NN-Types-FP/
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Decoding
Acoustic Model

Recurrent Neural Network (RNN)

LA A S

@A A -®

© ® -

Figure: http://colah.github.io/posts/2015-09-NN-Types-FP/

Forward propagation

hi = o(Whphi—1 + Whyxi + bp)
Vi = Wyph;
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Decoding

Acoustic Model

Long Short-Term Memory (LSTM)

Tt Tt

A N
v ae

Output Gate

Figure: Long Short-term Memory Cell from Graves et al. 2013
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Decoding

Acoustic Model

Long Short-Term Memory (LSTM)

i = o(Wiixe + Whihi—1 + Weici—1 + bj)

fe = o(Wirxe + Whehe—1 + Werce—1 + br)
or = o(Wioxt + Whoht—1 + Weoct + bo)

¢t = fece—1 + istanh(Wiexe + Whche—1 + bc)
he = ortanh(c:)
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Decoding

Acoustic Model

Bidirectional RNN (BRNN)

Figure: http://colah.github.io/posts/2015-09-NN-Types-FP/
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Decoding
Acoustic Model

Train acoustic model

Main issue length(x) # length(y)
@ Solution

o Connectionist Temporal Classification [Graves et al., 2006]
e Attention, Sequence to Sequence
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea

@ RNN output neurons c encode distributions over symbols.
(length(c)=length(x))
For phoneme based models
c € {AA AE, AX, ..., ERL, blank}
For grapheme based models ¢ € {A, B, C,..., blank}
@ Define mapping 8(c) — y
© Maximize likelihood of y* under this model
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Decoding

Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea

@ RNN output neurons c encode distributions over symbols.
(length(c)=length(x))
For grapheme based models ¢ € {A, B, C, ..., blank}

A
. B _ SHENEITETS
C
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea

@ RNN output neurons c encode distributions over symbols.
(length(c)=length(x))
For grapheme based models ¢ € {A, B, C, ..., blank}

Cy17=Plcy;;=B" | x)
/

A
B Softmax neurons
c

“blank” T T T IEECT

—
>
—
—
>

»»»»»
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea

@ RNN output neurons ¢ encode distributions over symbols.
(length(c)=length(x))
For grapheme based models ¢ € {A, B, C, ..., blank}

@ Output softmax neurons defines distribution over whole
character sequences c assuming independency:

P(c|x) = H P(ci|x)

P(c = HH.E_LLO|x) = P(c1 = H|x)P(c2 = H|x) ... P(c15 = blant

How do we get our independency?
— Forbid connections from the output layer to other output layers
or to other hidden layers
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea

@ Define function 3(c) =y
What it does:

e squeeze out duplicates
e removes blanks

y=p(c)=pB(HH.E__L.LO_) ="HELLO"
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Decoding

Acoustic Model

Connectionist Temporal Classification (CTC)

@ Our function gives us a distribution for all possible
transcriptions y

P(clz) ={ .1 HHH_E__LL_LO___
©.02 HH__E__LL_LO___
©.01 HHH_E__L_L_OH__

©.01 HHH_EE_LL_L_O__
YY__E__LL_LO_W_

“HELLO” v.1
“HELLO” v.2
“HELL OH”
“HELLO” v.3
“YELLOW”

Py = Z(.:ﬂ(,,):y P(c|x)

P(“HELLO")=0.1 + 0.02 + 0.01 + ..
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

© Update network parameters # to maximize likelihood of
correct label y*:

* (1) 5 (1)
0 argmaaxzi:/ogP(y |x\)
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

© Update network parameters # to maximize likelihood of
correct label y*:

* (1) 5 (1)
0 argmoaxzi:/ogP(y |x\)

— ()
arg mgxz log B(z): . P(c|x'") (Thanks CTC)
! c:B(c)=y*l
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Decoding
Acoustic Model

Decoding

@ How do we find most likely transcription

Ymax = man 'D(y|X)
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Decoding
Acoustic Model

Decoding

@ How do we find most likely transcription

Ymax = man P(Y|X)

o Best Path Decoding (not the most likely)

B(arg max P(c|x))

"CAB”

“blank” [« ] +] 2le]e]s] [ a]e]o]=]*
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Decoding
Language Model

Language Model

RNN output | Decoded Transcription

what is the weather like in bostin right now | what is the weather like in boston right now
prime miniter nerenr modi prime minister narendra modi

arther n tickets for the game are there any tickets for the game

Figure: Examples of transcriptions directly from the RNN (left) with
errors that are fixed by addition of a language model (right). (Hannun et
al. 2014)
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Decoding
Language Model

Standard approach: N-gram Model

Goal Apply grammar and spelling rules

o Word sequence w{' = wy ... w,

@ N-gram approximation

n

P(w{) = T P(wilwi =y 1)
k=1
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Decoding
Language Model

Decoding with LM

o Given a LM Hannun et. al optimizes:

arg max P(w]|x)P(w)*[length(w)]’
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Decoding with LM

o Given a LM Hannun et. al optimizes:

arg max P(w]|x)P(w)*[length(w)]’

@ « is tunable parameter to govern weight of LM
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Decoding
Language Model

Decoding with LM

o Given a LM Hannun et. al optimizes:

arg max P(w]|x)P(w)*[length(w)]’

@ « is tunable parameter to govern weight of LM

@ [3 penalty term for long words
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Decoding
Language Model

Decoding with LM's

Basic strategy Beam search to maximize
arg max P(w|x)P(w)*[length(w)]’

Start with set of candidate transcript prefixes A = {}.
Fort=1,..., T
For each candidate in A consider
@ Add blank; dont change prefix; update probability using AM;
@ Add space to prefix; update probability using LM

© Add a character to prefix; update probability using AM; Add
new candidates with updated probabilities Anew

A:=K most probable prefixes in Apew
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Decoding
Language Model

Neural Network Language Model

Idea: Rescore list of candidate transcriptions on basis of
neural network
N-gram model just gave us grammar and spelling
rules but sometimes we need also “semantic
understanding”
neural network models to simulate the semantic
correctness of candidate transcriptions
e RNN
e LSTM
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Concluding Remarks

End to end Speech Recognition with neon

cre |

X X

softmax D D
X X

affine D D
X X

bRNNm [ Jes[ s

X X

i L

BIRNN 2 D< .D<
n ;

BIRNN 1 D .D~
n ;

conv

-0-0-+-0-0-0-L

]

input '
[

Figure: https://www.nervanasys.com/end-end-speech-recognition-neon/
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Concluding Remarks

State of the art (IBM, March 2017)

@ Acoustic model score fusion of three models: one LSTM
with multiple feature inputs, a second LSTM trained with
speaker-adversarial multi-task learning and a third residual net
(ResNet) with 25 convolutional layers and time-dilated
convolutions

o Language model word and character LSTMs and
convolutional WaveNet-style language models.
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Concluding Remarks

Summary

o Historically used approach for ASR: Dynamic Time Warping
later statistical models

o Standard ASR Pipeline: 1.Signal Processing 2. Acoustic
Model 3.Language Model

@ Signal processing: MFCC
@ Acoustic model two approaches: HMM and Neural Networks
o GMM for HMM Distribution
o Three problems of HMM: Evaluation(Forward /Backward
Algorithm), Decoding(Viterbi), Training (Baum-Welch
Algorithm)
o Neural networks approach: RNN, LSTM, BRNN
o Neural networks training: CTC

o Language Model: N-gram model
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Concluding Remarks

Future

End-to-end systems: Go deeper in the whole pipeline

Image Processing: Lip reading?
Train better: Batch normalization (loffe and Szegedy, 2015)
and more

@ Scale: More data, better data, more computational power, ...
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