"Methods for interpreting and understanding deep neural networks"

Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller 2017

Presented by Philipp Wimmer

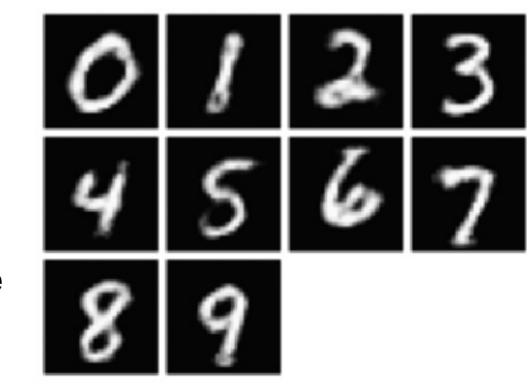
Motivation

- Understanding and validating deep neural networks is hard
 - Many parameters
 - Highly nonlinear
 - Interpratability wasn't a goal of DNNs
- Ability to validate is neccessary for understanding and real world applicability
- Example: Don't know if high prediction accuracy is due to anomaly in training data

Interpretation

An *interpretation* is the mapping of an abstract concept (e.g. a predicted class) into a domain that the human can make sense of.

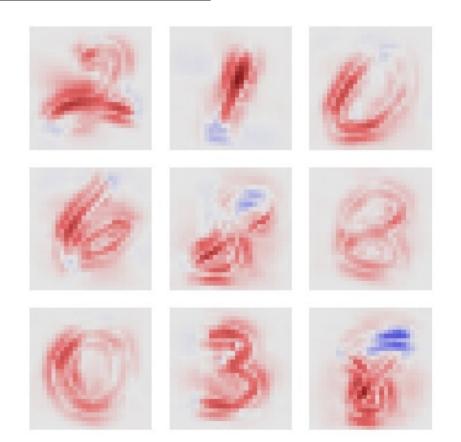
Goal: Producing a prototype



Explanation

An <u>explanation</u> is the collection of features of the interpretable domain, that have contributed for a given example to produce a decision (e.g. classification or regression).

Goal: Producing a heatmap



Part A: Interpreting

- Activation Maximazation (AM)
- AM with an expert
- AM in code space (using Generative Adverserial Networks)

Activation Maximization

• Producing a prototype via maximizing

$$\max_{\mathbf{x}} \log p(w_c | \mathbf{x}) - \lambda ||\mathbf{x}||^2$$

Class probabilities l^2 Regularizer

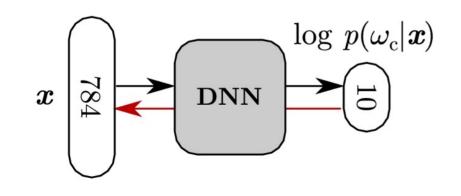
- Class probabilites modeled by the DNN are functions with a gradient
- Use gradient descent to maximize (just like training a DNN in reverse

Architecture of AM

- Simple to compute
- Regularizer preferes inputs close to the origin (mean of data)
- Unnatural looking protoype

architecture

found prototypes



simple AM

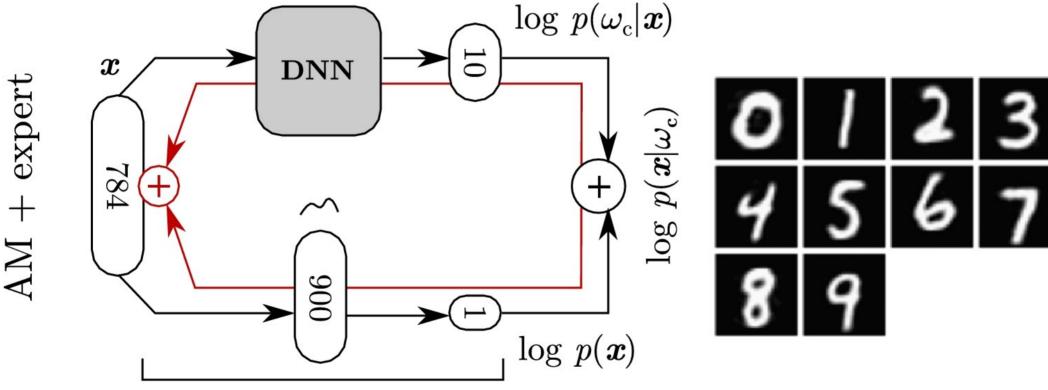
Improving AM with expert

• Replace regularizer with a more sophisticated approach

$$\max_{\mathbf{x}} \log p(w_c | \mathbf{x}) + \log p(\mathbf{x})$$

Class probabilities Model of the data

- Expert is the data density
- For example obtained by training an Gaussian RBM
- Often more complex density models are needed

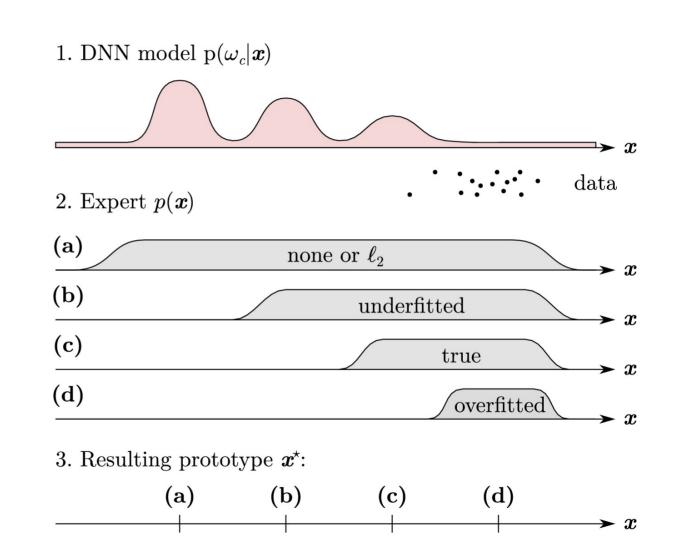


density function

(a) maximation of class probability function

- (b) favoring natural images – often sufficient.
 - (c) desired

(d) optimization of the expert itself, hides failure modes



Performing AM in code Space

- Often learning the expert to a high accuracy is hard
- Expert often very complex such that maximizing is difficult
- A solution is to not explicitly learn p(x)
- Instead sample from an code space with known distribution which was obtained by training an GAN

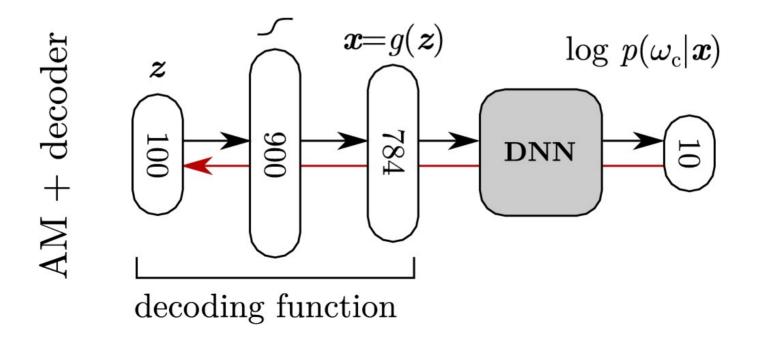
$$\max_{\mathbf{z} \in Z} \log p(w_c | g(\mathbf{z})) - \lambda ||\mathbf{z}||^2$$

Decoded point in
Code space

• Then apply decoding function to get a protoype

Performing AM in code space

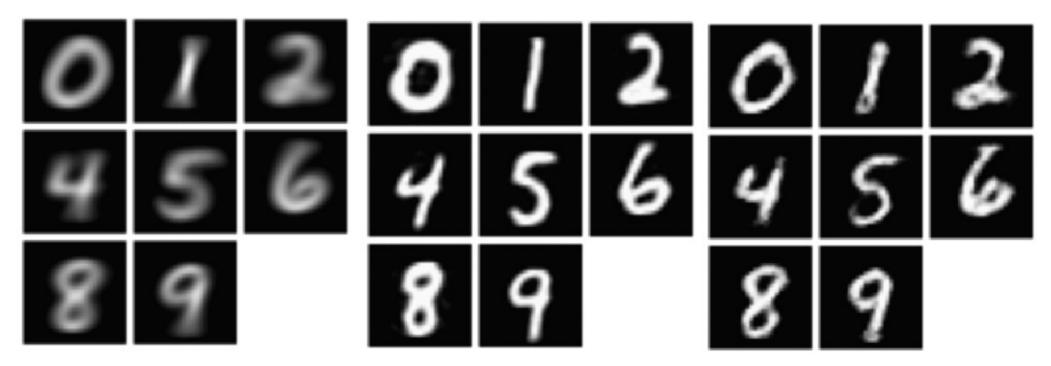
- Distribution in code space is by construction Gaussian
- Regularizer favors points with a high probability



Simple AM

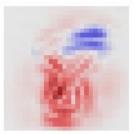
AM with expert

AM in code space



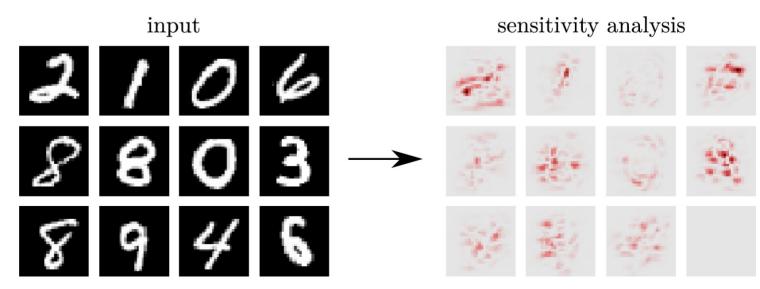
Part B: Explaining

- Sensitivity Analysis
 (Layerwise) Relevance Propagation



Sensitivity Analysis

$$R_i(\mathbf{x}) = \left(\frac{\partial f}{\partial x_i}\right)^2$$



Sensitivity Analysis

- Gradient is easily calculated via backpropagation
- The measured relevance score is not what is wanted
- Measures not the relevance, but the local slope of it

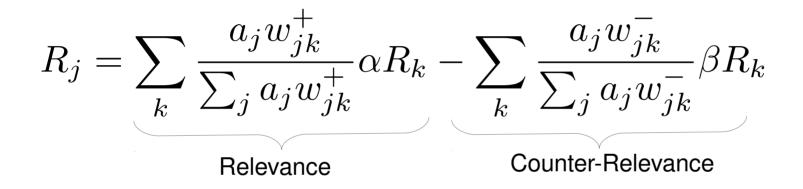
Relevance Propagation

- Make use of the graph structure of DNNs
- Propagate the relevance score backwards through the network is similar to the backpropagation of the error during the training phase
- Relevance has to be conserved (similar to current in an electric circuit)
- Local conservation at each neuron
- Filtering: Able to block the flow through certain neurons

(1)
$$a_k = \sigma \left(\sum_j a_j w_{jk} + b_k \right)^{\text{input}}$$

(2) $\sum_j R_{j \leftarrow k} = R_k$
(3) $R_j = \sum_k R_{j \leftarrow k}$
(4) $\sum_{i=1}^d R_i = f(\mathbf{x})$

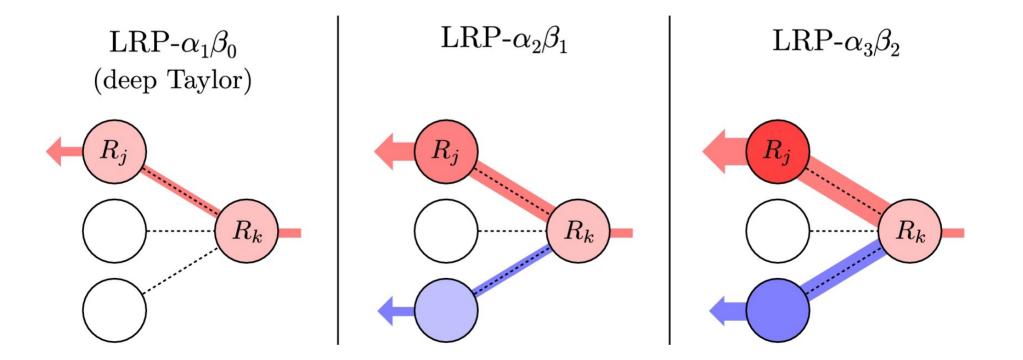
Propagation Rule



$$\alpha - \beta = 1, \beta \ge 0$$

Hyperparameters of LRP

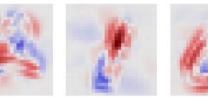
• Ratio of α and β determines the influence of counter variance

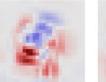


LRP- $\alpha_1\beta_0$

LRP- $\alpha_2\beta_1$

LRP- $\alpha_3\beta_2$







Conclusion

- Two methods for increasing post-hoc interpretability
- No need to change existing algorithms
- Enables better understanding and validation
- Should be in the toolbox of everyone using DNNs