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Introduction



Translate me this

Die Veranstaltung fand um 9 Uhr statt.

The event took place at 9 o’clock.

The event took place at 9 AM.

The presentation took place at 9:00.

The performance started at nine.
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Translate me this

La manifestation s’est déroulé à 9 heures.

The event took place at 9 o’clock.

The event took place at 9 AM.

The presentation took place at 9:00.

The performance started at nine.

3



Translate me this

La manifestation s’est déroulé à 9 heures.
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Translate me this

The power level is over 9 thousand.

Their power level is over 9000.

Her power-level is above nine thousand.

His powerlevel is over 9,000.
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Challenges

• Word Level

• What even is a word? “Die KI-Vorlesung”

• Word Sense Disambiguation in both languages “Drop the bass!”

• Out-of-vocabulary words: “’Murica!”

• Phrase Level

• Syntactic structures such as word order “The cake a lie am.”

• Fluency of the word translations placed together “Patience, you must have.”

• Semanticity of the phrase “Green ideas sleep furiously.”

• Document Level

• Entities accross phrase-boundaries “The chancellor [...]. She said [...].”

• Semanticity of the document “Construction is ongoing. The airport opened in 2012.”

• Domain-specific training data “#JustMTThings”
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History

• 1949 Warren Weaver publishes the Translation Memorandum[17]

1. Word Sense Disambiguation using immediate context

2. Translation as solving formal logic problems

3. Usage of cryptographic methods, decoding the foreign language

4. Universal Linguistics as bridge for translations

• 1954 IBM Georgetown-Experiment (Russian to English)

• 1960s Soviet Union and USA pour research funding into MT

• 1966 ALPAC report[14] sees no cost-benefit which results in loss of funding
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History

• 1970-1980 Commercial systems such as METEO[3] and SYSTRAN[16] thrive

• 1990s (Re-)introduction of statistical MT by researchers at IBM[2]

• 1994 Online translators become available (AltaVista, Google Language Tools)

• 2001 DARPA starts funding MT extensively (especially for Arabic)

• 2012 Google translates 1 million books a day[9]

• 2016 Google switches to Neural Machine Translation[18]
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Machine Translation Disambiguation

• Rule-based machine translation

• Look-ups based on dictionaries containing vocabulary, syntax, morphology etc.

• Encoding into and decoding from interlingual representations

• Example-based approaches that infer new translations from known ones

• Statistical machine translation

• statistical models which are optimised on gigantic parallel-corpora

• generally speaking: argmaxtp(t|s) with t as target and s as source

• Neural machine translation is the currently favoured model
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Statistical Models



IBM Models

Brown et al. (1990) - A statistical approach to machine translation[2]

• Formalization of translation as a statistical optimisation problem

• Introduction of IBM models 1-5 (explained in depth in [9])

• Increasingly complex models modelling the different challenges of MT

• More complex models were developed on top of these methods
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IBM Models

source s musique1 jazz2 musique1

target t jazz1 music2 music1

• We have information on co-occurrence

• We are missing information on alignments a(i) = j

• We are missing translation probabilities pword(ti |sj)
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IBM Model 1

psen(t, a|s) =
∏
i

pword(ti |sa(i)) (1)

• Sentences usually occur only once, so the task is divided

• Lexical word-by-word translation according to the highest probability
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IBM Model 1

Expectation Maximization Algorithm

• Initialise uniform probability distribution

• Expectation Step

• Use current distribution to match source- to target words

• Normalise alignment probabilities

• Maximization Step

• Use newly assigned probabilities to count occurrences

• Estimate new model using these counts

• Do while the model has not converged
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IBM Models 2-5

• IBM Model 2

• Adds an alignment probability distribution psen(“jazz music”) > psen(“music jazz”)

• Expectation Maximization initialised with Model 1 probabilities

• IBM Model 3

• Adds a fertility function “Fernbahnhof” → “long distance train station”

• Iterating over all possibilities becomes infeasible, so sampling is used

• IBM Model 4 adds a relative alignment distribution

• IBM Model 5 fixes problems arising in Model 4
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Language Models

The liquid output standing securely

Ensuring fluid output

• Contextual information (n-grams) learned from corpora in the target language

• Incorporate fluency information using the noisy-channel model

argmaxtp(t|s) = argmaxt
p(s|t)p(t)

p(s)
(2)

• Up to 4-gram models with interpolation, back-off and smoothing[8]

• Currently neural language models are state-of-the-art
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Neural Machine Translation



Neural Networks

~y = f (~x ∗W + ~b) (3)

• Phrases and words must be encoded and decoded as fixed-length vectors

• Word vectors must be combined into a meaningful phrase representation

• Output must be constructed as a sequence of vectors
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Word Embeddings

”You shall know a word by the company it keeps.”

- John Rupert Firth (1957)

• Corpus-based method for representing semantic meaning

• Distributional history of a word determines values in its vector

• Reduce sparsity using dimensionality reduction and smoothing

• Placement in high-dimensional space represents relations

• Word2Vec[12] (TensorFlow Embedding Projector)
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Word Embeddings

Mikolov et al. (2013)[13] and Bolukbasi et al. (2016)[1]

• Embeddings seem to represent semantics and some syntactic features well

• Learning process carries an inherent bias depending on training data
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Recurrent Neural Networks

• RNNs allow for multi-word sequences to be encoded in a fixed length vector

• Consideration of previous states help retain information based on word order

• Syntactic structures can also be considered during encoding

• Additional backward-pass can increase performance even further

• LSTM-[6] or GRU-cells[4] retain longer dependencies (e.g. syntactic)
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Recurrent Neural Networks

• Decoding uses the encoded source sequence to generate the target sentence

• Current word depends on previously unrolled state

• The most likely word is picked from the known target vocabulary

• Training using backpropagation through time and cross-entropy loss

• Functions similarly to a conditional language model
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Attention Mechanism

Kyunghyun Cho (2015)1

• It can be useful to peek at source words to translate the current target word

• Separate classifier learns relevance between input- and output states

• Relevance is treated as a probability distribution from target to source

1Introduction to Neural Machine Translation with GPUs - NVIDIA Devblogs
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Current State



Google Neural Machine Translation

Wu et al. (2016)[18]

Since 2016, Google has been using Neural Machine Translation

• Deep RNN with LSTM-cells in both encoder and decoder

• Embeddings of sub-word units and use of special units (e.g. numbers, word-start)

• Decoder with attention mechanism

• Reduction of translation errors by 60% and results comparable to state-of-the-art
21



Google Neural Machine Translation

Since 2016 (a bit later), Zero-Shot Neural Machine Translation[7] has been deployed

• Enables translation on language pairs for which there are no parallel corpora

• Target language code is prepended to the input during encoding

• Vocabulary and rest of the system are shared between languages

• Translation of multi-language phrases with different alphabets

• Semantically similar sentences are represented similarly regardless of language

• Comparable results for Fr → En and surpassing results for other language pairs
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Google Neural Machine Translation

Mike Schuster et al. (2016)2

2Zero-Shot Translation with Googles Multilingual NMT System - Google Research Blog
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Skype Translator

Lewis (2015)[10]

• Automated Speech Recognition
• Challenge of recognition itself, paired with disfluency removal

• Disambiguation of words and punctuation

• Machine Translation
• Construction of parallel corpora for the conversational domain

• No specifics except for statistical nature (Microsoft Translator)

• Text-to-Speech 24



Challenges Remaining

• The hardest word is the <UNK> you don’t know

• Copying-Mechanism: learn whether to directly copy words from source [5]

• Byte Pair Encodings: split words into less rare subunits [15]

• Character-Embeddings: trained on vast amounts of data [11]

• Domain-specific adaptations (e.g. medical journals, Twitter)

• Maintaining coherence over longer spans

• Metaphors, Sarcasm etc. remain difficult problems to solve
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Thank you.
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Questions?
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