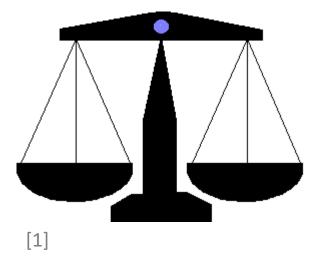
AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents

Vincent Conitzer & Tuomas Sandholm (2007)

JANNIK PETERSEN

13.06.2019


Overview

- Getting Started
 - Nash Equilibrium
 - Learning in Games
 - Setting
 - Play a Stage Game
 - Two essential Properties
- The Algorithm
 - AWESOME
 - Null Hypothesis
 - Why do we need equilibria?
 - Self-Awareness

- What does AWESOME play
- First Approach
- Solution
- The Algorithm
- Comparison
- Summary

Nash Equilibrium

- Describes a game situation
- Combination of strategies in non-cooperative games
 - Each player picks one strategy
 - For none player, it makes sense to change his strategy
- Pure strategies
 - Can react accordingly to stationary opponent
- Mixed strategies
 - Random choice of actions

Learning in Games

Aspects of learning a game:

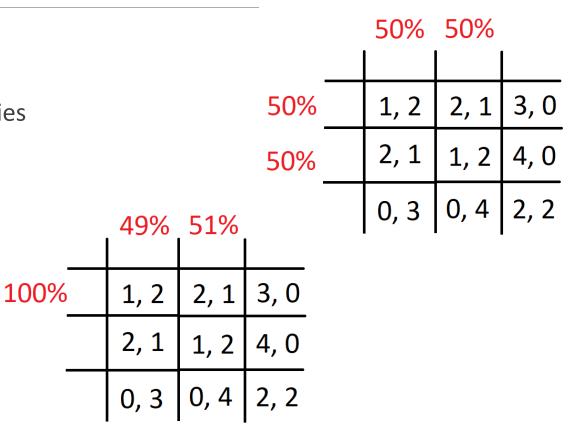
- Learn the game itself
- Learn how the opponent is behaving

We focus on the second aspect:

- Assume that the game is known
- A equilibrium of the game can be computed

The Setting

- N players, each with their own set of actions
- The stage game is played repeatedly
- Agents choose their action independently


1, 2	2, 1	3, 0
2, 1	1, 2	4, 0
0, 3	0, 4	2, 2

- For each epoch, the players decide to take a distribution of their set to play
- Players have a long-term strategy
 - Stationary strategy play same distribution every time
 - Mixed strategy play different distribution every time

Play a Stage Game

- Nash equilibrium:
 - Each player has a mixed strategy
 - It's a best response to the other strategies
 - Makes sense for rational players

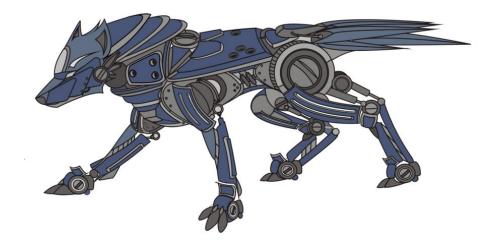
Problem: less clever opponent:

What do we want?

A satisfactory multiagent learning algorithm should learn to play optimally against stationary opponents and converge to a Nash equilibrium in self-play.

Two essential Properties

- Play optimally against (eventually) stationary opponents
 - -> Play best response
 - Maximum exploitation
- Convergence to Nash equilibrium in self-play


These properties are minimal!

REMOVED ASSUMTIONS

Best previous example of a learning algorithm: WoLF-IGA

WoLF-IGA : Win or Learn Fast – Infinitisimal Gradient Acsent

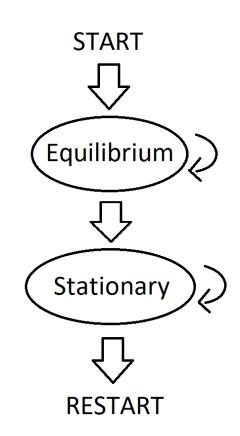
- Assumtions:
 - There are at most 2 players
 - There are at most 2 actions per player
 - Each opponents strategy is observable
 - Gradient ascent of infinitisimal small step sizes

[5]

AWESOME

AWESOME – Adapt When Everybody is Stationary, Otherwise Move to Equilibrium

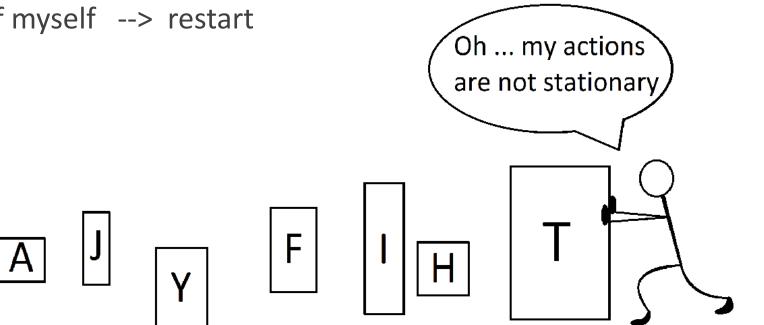
Basic idea:


- Detect if opponent is playing stationary
 - Play best response
- Otherwise, restart and go back to equilibrium

[4]

Null Hypothesis

- Start with first null hypothesis
 - Everyone is playing the precomputed equilibrium
- If this is rejected, switch to other null hypothesis
 - Everyone is playing stationary
- If this is rejected, restart completely
- Evaluate hypothesis every epoch


Why do we need Equilibria?

- In one-shot games
 - They are natural and simple
 - They always exists
 - They are robust to changes
- They are also in general repeated games

Self-Awareness

AWESOME is self-aware

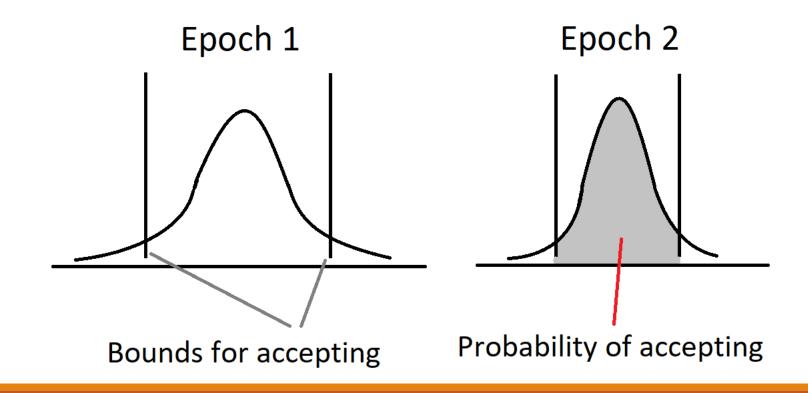
Detect nonstationarity of myself --> restart

What does AWESOME play?

- As long as Awesome accepts the equilibrium hypotheses, he plays the equilibrium
 - The goal of the equilibrium hypothesis is that we do not stray from equilibrium because AWESOME plays the best response
- Precompute equilibrium
- Restart means forgetting everything
- When this strategy is rejected, AWESOME picks a random action
- If another action appears to be significant better, AWESOME will pick that one
 - Significant difference is important to prohibit AWESOME from jumping back and forth

First Approach

- Apply same test of hypothesis every epoch:
 - Same number of rounds per epoch
 - If observed distribution of actions differs form hypothesized distribution, reject


- Problems:
 - Each epoch there is fixed probability of rejecting
 - Distinguish a distribution within a epsilon from hypothesized

Is this a strategy? F Α Η Y

 $|p_h - p_{\pi^*}| < \epsilon_e$ $|p_h - p_{h^{prev}}| < \epsilon_s$

Solution

- Simple: increase epoch length N, decrease threshold
 - Observation should get closer to hypothesized one

The Algorithm

AWESOME()

- 1. for each p2. $\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$ 3. repeat {// beginning of each restart 4. for each player p { 5. InitializeToEmpty(h_p^{prev}) 6. InitializeToEmpty(h_p^{curr}) }
- 7. APPE := true
- 8. APS := true
- 9. $\delta := false$
- 10. t := 0
- 11. $\phi := \pi_{Me}^*$
- 12. while $\overline{APS} \{ // \text{ beginning of each epoch} \}$
- 13. repeat N^t times {
- 14. $\operatorname{Play}(\phi)$

15. **for each** player
$$p$$

16. Update
$$(h_p^{curr})$$
 }

17. **if**
$$APPE = false$$

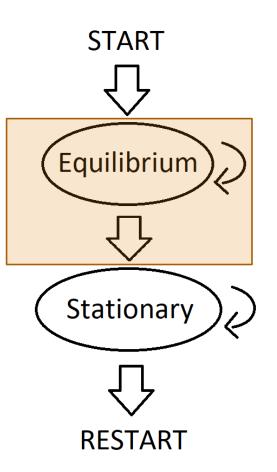
18. **if**
$$\delta = false$$

19. for each player
$$p$$

20. if (Distance $(h_p^{curr}, h_p^{prev}) > \epsilon_s^t$)
21. $APS := false$
22. $\delta := false$
23. $a := \arg \max V(a, h_{-Me}^{curr})$
24. if $V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$
25. $\phi := a$ }
26. if $APPE = true$
27. for each player p
28. if (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t$) {
29. $APPE := false$
30. $\phi := \text{RandomAction}()$
31. $\delta := true$ }
32. for each player p {
33. $h_p^{prev} := h_p^{curr}$
34. InitializeToEmpty (h_p^{curr}) }
35. $t := t + 1$ }

AW	$\mathrm{ESOME}()$	19
1.	for each p	$\overline{20}$
2.	$\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$	21
3.	repeat {// beginning of each restart	22
4.	for each player p {	$\frac{22}{23}$
5.	InitializeToEmpty (h_p^{prev})	
6.	InitializeToEmpty (h_p^{prev}) InitializeToEmpty (h_p^{curr}) }	24
7.	APPE := true	25
8.	APS := true	26
9.	$\delta := false$	27
10.	t := 0	28
11.	$\phi := \pi_{Me}^*$	29
12.	while APS { // beginning of each epoch	30
13.	repeat N^t times {	31
14.	$Play(\phi)$	
15.	for each player p	32
16.	$\text{Update}(\hat{h}_{p}^{curr})$	33
17.	if $APPE = false$ {	34
18.	if $\delta = false$	35

9. for each player p0. if (Distance(h_p^{curr}, h_p^{prev}) > ϵ_s^t) 1. APS := false2. $\delta := false$ 3. $a := \operatorname{arg\,max} V(a, h_{-Me}^{curr})$ 4. $\mathbf{if} V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$ 5. $\phi := a$ 6. **if** APPE = true7. for each player p8. **if** (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t$) { 9. APPE := false0. $\phi := \text{RandomAction}()$ 1. $\delta := true \}$ 2. for each player p { 3. $h_p^{prev} := h_p^{curr}$ 4. InitializeToEmpty (h_p^{curr}) } 5. t := t + 1 }


AW	$\mathrm{ESOME}()$	19
1.	for each p	20
2.	$\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$	$\overline{2}$
3.	repeat {// beginning of each restart	$\frac{2}{2}$
4.	for each player p {	$\frac{22}{23}$
5.	InitializeToEmpty (h_p^{prev})	
6.	InitializeToEmpty (h_p^{prev}) InitializeToEmpty (h_p^{curr}) }	24
7.	APPE := true	25
8.	APS := true	20
9.	$\delta := false$	2^{\prime}
10.	t := 0	28
11.		29
12.	while $APS \{ // \text{ beginning of each epoch} \}$	3(
13.	repeat N^t times {	3
14.	$Play(\phi)$	32
15.	for each player p	
16.	Update (h_p^{curr}) }	33
17.	$if APPE = false \{$	34
18.	$\mathbf{if}\ \delta = false$	35

9. **for each** player p20. **if** (Distance $(h_p^{curr}, h_p^{prev}) > \epsilon_s^t$) APS := false22. $\delta := false$ 23. $a := \operatorname{arg\,max} V(a, h_{-Me}^{curr})$ 24. $\mathbf{if} V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$ 25. $\phi := a$ 6. **if** APPE = true27. for each player p28. **if** (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t)$ { $29. \qquad APPE := false$ $\phi := \text{RandomAction}()$ $\delta := true \}$ 2. for each player p { 33. $h_p^{prev} := h_p^{c\bar{u}rr}$ 34. InitializeToEmpty (h_p^{curr}) } 35. t := t + 1 }

AWESOME()	19.
1. for each p	20.
2. $\pi_p^* := $ ComputeEquilibriumStrategy (p)	$\frac{2}{21}$.
3. repeat {// beginning of each restart	$\frac{21}{22}$.
4. for each player p {	$\frac{22}{23}$.
5. InitializeToEmpty (h_p^{prev}) 6. InitializeToEmpty (h_p^{curr}) }	
6. InitializeToEmpty (h_p^{curr}) }	24.
7. $APPE := true$	25.
8. $APS := true$	26.
9. $\delta := false$	27.
10. $t := 0$	28.
11. $\phi := \pi_{Me}^*$	29.
12. while $APS \{ // \text{ beginning of each epoch} \}$	h 30.
13. repeat N^t times {	31.
14. $\operatorname{Play}(\phi)$	32.
15. for each player p	
16. Update (h_p^{curr}) }	33.
17. if $APPE = false$ {	34.
18. if $\delta = false$	35.

for each player p if (Distance(h_p^{curr}, h_p^{prev}) > ϵ_s^t)
$APS := false \qquad , n_p \qquad) > c_s)$
$\delta := false$
$a := \arg \max \mathcal{V}(a, h_{-Me}^{curr})$
if $V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n A \epsilon_s^{t+1}\mu$
$\phi := a \}$
if APPE = true
for each player p
if (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t)$ {
APPE := false
$\phi := \text{RandomAction}()$
$\delta := true \}$
for each player p {
$h_p^{prev} := h_p^{curr}$
InitializeToEmpty (h_p^{curr}) }
$t := t + 1 \} \}$

19. for each player
$$p$$

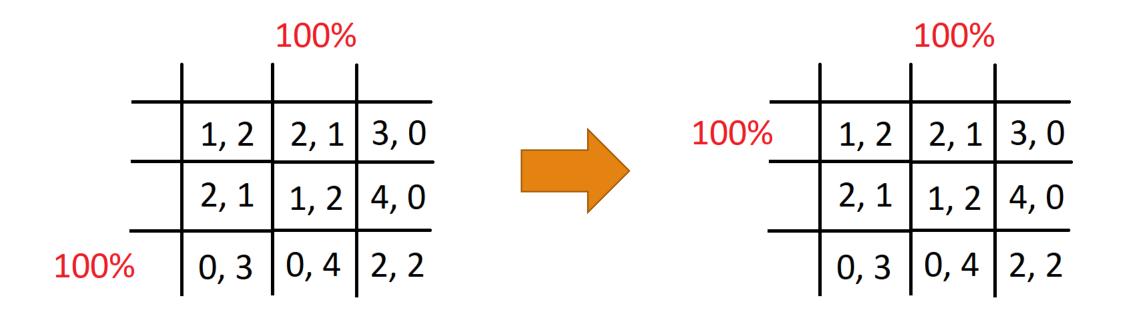
20. if (Distance $(h_p^{curr}, h_p^{prev}) > \epsilon_s^t$)
21. $APS := false$
22. $\delta := false$
23. $a := \arg \max V(a, h_{-Me}^{curr})$
24. if $V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$
25. $\phi := a$ }
26. if $APPE = true$
27. for each player p
28. if (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t$) {
29. $APPE := false$
30. $\phi := \text{RandomAction}()$
31. $\delta := true$ }
32. for each player p {
33. $h_p^{prev} := h_p^{curr}$
34. InitializeToEmpty (h_p^{curr}) }
35. $t := t + 1$ } }

AWESOME()
1. for each p
2. $\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$
3. repeat {// beginning of each restart
4. for each player p {
5. InitializeToEmpty (h_p^{prev})
5. InitializeToEmpty (h_p^{prev}) 6. InitializeToEmpty (h_p^{curr}) }
7. $APPE := true$
8. $APS := true$
9. $\delta := false$
10. $t := 0$
11. $\phi := \pi_{Me}^*$
12. while $\overrightarrow{APS} \{ // \text{ beginning of each epoch} \}$
13. repeat N^t times {
14. $\operatorname{Play}(\phi)$
15. for each player p
16. Update (h_p^{curr}) }
17. if $APPE = false$ {
18. if $\delta = false$

33.

34.

35.

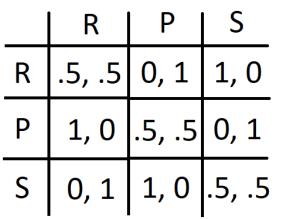

19. for each player p20. **if** (Distance $(h_p^{curr}, h_p^{prev}) > \epsilon_s^t$) 21. APS := false22. $\delta := false$ 23. $a := \arg \max V(a, h_{-Me}^{curr})$ 24. **if** $V(a, \tilde{h}_{-Me}^{curr}) > V(\phi, \tilde{h}_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$ 25. $\phi := a$ 26. **if** APPE = true27. for each player p28. **if** (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t)$ { 29. APPE := false30. $\phi := \text{RandomAction}()$ 31. $\delta := true \}$ 32. for each player p { $h_p^{prev} := h_p^{curr}$ InitializeToEmpty (h_p^{curr}) } $t := t + 1 \} \}$

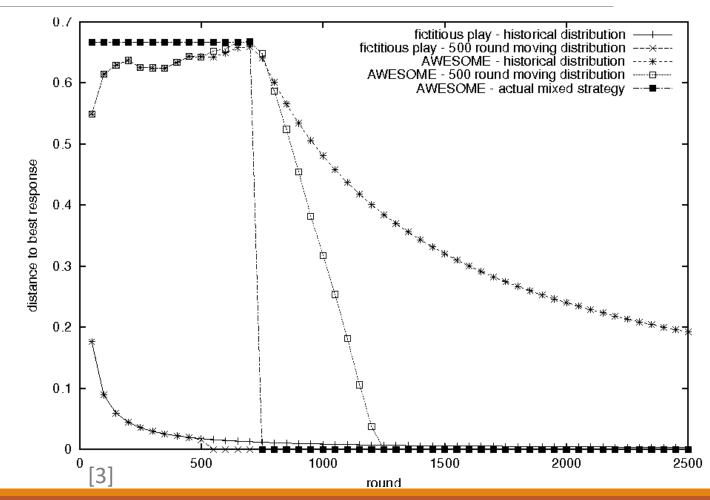
AW	$\mathrm{ESOME}()$	19
1.	for each p	20
2.	$\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$	$\overline{2}$
3.	repeat {// beginning of each restart	$\frac{2}{2}$
4.	for each player p {	$\frac{22}{23}$
5.	InitializeToEmpty (h_p^{prev}) InitializeToEmpty (h_p^{curr}) }	
6.	InitializeToEmpty (h_p^{curr}) }	24
7.	APPE := true	25
	APS := true	20
9.	$\delta := false$	2^{\prime}
10.	t := 0	28
11.	IVI C	29
12.	while $APS \{ // \text{ beginning of each epoch} \}$	3(
13.	repeat N^t times {	3
14.	$\operatorname{Play}(\phi)$	32
15.	for each player p	
16.	Update (h_p^{curr}) }	33
17.	$if APPE = false \{$	34
18.	$\mathbf{if}\ \delta = false$	35

9. **for each** player p20. **if** (Distance $(h_p^{curr}, h_p^{prev}) > \epsilon_s^t$) APS := false22. $\delta := false$ 23. $a := \operatorname{arg\,max} V(a, h_{-Me}^{curr})$ 24. $\mathbf{if} V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$ 25. $\phi := a$ 6. **if** APPE = true27. for each player p28. **if** (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t)$ { $29. \qquad APPE := false$ $\phi := \text{RandomAction}()$ $\delta := true \}$ 2. for each player p { 33. $h_p^{prev} := h_p^{c\bar{u}rr}$ 34. InitializeToEmpty (h_p^{curr}) } 35. t := t + 1 }

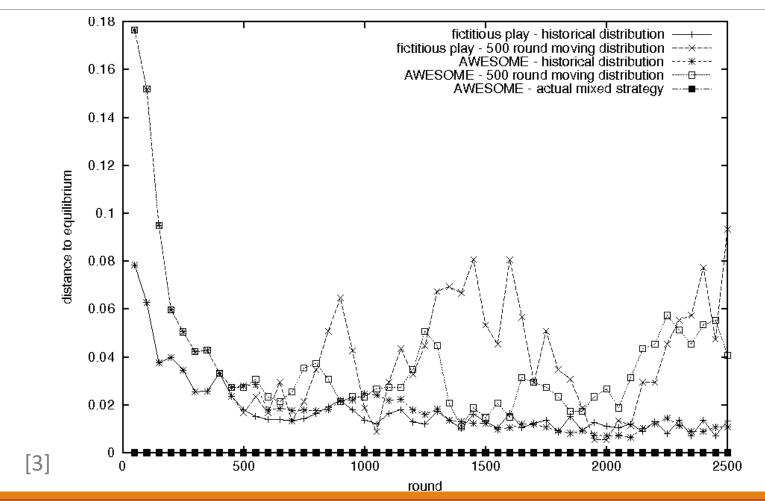
AWESOME()	19.
1. for each p	20.
2. $\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$	21.
3. repeat {// beginning of each restart	$\frac{-1}{22}$.
4. for each player p {	23.
5. InitializeToEmpty (h_p^{prev})	
5. InitializeToEmpty (h_p^{prev}) 6. InitializeToEmpty (h_p^{curr}) }	24.
7. $APPE := true$	25.
8. $APS := true$	26.
9. $\delta := false$	27.
10. $t := 0$	28.
11. $\phi := \pi_{Me}^*$	29.
12. while $APS \{ // \text{ beginning of each epoch} \}$	¹ 30.
13. repeat N^t times {	31.
14. $Play(\phi)$	
15. for each player p	32.
16. Update (h_p^{curr})	33.
17. if $\overrightarrow{APPE} = false$ {	34.
18. if $\delta = false$	35.

for each player pif (Distance(h_p^{curr}, h_p^{prev}) > ϵ_s^t) APS := false $\delta := false$ $a := \arg \max V(a, h_{-Me}^{curr})$ if $V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n|A|\epsilon_s^{t+1}\mu$ $\phi := a \}$ if APPE = true7. for each player p8. **if** (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t)$ { 9. APPE := false0. $\phi := \text{RandomAction}()$ 1. $\delta := true \}$ 2. for each player p { 33. $h_p^{prev} := h_p^{curr}$ 34. InitializeToEmpty (h_p^{curr}) } 35. t := t + 1 }

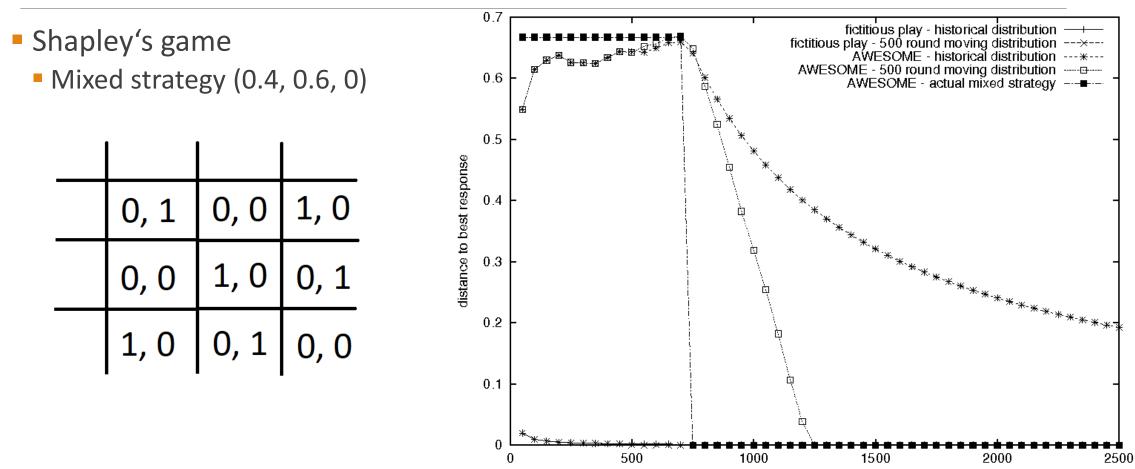



AWESOME()	19.
1. for each p	20.
2. $\pi_p^* := \text{ComputeEquilibriumStrategy}(p)$	21.
3. repeat $\{// \text{ beginning of each restart}$	$\frac{1}{22}$
4. for each player p {	$\frac{22}{23}$.
5. InitializeToEmpty (h_p^{prev}) 6. InitializeToEmpty (h_p^{curr}) }	
6. InitializeToEmpty (h_p^{curr}) }	24.
7. $APPE := true$	25.
8. $APS := true$	26.
9. $\delta := false$	27.
10. $t := 0$	28.
11. $\phi := \pi_{Me}^*$	29.
12. while $APS \{ // \text{ beginning of each epoce} \}$	^{ch} 30.
13. repeat N^t times {	31.
14. $\operatorname{Play}(\phi)$	
15. for each player p	32.
16. Update (\hat{h}_p^{curr}) }	33.
17. if $APPE = false$	34.
18. if $\delta = false$	35.

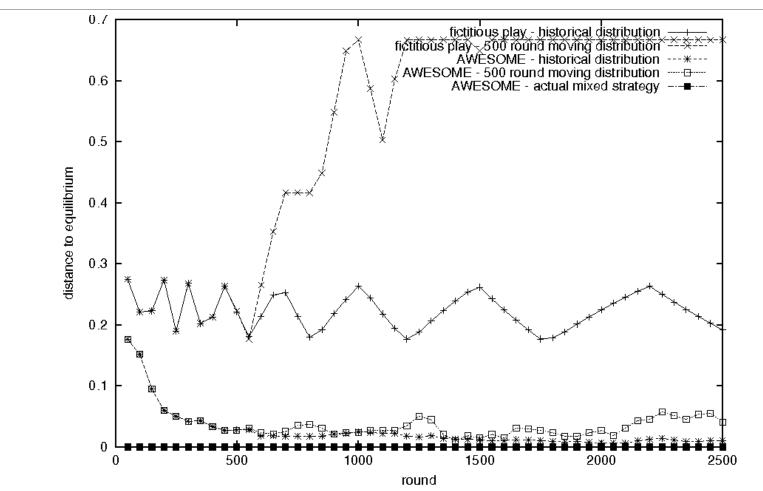
for each player p
if (Distance $(h_p^{curr}, h_p^{prev}) > \epsilon_s^t$)
APS := false
$\delta := false$
$a := \arg \max V(a, h_{-Me}^{curr})$
if $V(a, h_{-Me}^{curr}) > V(\phi, h_{-Me}^{curr}) + n A \epsilon_s^{t+1}\mu$
$\phi := a \}$
$\mathbf{if} APPE = true$
for each player p
if (Distance $(h_p^{curr}, \pi_p^*) > \epsilon_e^t)$ {
APPE := false
$\phi := \text{RandomAction}()$
$\delta := true \}$
for each player p {
$h_p^{prev} := h_p^{curr}$
InitializeToEmpty (h_p^{curr}) }
$t := t + 1 \} \}$


Comparison 1 – Stationary Opponent

- Fictitious play
 - Very simple learning algorithm
 - Plays best response for history
- Rock-Paper-Scissors
 - Mixed Strategy (0.4, 0.6, 0)



Comparison 1 – Self-Play



Comparison 2 – Stationary Opponent

round

Comparison 2 - Self-Play

Summary

- AWESOME is algorithm for learning in repeated games:
 - Best response against stationary opponents
 - Nash equilibrium in self-play
- Try to adapt when everyone is stationary, otherwise play equilibrium

Achieves this by testing hypotheses in each epoch

References

[1] 10.06.19

https://www.mathematik.de/spudema/spudema_beitraege/beitraege/kuhlenschmidt/nash.htm [2] Conitzer, V.; Sandholm T.: AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents, 2003 [3] Conitzer, V.; Sandholm T.: AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents, 2007 [4] 10.06.19 http://www.claxonmarketing.com/2014/02/16/is-awesome-awesome/ [5] 12.06.19 https://www.pinterest.de/pin/450852612673884638/?lp=true [6] 12.06.19 https://lifestyle.howstuffworks.com/crafts/seasonal/baseball-activities1.htm

Thank you for your attention!