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Why do we need this method?

e Authors views
e Existing approaches

* A new approach
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Authors views

e

High performing

]

Discover new science ‘ .

Provide explanation Improve models
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Existing approaches

e Simplification
 Maximally activate neurons
* Find responsible parts

e See model as fixed
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A new Approach

-Model is learned

Prediction Training
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A new Approach

- Impact of training points

Prediction Training
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A new Approach

- Summary

How did the model come to its result?

\/
Which training points where most influential?

v

What would happen if we change the weights?
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How does it work?

 Approach

* |ssues
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Approach

- Fundamentals

Training points:
Z1, ., ZpWithz; = (x;, ;) EX X Y

empirical risk minimizer:

A .1
0 = argrglel(glﬁfva(zi, 6)
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Approach

- Formalizing the problem

) 1
O, = argmin NZ'{VL(ZL-, 0) + elL(z, 0)

= 0., -0

* Problem: retraining expensive
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Approach J

- Influence Functions

e concept in robust statistics (Hampel, 1974)
e effect of a change in one observation on an estimator (Kahn, 2015)
* Based on Gateaux derivative

Philipp de Sombre 12



Approach

- Influence of weight changes

Iup,params (z)
= —Hg 'VgL(z,6)

e Calculations for:
* [;p1oss using chain rule

* [hertloss analogous
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Issues J

- Efficiency

* We require Hg_l
* Training points: n, 6 eERP - 0(np® + p3)

% Hav Hz v

CG (Martens, 2010)

Pearlmutter, 1994
( ) SE (Agarwal et al., 2016)

Philipp de Sombre 14



Issues
- Efficiency

Predicted diff in loss
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|ssues
- Non-differentiable loss
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|ssues
- Non-differentiable loss

(b)

Predicted diff in loss
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What can it be used for?

* Applications

—



Applications

Debugging

b—4q
ldentifying mislabeled Ej

training data :
& Generating

adversarial training
examples
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Applications O
- Understanding model prediction
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RBF SVM
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Applications

- Understanding model prediction

Test example

RBF SVM

ANN

Most helpful training examples
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Applications

- Understanding model prediction

Further helpful example for ANN
8
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summary
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Ssummary

‘.

Based on training

e

@ O

Efficient calculation Global trends undetectable

o

Measure upweighting Many applications
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Sources - Assets

* Tachometer: by Freepik from www.flaticon.com

* Graph: by Gregor Cresnar from www.flaticon.com

* Magnifying glass: by Smashicons from www.flaticon.com
* Teacher: by Freepik from www.flaticon.com

* Lightbulb: by Freepik from www.flaticon.com

* Bug with target: by Freepik from www.flaticon.com

* Cats head: by Freepik from www.flaticon.com

* Magic wand: by Freepik from www.flaticon.com

* Clock: by Good Ware from www.flaticon.com

*  Money: by Pause08 from www.flaticon.com

* Pushups: by Freepik from www.flaticon.com

* Gears: by Freepik from www.flaticon.com

* Globe with arrow: by Freepik from www.flaticon.com

* Scale: by Freepik from www.flaticon.com

Philipp de Sombre

27



