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Abstract

The boundaries of image regions necessarily consist of
edges (in particular, step and roof edges), corners, and
junctions. Currently, different algorithms are used to de-
tect each boundary type separately, but the integration of
the results into a single boundary representation is difficult.
Therefore, a method for the simultaneous detection of all
boundary types is needed. We propose to combine responses
of suitable polar separable filters into what we will call the
boundary tensor. The trace of this tensor is a measure of
boundary strength, while the small eigenvalue and its dif-
ference to the large one represent corner / junction and edge
strengths respectively. We prove that the edge strength mea-
sure behaves like a rotationally invariant quadrature filter.
A number of examples demonstrate the properties of the new
method and illustrate its application to image segmentation.

1. Introduction

Boundary detection is an important task in image analysis
since boundaries provide crucial cues for object recogni-
tion and scene understanding. In this paper, we will be con-
cerned with low-level, bottom-up boundary detection. From
topology we know that a boundary in the plane necessarily
consists of edges and junctions [12]. Edges in turn come in
two kinds: step edges and roof edges (the latter ones also
termed lines, bars, ridges), whereas junctions can be distin-
guished by their degree – junctions of degree two are called
corners or L-junctions, of degree three T- and Y-junctions
(according to their geometrical layout), and of degree four
X- and Ψ-junctions. Psychological studies [1, 10] reinforce
that all these boundary features are important.

Currently, it is common to use different algorithms for
detecting each type of boundary feature separately. For ex-
ample, one can use Canny’s algorithm [3] for step edges,
eigenvalues of the Hessian matrix for roof edges, and the
corner response function [9] for corners. These detectors
yield stable, rotationally invariant results for their respec-
tive feature types. But for a complete boundary description
the different features types have to be integrated. This inte-
gration is not straightforward. Simple ideas like linear com-
binations of the responses of several detectors don’t work:

First, it’s impossible to find weights for the combination that
work equally well accross the entire image or a set of im-
ages. Second, each detector generates spurious responses
where it encounters a kind of border feature it wasn’t de-
signed for. For example, a first derivative detector (designed
for step edges) yields a bimodal response when applied to
a roof edge. In the vicinity of junctions it often leaves gaps
or hallucinates non-existing edges. Similarly, most corner
detectors find L-shaped corners, but create multiple or no
responses for more complex junctions. The spurious re-
sponses of each detector for features of the “wrong” kind
show up as artifacts in the combined signal. This makes a
reliable interpretation of the combination very difficult.

Therefore, the responses of each operator are usually
transformed into a symbolic form (e.g. edgels and corner
points) and then combined by some grouping procedure.
In the most common case, only edgels are considered. By
means of proximity and continuity criteria, edgels are linked
into a boundary graph. Grouping heuristics are needed to
close gaps at junctions, merge nearby double edges result-
ing from lines etc. [2,15]. Unfortunately, these heuristics of-
ten make mistakes that lead to unstable or erroneous bound-
ary graphs. Combining edge and corner detectors doesn’t
help either, because the corners signalled by standard cor-
ner detectors are severely displaced from their true locations
(typically 2-3 pixels [14]) so that again unreliable heuristics
are needed to tell which corner belongs to which edge [4].

In this paper, we propose the boundary tensor as a new
approach to integrated boundary detection. It shall have
the following properties: (i) It provides rotationally invari-
ant edge and corner / junction strength measurements whose
sum is an integrated boundary strength. (ii) It allows the es-
timation of the orientation and sub-pixel location of edges.
(iii) It reacts uniformly to both step edges and roof edges.

2. Prior Work

To solve the integration problem, it would be most natu-
ral to combine features at the signal level. One possibility
for signal level integration is the quadrature filter approach,
e.g. [8]. Here, the responses of a pair of even and odd sym-
metric filters are combined into an edge energy which has
the same magnitude irrespective of whether there was a step



or a roof edge. In order for the integration to work, the filters
must be related by the Hilbert transform:

F [kodd] = −j sign(u)F [keven] = −j
u

|u|
F [keven] (1)

where F denotes the Fourier transform, u is the frequency
coordinate, and j the imaginary unit. However, this for-
mula only applies to 1-dimensional signals. There are sev-
eral ways to generalize it to 2D, but none of them is com-
pletely satisfying. The most common one is to use an ori-
ented quadrature filter pair that is locally tuned to the ori-
entation of the edge under investigation. Orientation tuning
can be realized very efficiently by means of steerable fil-
ters [7]. Quadrature filters elegantly solve the integration
problem for step end roof edge detection, but leave open
the corner / junction problem. At a corner / junction loca-
tion, there often is no clearly defined local orientation, so
that orientation tuning becomes unstable.

A possibility to detect edge and corner information si-
multaneously is the use of 2nd order tensors. In image anal-
ysis, the structure tensor is the most popular one:

StructureTensor =

(

g2
x gxgy

gxgy g2
y

)

(2)

where gx and gy are the components of the gradient of the
image (calculated by a suitable gradient filter) and the bar
denotes spatial averaging (usually by means of a Gaussian
filter). The trace of the tensor encodes boundary strength,
and its orientation is perpendicular to the local edge ori-
entation. While the gradient itself encodes only step edge
information, the averaging distributes this information over
a neighborhood, and points that receive contributions from
edges with multiple orientations are considered junctions.
This can be decided by looking at the tensor’s eigenvalues:
if they are about equal, the local structure is “intrinsically
2-dimensional” , i.e. a corner or junction, otherwise it is “in-
trinsically 1-dimensional”, i.e. an edge.

While this approach is very useful for corner detection
[9,14], it also has several disadvantages: First, it cannot han-
dle roof edges. Second, it tends to give multiple responses
for junctions with degree higher than 2. Third, the isotropic
smoothing employed by definition (2) does not only pro-
duce the desirable corner responses, but also leads to an
undesirable blurring of the edges. The last problem could
potentially be solved by means of unisotropic tensor diffu-
sion [16], but we are not aware of any systematic investi-
gation of this possibility in the structure tensor context. As
to the first problem, Granlund and Knutsson [8] proposed
a method to derive tensors from the responses of a fam-
ily of oriented quadrature filters. These tensors encode step
and roof edge information simultaneously. Their behavior
on edges has been intensively studied, but the suitability for
corner / junction detection has apparently never been inves-
tigated.

3. Mathematical Preliminaries

Since we want to derive rotationally invariant boundary
strength measures and estimate edge orientation, we need
a well-defined way to describe the behavior of our image
measurements under rotations. This makes 2-dimensional
Cartesian tensors a natural representation choice. A 2p tu-
ple of real numbers [Ti1...ip

, ik = 1, 2] is called a Carte-
sian tensor of order p in 2-dimensional space, if a Euclidean
coordinate transform (rotation and translation) induces the
following transform of the tensor elements (see e.g. [11]):

T̃i1...ip
=

2
∑

j1=1

· · ·

2
∑

jp=1

si1j1 . . . sipjp
Tj1...jp

(3)

where sij are the elements of the 2D rotation matrix:

(sij) =

(

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)

(4)

In particular, tensors of order 0 (also called scalars) are ro-
tationally invariant. Linear combinations of tensors of equal
order are again tensors. New tensors can also be formed by
means of the tensor product and tensor contraction:

Ti1...ip+q
= Ui1...ip

Vip+1...ip+q

Ti1...im−1im+1...in−1in+1...ip
=

∑2
j=1 Ti1...im−1j im+1...in−1j in+1...ip

The first operation transforms two tensors of order p and q
into a tensor of order p+q, while the second creates a tensor
of order p− 2 from a tensor of order p. Many common op-
erations, such as the squared norm of a vector or matrix, the
matrix product, and the trace of a matrix, can be expressed
as sequences of tensor products and contractions.

Tensors of order 2 are particularly suited for the simulta-
neous analysis of intrinsically 1D and 2D image structure.
A positive semi-definite symmetric tensor of order 2

T =

(

t11 t12
t12 t22

)

has two non-negative eigenvalues

λ1,2 =
1

2

(

t11 + t22 ±
√

(t11 − t22)2 + 4t12

)

(5)

which encode the magnitudes of the quantity of interest in
the directions given by the corresponding orthogonal eigen-
vectors ~e1 and ~e2. The orientation of ~e1 is

ψ =
1

2
arctan

(

2t12
t11 − t22

)

(6)

T can be decomposed into intrisically 1D (edge) and 2D
(junction) parts as follows:

T = Tedge + Tjunction = (λ1 − λ2)~e1 ~e1
T + λ2

(

1 0
0 1

)

(7)



λ1 − λ2 can be interpreted as an edge strength, and 2λ2 as
a junction strength. Formally, these quantities are obtained
by contraction of Tedge and Tjunction along the main diagonal,
i.e. by the matrix trace. They are thus rotationally invariant.

In order to construct tensors we have to combine raw fil-
ter responses in such a way that the transformation property
(3) is fulfilled. Thus, the filters must possess suitable angu-
lar behavior. In contrast, requirement (iii) from the intro-
duction – uniform reaction to step and roof edges – can be
considered a 2D generalization of the quadrature property
(1). This is esentially a constraint on the filters’ frequency
behavior, e.g. their radial shape. Since the angular and ra-
dial shapes should be optimized independently, it is natural
to use polar separable filters, e.g. products of angular and
radial functions. To facilitate optimization of the frequency
behavior, we define these filters in the Fourier domain:

K(ρ, ϕ) = Kϕ(ϕ)Kρ(ρ) (8)

where ρ, φ denote polar coordinates in the Fourier domain.
Filters whose angular part is proportional to sin(nϕ) or
cos(nϕ) are called polar harmonic filters. They are sepa-
rable in both the spatial and Fourier domains, with the same
angular function. Their inverse Fourier transforms are:

F−1 [cos(nϕ)Kρ(ρ)] (r, ϑ) =
jn

4π2
cos(nϑ)k(n)

r (r)

F−1 [sin(nϕ)Kρ(ρ)] (r, ϑ) =
jn

4π2
sin(nϑ)k(n)

r (r)

where r, ϑ are polar coordinates in the spatial domain. The
radial functions k(n)

r (r) do not only depend on Kρ(ρ), but
also on the order of the angular harmonic. They are obtained
by the nth-order Hankel transform Hn:

k(n)
r (r) = Hn[Kρ(ρ)] = 2π

∫

∞

0

Kρ(ρ)Jn(2πrρ) ρ dρ

where Jn(t) is the nth order Bessel function of the first kind:

Jn(t) =
1

2π

∫ π

−π

ej(t sin φ−nφ)dφ

A set of polar harmonic separable filters of the form
{(−j)ncos(nϕ)Kρ(ρ), (−j)nsin(nϕ)Kρ(ρ); n = 0, 1, ...}
will be called a polar filter family. The factor (−j)n is intro-
duced to make all filters real in the spatial domain, provided
Kρ is real. The filters in a family are angular modulations of
the same base filter, i.e. have the same frequency behavior.
The two filters with the same n form a pair. The result of
convolving an image f with a polar harmonic filter pair will
be called polar channel C(n):

C(n) =

(

C
(n)
1

C
(n)
2

)

=





f ?
(

1
4π2 cos(nϑ)k

(n)
r (r)

)

f ?
(

1
4π2 sin(nϑ)k

(n)
r (r)

)



 (9)

(? is the convolution symbol). Channel 0 is simply defined
asC(0) = f? 1

4π2 k
(0)
r (r). The set of polar channel responses

up to order n will be called the polar n-jet of the image f .
This term stresses the similarity to the standard n-jet intro-
duced by Koenderink et al. [6] which, however, is based on
derivatives rather than angular modulations of a base filter.

If the coordinate system is rotated, the polar channels
transform according to the steering equations (cf. [7]):

C
(n)
1,ϑ0

= cos(nϑ0)C
(n)
1 + sin(nϑ0)C

(n)
2

C
(n)
2,ϑ0

= − sin(nϑ0)C
(n)
1 + cos(nϑ0)C

(n)
2

(10)

whereC(n)
1,ϑ0

andC(n)
2,ϑ0

denote the components of the rotated
channel n. It should be noted that steerability is independent
of how the radial part of the filters is defined. It is only nec-
essary that the two filters of the same order (i.e. in the same
pair) have identical radial functions.

4. Definition of the Boundary Tensor

4.1. Tensors from Polar Filter Responses

Before we define the boundary tensor, we want to introduce
a number of simpler tensors that are created directly from
the polar filter responses. The simplest such tensor is the
channel 0 response itself: Since cos(0)k

(0)
r is a rotationally

invariant filter, C(0) is a 0th order tensor. If the radial func-
tion Kρ in the Fourier domain is a bandpass, the channel 0
filter can be interpreted as a generalized Laplacian opera-
tor. We get the standard Laplacian of Gaussian by further
restricting the bandpass shape to Kρ = −ρ2 exp(ρ2σ2/2).
A generalized Laplacian yields a high magnitude at points
of high mean curvature: roof edges and local extrema.

According to the steering equations (10), the compo-
nents of channel 1 fulfill the requirements of an order 1 ten-
sor. Since ∂

∂x
= cos(ϑ) ∂

∂r
and ∂

∂y
= sin(ϑ) ∂

∂r
, the first

derivatives of some radially symmetric kernel kr are spe-
cial cases of channel 1 kernels with k(1)

r = ∂
∂r
k

(0)
r . In other

words, channel 1 generalizes the gradient vector, and the
special choiceKρ = −jρ exp(ρ2σ2/2) yields the Gaussian
gradient. Therefore, channel 1 mainly responds at points of
high contrast, i.e. step edges.

The components of the channel 2 response can be used
to define a tensor of order 2:

T =

(

C
(2)
1 C

(2)
2

C
(2)
2 −C

(2)
1

)

(11)

The proof of the tensor property is straightforward when
the rotated channel responses are expanded by means of the
steering equations. We can again relate this to a well-known
differential quantity, namely the Hessian matrix, by adding



C(0) to the diagonal elements:

T (2) =

(

C(0) + C
(2)
1 C

(2)
2

C
(2)
2 C(0) − C

(2)
1

)

(12)

This is a tensor since T + C(0)I is a linear combination of
tensors (I is the unit tensor). The relationship to the Hes-
sian can be seen by defining second derivative filters in
the Fourier domain. According to the derivative theorem of
Fourier theory, the horizontal second derivative of a rota-
tionally symmetric spatial filter wr is:

F

[

∂2

∂x2
wr

]

= − cos(ϕ)2ρ2Wρ(ρ)

= −
1

2
(1 + cos(2ϕ))ρ2Wρ(ρ)

(13)

where Wρ(ρ) denotes the Fourier transform of wr. Inverse
Fourier transform yields

∂2

∂x2
wr =

1

8π2

(

ŵ(0)
r + cos(2ϕ)ŵ(2)

r

)

(14)

where ŵ(0)
r and ŵ(2)

r are the 0th and 2nd order Hankel trans-
forms of −ρ2Wρ(ρ) respectively. The result of convolution
with this filter is obviously a special case of the expression
C(0) + C

(2)
1 with the appropriate choices of radial func-

tions. Analogous arguments apply to the other components
of T (2). The generalized Hessian is sensitive to points of
high Gaussian curvature, i.e. roof edges, local extrema and
saddle points. In a similar way, one can define higher order
tensors, but these will not be needed in this paper.

4.2. Rotationally Invariant Quadrature Filters

The energy in polar channel n is defined as the sum of the
squares of the two filter responses in the channel. If the co-
ordinate system is rotated, the transformation of the squared
filter responses is given by the steering equations (10):

(

C
(n)
1,ϑ0

)2

=cos(nϑ0)
2
(

C
(n)
1

)2

+ sin(nϑ0)
2
(

C
(n)
2

)2

+ 2 cos(nϑ0) sin(nϑ0)C
(n)
1 C

(n)
2

(

C
(n)
2,ϑ0

)2

=sin(nϑ0)
2
(

C
(n)
1

)2

+ cos(nϑ0)
2
(

C
(n)
2

)2

− 2 cos(nϑ0) sin(nϑ0)C
(n)
1 C

(n)
2

By adding both equations, we see that the energyEn in ev-
ery channel is rotationally invariant, irrespective of the ra-
dial function k(n)

r :

En =
(

C
(n)
1,ϑ0

)2

+
(

C
(n)
2,ϑ0

)2

=
(

C
(n)
1

)2

+
(

C
(n)
2

)2

The meaning of these energies can be derived from the
tensor properties discussed in the previous section. E0 =
(C(0))2 is the squared response of a generalized Laplacian
operator and indicates local extrema and roof edges. E1 =

(C
(1)
1 )2 + (C

(1)
2 )2 is a generalized squared gradient magni-

tude and thus indicates step edges. In case of E2, a simple
calculation reveals that (C

(2)
1 )2 + (C

(2)
2 )2 = (λ1 − λ2)

2,
where λ1,2 are the eigenvalues of the tensor T (2). E2 is
large when the squared difference of these eigenvalues is
large, i.e. when one eigenvalue is large and the other is small
(roof edge), or both are large and have opposite signs (sad-
dle point). In other words, the energies up to order 2 encode
many of the most important structural image features.

We show now that certain linear combinations of polar
energies behave like quadrature filters. Quadrature filters
are characterized by the fact that their energy has a single
peak at an edge, irrespective of whether the edge exhibits
even or odd symmetry (i.e. is a roof or step edge). To gen-
eralize this to 2D, we define “intrinsically 1D images” by
the requirement that all sections in a certain direction ~n are
constant, whereas all sections perpendicular to this direction
have the same characteristic profile, i.e. f(~x) = g(~xT~n⊥).

Theorem 1 (Rotationally Invariant Quadrature Energy)
Let {En} denote the set of polar energies which are ob-
tained by applying a polar filter family with radial
component Kρ to an intrinsically 1D image f . Then all
sums of an even and an odd energy

Equadrature = El +Em, l ∈ {0, 2, . . .},m ∈ {1, 3, . . .}

are equal, independent of l and m. Equadrature is an intrinsi-
cally 1D image whose characteristic profile is identical to
the energy response obtained by applying a 1D quadrature
filter with frequency behavior Kρ to the original image’s
characteristic profile g.

Proof: Since the polar energies are rotationally invariant, we
can choose the orientation of the image profile arbitrarily.
Let the image vary in the horizontal direction (i.e. it is con-
stant along vertical sections). Then its Fourier transform is
only non-zero on the horizontal u-axis. Thus, only the filter
values on this axis, i.e. at angles 0 and π, have any influence
on the filter result. It holds that sin(n0) = sin(nπ) = 0, so

the sine components C(n)
2 vanish for all n. For the cosine

components we have cos(n0) = 1, cos(lπ) = 1 (as l is
even) and cos(mπ) = −1 (as m is odd). Therefore, for any
even l and odd m it holds along the horizontal u-axis that

K(l)(u) = ±Kρ(|u|)

K(m)(u) = ±(−j) sign(u)Kρ(|u|)

⇒ K(l)(u) = ±(−j) sign(u)K(m)(u)



Thus, except for the sign all even filters yield identical re-
sults, likewise all odd filters. Hence, the quadrature energy
is independent of l and m. Furthermore, the last expression
is identical to the defining equation (1) of a quadrature filter
pair in 1D (again except for the sign), so that a 1D qudrature
filter would yield the same energy profile.

Thus, we can say that pairs of even/odd channels gen-
eralize the 1D notion of a quadrature filter pair to 2D. In-
stead of two filters we now need four (unless l = 0, where
three are sufficient). In contrast to the standard approach to
2D quadrature filters which requires orientation tuning, our
quadrature filters provide a rotationally invariant energy re-
sponse. By combining even/odd channels of different or-
ders, we can construct infinitely many different such filters
even when the radial function is kept constant. This allows
us to select channels in such a way that we also obtain de-
sirable responses for corners and junctions.

Since linear combinations of rotationally invariant quan-
tities are still rotationally invariant, we can generalize the
above result even further:

Equadrature =
∑

l even

alEl +
∑

m odd

bmEm,
∑

al =
∑

bm

Any linear combination of polar energies is a rotationally
invariant quadrature filter as long as the coefficients of the
odd and even energies balance. It is interesting to note that
the monogenic signal which was introduced as the first ro-
tationally quadrature filter by [5], can be interpreted as the
simplest special case of our approach with l = 0 andm = 1.

4.3. The Boundary Energy

We have shown in section 4.1 that the polar 2-jet responds
to step and roof edges as well as local extrema (junctions
of roof edges) and saddle points (checker-board junctions
of step edges). Therefore, it is natural to base our integrated
boundary filter on the polar 2-jet. Although we do not ex-
plicitly arrange for the detection of all junction types (es-
pecially not T-junctions) it turns out that the boundary filter
is also able to detect them. On the other hand, dropping the
second order would be of no use because it would deprive
us of the possibility to detect saddle junctions and to deter-
mine the orientation of roof edges.

The boundary energy is now defined as the sum of the
channel energies up to order 2, where even channels receive
the weight 1

2 :

EBoundary =
1

2
E0 +E1 +

1

2
E2 (15)

Since the boundary energy is a linear combination of ro-
tationally invariant energies, it is itself rotationally invari-
ant. It also has the quadrature property for intrinsically 1-
dimensional features because the coefficients of odd and
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3rd order
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Figure 1: Top: Hankel transforms of order 0 to 3 for the
band-pass Kρ(ρ, σ) = ρ exp(−ρ2/2). The filter maxima
move towards higher radius as the order increases, and the
tails are longer than those of Gaussian derivatives. Bottom:
resulting polar harmonic filters up to order 2.

Figure 2: Left to right: original image (circular step and roof
edges); gradient magnitude; squared Laplacian; oriented
quadrature filter; boundary energy. Only the boundary en-
ergy yields a rotational invariant unimodal response for both
step and roof edges. Filtering is done in the Fourier domain
throughout the paper.

even order terms balance. It is an integrated detector for step
edges, roof edges, and junctions thereof. A model for these
features is implicitly defined by the choice of the radial fil-
ter function. Experimentally, we have found that good re-
sults are obtained if the radial function is chosen so that the
first order filters are the first derivatives of a Gaussian. That
is, we set Kρ(ρ, σ) = ρ exp(−ρ2σ2/2) in the Fourier do-
main, where σ is the filter scale. Figure 1 depicts this func-
tion’s Hankel transforms (i.e. the radial filter components
in the spatial domain) and the resulting spatial domain fil-
ters. It will be interesting to investigate whether the feature
model implied by this or other choices can be made explicit,
or if an optimal radial function can be derived by starting
from a particular model. Figure 2 compares several com-
mon boundary detectors and shows that only the boundary
energy yields a rotationally invariant unimodal response.

4.4. The Boundary Tensor

The edge energy defined above is a rotationally invariant
measure for the boundary strength at each image location.
However, this is not sufficient for a detailed characteriza-
tion of the local boundary type. Therefore, we combine the



components of the polar 2-jet into the boundary tensor. This
second order tensor should have the following properties: (i)
The trace of the tensor equals the boundary energy. (ii) The
eigenvalues of the tensor encode the oriented energy, mea-
sured along the two major tensor axes. Since the eigenvalues
encode energy they must not be negative. (iii) The eigenvec-
tor corresponding to the large eigenvalue indicates the local
orientation, which is the direction of maximal signal vari-
ation, i.e. the direction perpendicular to an edge. (iv) The
local strength of the intrinsically 1D information is given
by the difference of the eigenvalues, while the intrinsically
2D energy equals twice the small eigenvalue.

A suitable tensor for the first order (odd) information can
be defined by taking the tensor product of the generalized
gradient with itself:

T (odd) =

(

(C
(1)
1 )2 C

(1)
1 C

(1)
2

C
(1)
1 C

(1)
2 (C

(1)
2 )2

)

(16)

This tensor is analogous to the structure tensor (2), but with-
out the spatial averaging. It has the required properties: its
trace is the first order energy, it has a single non-zero eigen-
value whose value is identical to the energy (the other eigen-
value is 0), and the tensor orientation equals the direction of
the generalized gradient modulo π.

For the even components of the boundary filter we al-
ready defined the generalized Hessian (12). Although this
tensor contains the right kind of information it does not
itself fulfill all the above requirements, as its trace is not
an energy but an amplitude. However, this problem can be
solved by taking the (matrix) square of T (2):

T (even) = T (2)T (2) = (17)
(

(C(0) + C
(2)
1 )2 + (C

(2)
2 )2 2C(0)C

(2)
2

2C(0)C
(2)
2 (C(0) − C

(2)
1 )2 + (C

(2)
2 )2

)

This tensor indeed has the desired properties: its
trace equals the even energy E0 + E2, its orientation
1
2 arctan(C

(2)
2 /C

(2)
1 ) is identical to the orientation of the

second order filter, and the non-negative eigenvalues are

λ
(even)
1,2 =

(

C(0) ±

√

(C
(2)
1 )2 + (C

(2)
2 )2

)2

(18)

The eigenvalues also meet the requirements stated above:
An intrinsically 1D structure (roof edge) is signaled with the
same strength by both the zeroth and second order filters,
so that one eigenvalue becomes zero, and the other is equal
to the 1D (edge) energy. In case of a purely 2D structure,
either the zeroth or second order energies are zero (since we
have a saddle or a local extremum respectively), and both
eigenvalues become identical.

The complete boundary tensor is now defined by the sum
of the even and odd tensors, where the even tensor must

get weight 1
4 so that the tensor’s trace equals the boundary

energy:

T (Boundary) = T (odd) +
1

4
T (even) =

(

b11 b12
b21 b22

)

b11 = (C
(1)
1 )2 +

1

4

(

(C(0) + C
(2)
1 )2 + (C

(2)
2 )2

)

b12 = b21 = C
(1)
1 C

(1)
2 +

1

2
C(0)C

(2)
2 (19)

b22 = (C
(1)
2 )2 +

1

4

(

(C(0) − C
(2)
1 )2 + (C

(2)
2 )2

)

Boundary energy and local orientation can be calculated
form the boundary tensor as follows:

EBoundary = tr(T (Boundary)) = b11 + b22 (20)

ψ =
1

2
arctan

2C
(1)
1 C

(1)
2 + C(0)C

(2)
2

(C
(1)
1 )2 − (C

(1)
2 )2 + C(0)C

(2)
1

(21)

Equation (21) is a very interesting result: If the even en-
ergy is zero, ψ equals the gradient orientation, and if the
odd energy is zero, ψ is identical to the orientation of the
generalized Hessian. When both energies are non-zero, we
get an average between the two orientations.

When we decompose the tensor into edge and junction
parts according to (7), we get the following expressions for
the edge and junction energies:

EEdge =

√

√

√

√

√

√

(

(C
(1)
1 )2 − (C

(1)
2 )2 + C(0)C

(2)
1

)2

+
(

2C
(1)
1 C

(1)
2 + C(0)C

(2)
2

)2 (22)

EJunction = EBoundary −EEdge (23)

Figure 3 illustrates the boundary and junction energies for a
number of test configurations and compares them with the
gradient magnitude. It can be seen that the gradient is in-
ferior to the boundary energy at junctions: in case of line
junctions, the bimodal gradient responses give raise to mul-
tiple junctions, whereas for the saddle-point junction (row
4) it gives no answer at all. In contrast, single edges always
yield unimodal responses of the boundary energy. More-
over, the boundary tensor properly handles line termina-
tions and junctions with various edge angles, although a
model for these feature types was not explicitly build into
the tenseor. In case of a bar (Fig. 3 row 11), the boundary
energy gives a bimodal edge response if the curvature at the
bar’s centerline is significantly below the curvature at its
borders. It can also be observed that the junction energy has
always a local maximum at roughly the right location, i.e.
with a small offset from the true junction (we are currently
working on a quantitative analysis of this statement).
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Figure 3: Analysis of some test patterns. From left to right:
original image, gradient magnitude, boundary energy, junc-
tion energy (filter scale: approx. 1

4
line width).

The boundary tensor allows us to classify the local con-
figuration into different structure types. If the edge energy
exceeds the junction energy we consider the local structure
as edge-like. By comparing the contributions of the even
and odd energies, we can further distinguish roof and step
edges. If the junction energy is larger than the edge energy,
we have a corner or junction (however, accurate calculation
of a junction’s degree requires methods beyond the bound-
ary tensor approach). It should be noted that a junction is
also signaled when both the even and odd tensors alone in-

Figure 4: Left: original image (tiled wall of historic building,
enlarged); Right, top row: gradient magnitude and resulting
segmentation (detail below the window); Right, bottom row:
boundary energy and resulting segmentation.

dicate edges, but with perpendicular orientation (row 10 in
Fig. 3). In principle, the classification can be done for any
pixel, but it is, of course, most useful at boundary points,
i.e. after some kind of non-maxima suppression. Away from
the boundary, the boundary energy may be too small for the
classification to be meaningful.

5. Examples

In this section we demonstrate that the boundary tensor in-
deed produces good boundary descriptions on real images.
In the examples, we used filters based on the radial function
ρ exp(−ρ2σ2/2) with σ = 0.6. All filters were applied in
the Fourier domain. Standard non-maxima suppression and
hysteresis thresholding were applied to the calculated tensor
energies.

Figure 4 illustrates the superior junction detection of the
boundary tensor. It can be seen that the gradient-based seg-
mentation contains spurious regions at saddle junctions that
result from the gradient being zero at saddle points. The
boundary tensor-based segmentation does not contain such
artifacts. Figure 5 shows that the boundary tensor is in-
deed an integrated detector for both edges and junctions.
The edges and junctions shown were derived from the same
tensor measurements (using the edge and junction energies
respectively) and thus exhibit much less displacement than
standard edge and corner detectors.

6. Discussion

In this paper we proposed the boundary tensor as a new tool
for boundary analysis. The big advantage of the tensor ap-
proach is its ability to integrate edge and junction detection.



Figure 5: Top left: original image; top right: segmentation
by means of the boundary tensor (black: edges, white: cor-
ners/junctions); bottom: detail of segmentation.

By combining this approach with polar separable filters, we
were able to design a tensor that responds reasonably to
a wide range of different edge and junction types (includ-
ing T- and X-junctions). This also allowed us to prove that
the boundary energy, i.e. the trace of the boundary tensor,
acts as a rotationally invariant quadrature filter. Thus the
tensor is suited for both step and roof edge detection. The
tensor approach also facilitates integration of information
from several sources. For example, we could obtain a color
boundary detector by first calculating the boundary tensors
for each color band separately, and then adding the tensors
at each pixel (we cannot demonstrate this due to space lim-
itations).

Theorem 1 on rotationally invariant quadrature filters
sheds new light on the discussion of how the quadrature
property should be generalized to 2D. Currently, oriented
quadrature filters are used most often. Felsberg and Som-
mer [5] proposed the first rotationally invariant generaliza-
tion, the monogenic signal. Our analysis reveals that this is
just the simplest case among infinitely many possible gen-
eralizations which can be defined by weighting filter or-
ders differently. Apparently, the requirement of uniform re-
sponse to even and odd 1D structures is too weak to de-
termine how many filters are needed in 2D and how they
should be related. The extra degrees of freedom can be used
to define additional constraints for the detection of intrinsi-
cally 2D structures. In this paper, the weights were derived
from our decision to use filters up to order 2. This choice

is not yet optimal. First, the junction response is not always
unimodal. This means that the junction model implied by
our choice of filters does not yet cover all cases. Second,
at obtusely angled step edge corners above approximately
120 degrees, the junction energy does not exceed the edge
energy, so the corner is missed by our structure type classi-
fication.

Junction detection could be improved by including
higher order filters into the boundary tensor. But in practice
the design of good quality filters for orders≥ 3 is non-trivial
because the symmetry of the filters does no longer match the
symmetry of the sampling grid. Thus, it is difficult to obtain
filters that exhibit precisely the desired frequency behavior
and at the same time exactly fulfill the steering equations.
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