
“A Review Of Game-Tree Pruning”
T.A. Marsland (1986)

AI for Games

Jessica Löhr
Matrikelnummer: 3467703

jessica-loehr@web.de

May 2, 2019

May 2, 2019 Jessica Löhr

Contents
1 Introduction 3

2 Prior Knowledge 4
2.1 Negamax . 4
2.2 Alpha-Beta Pruning . 4

2.2.1 Idea . 4
2.2.2 Algorithm . 5

2.3 Horizon Effect . 5

3 Enhancements 7
3.1 Quiescence Search . 7

3.1.1 Idea . 7
3.1.2 Algorithm . 7

3.2 Aspiration Window . 8
3.2.1 Idea . 8
3.2.2 Algorithm . 8

3.3 Principal Variation Search . 9
3.3.1 Idea . 9
3.3.2 Algorithm . 10
3.3.3 Move Ordering . 10

4 Conclusion 12

2

May 2, 2019 Jessica Löhr

1 Introduction
Back in the 1950s when alpha-beta pruning was invented it was a huge breakthrough
for machine playing. Since it greatly decreases the number of positions in a game tree
that needed to be evaluated in order to find the best possible move, engines became way
faster. Especially in games where the players have just limited time to make a move,
alpha-beta pruning greatly increased the performance of machine play. Even today, 50
years later, engines like the currently best chess engine Stockfish [3] use variations of
alpha-beta-pruning or methods that are based on its ideas.
In 1986, computer scientist Thomas Anthony Marsland released an article “A Review
of Game-Tree Pruning” [4] where he covers and evaluates different enhancements to
standard alpha-beta pruning. One of the main methods is the so called “Principal
Variation Search”, short PVS, for what he was a co-creator. PVS, along with some
other minor enhancements, belong to the methods that contribute to the strength of
todays chess engines. In this report i will explain these methods in more detail as well
as the problems that they still face. Before that i will give a short explanation of the
basics that are of relevance for the understanding of this report.
Since chess is a large area for these algorithms and the paper refers to chess as an
example, i will also cover chess specific examples.
Most of the pseudocodes are taken from the paper [4] and rewritten for todays standards.
Only quiescence search was taken from the page “https://www.chessprogramming.org/”
[2]

3

May 2, 2019 Jessica Löhr

2 Prior Knowledge
In this chapter i will shortly cover some background that is needed to understand the
enhancements. I assume that the reader knows about the minimax approach since there
already were several talks about it. If you need more detailed information about it, i
advise you to go read the reports of the corresponding talks or read the paper “Artificial
intelligence: a modern approach” [6] .

2.1 Negamax
The pseudo code of all algorithms that are covered in the original paper and this report
follow the so calles “Negamax” approach. It is a way to model the minimax search
without having to program the same code two times, one for the minimizing, one for the
maximizing player [1]. Instead it uses the mathematical condition, that maximizing a
function is equal to minimizing the negative function:

max(a, b) = −min(−a,−b)

All of the following code snippets use the negamax approach.

2.2 Alpha-Beta Pruning
Alpha-beta pruning is a simple recursive function to decrease the size of game trees. It
was invented in the 1950s and variations of it are still used even at strong chess engines
today.

2.2.1 Idea
The idea behind the algorithm is quite close to how humans actually think. The two
parameters α and β represent the values of the moves that are currently, for α, the worst
or, for β, the best the algorithm found. Humans would understand α as a lower bound,
what means that if he calculates a move that leads to a line with a result worse than α,
he does not need to examine that line any further. Otherwise, assuming perfect play of
the opponent, the game tree would result in a score under α what is obviously not the
best result the player could reach. It behaves similar with β. β can be understood as
the lower bound for the opponent, what means that moves above β lead to results that
are too good so that the opponent will not choose that line. Hence the player would not
need to examine that line. Of course this again assumes perfect play of the opponent.
So to keep it short, the alpha-beta algorithm looks for the best possible α without paying
attention to sub-trees that lead to a score that exceeds β.

4

May 2, 2019 Jessica Löhr

2.2.2 Algorithm
The algorithm takes the start position, α and β bounds and the current depth as input
and returns the score for the input position.

Algorithm 1: AlphaBeta
Input: position, α, β, depth
Output: score

1 int score, j, value;
2 postion[] posn;
3 if depth == 0 then
4 return evaluate(p) ;
5 posn = generate(p);
6 if posn.isempty() then
7 return evaluate(p);
8 score = −∞ ;
9 for j = 0 to posn.size()-1 do

10 Make(posn[j]);
11 value = -AlphaBeta(posn[j], -β, -max(α, score), depth-1);
12 if value > score then
13 score = value;
14 Undo(posn[j]) ;
15 if score ≥ β then
16 break ;

17 return score ;
Before the actual alpha-beta part starts, it is checked weather the current node is a

leaf node, since the result of evaluation function of that node needs to be returned then.
Also those positions are generated that result from all legal moves. If there are none,
the game is finished and also the result of the evaluation function returned. Then the
actual alpha-beta algorithm starts. The algorithm iterates over all possible following
positions and stores the value of the best continuation in a variable score. In line eleven
the negamax approach is used to start the alpha-beta algorithm for the child node in
order to get the score of it. Line twelve checks if ithat value exceeds α, since we want
to keep that value then. Line fifteen checks for a β cutoff. The functions Make() and
Undo() are self-explanatory and refer to ḿaking a move and taking it back.

2.3 Horizon Effect
The horizon effect is a phenomenon that occurs due to limited search depth. It appears
if the line that is calculated as the best line will be refuted some moves later. The
algorithm could not detect the refutation since the refutation lies beyond the chosen
search depth. On the other hand the search depth can not just be set to the total

5

May 2, 2019 Jessica Löhr

number of moves in a game because the algorithm would then take too much time to
determine. Even if that calculation power was available, in some cases it would still not
determine, for example when there is a “Dauerschach” in chess. So the horizon effect
can not be avoided when using standard alpha-beta pruning or any algorithm that uses
a fixed search depth in general. Methods that avoid the appearance of the horizon effect,
such as quiescence search, will be covered in chapter three.

6

May 2, 2019 Jessica Löhr

3 Enhancements
In this chapter, the enhancements of alpha-beta pruning will be explained. The several
sections for the algorithms are split into subsections, where i will explain the main idea
first, followed by a pseudocode with explanation and a short conclusion at the end.

3.1 Quiescence Search
Quiescence Search is an approach that avoids the horizon effect by omitting a parameter
for the search depth.

3.1.1 Idea
Core idea is that instead of using a fixed search depth, those moves will be examined
that lead to a heavy change of the value of the sub-tree. The algorithm in general
terminates when positions are reached where the values will not show immense changes
when traversing deeper through the tree, in other words when the position becomes
“quiet”. For chess this means that all capture moves will be examined. Since the opening
of a game might only consist of quiet positions, pure quiescence search is of course not
suitable for being used alone and should thus only be used as an enhancement for other
search algorithms. It is usually called instead of the evaluation function at the end of
another algorithm after it performed the main search to avoid the horizon effect [5].

3.1.2 Algorithm
As mentioned before, quiescence search lacks the depth parameter. Instead it traverses
the tree deeper until the position becomes “quiet”. In this case for chess, capture moves
are most likely to refute a line and thus examined in this algorithm. The algorithm
terminates when there are no capture moves in the position available.

7

May 2, 2019 Jessica Löhr

Algorithm 2: Quiescence
1 [2] Input: position, α, β

Output: score
2 value = evaluate(p) ;
3 if value ≥ β then
4 return β ;
5 if α <value then
6 α = value ;
7 capt = generateCaptures(p);
8 for i = 0 to capt.size() do
9 Make(capt[i]) ;

10 score = -Quiescence(−β, −α);
11 Undo();
12 if score ≥ β then
13 return β ;
14 if score > α then
15 α = score ;
16 return α ;

3.2 Aspiration Window
3.2.1 Idea

Piece Value of piece in pawns
Pawn 1
Knight 3
Bishop 3
Rook 5
Queen 9

In alpha-beta search, ∞ and −∞ are used as ini-
tial bounds. Aspiration search tries to estimate those
bounds by trying to estimate the value of the position
that needs to be evaluated. In chess this could be done
by using a window around the material balance, which
is calculated by subtracting the sum of the values of the
material of player A from those of player B. The table
on the right shows the value of pieces in chess. Of course
this just a rough estimation of the position and does not
a cheap replacement of the evaluation function, since the
value of a position is way more complex than just the material balance. That is why an
error rate e has to be estimated.

3.2.2 Algorithm
This function calls the alpha-beta function with optimized bounds:

8

May 2, 2019 Jessica Löhr

Algorithm 3: AspirationSearch
1 α = V - e ;
2 β = V + e ;
3 V = AlphaBeta(p, V, +∞, depth);
4 if V ≥ β then
5 V = AlphaBeta(p, V, +∞, depth);
6 else
7 if V ≤ α then
8 V = AlphaBeta(p, −∞, V, depth);

3.3 Principal Variation Search
Its increase in performance comes from the assumption that the best move is the first to
be evaluated. That also means that PVS is able to prune the most amount of branches
if the moves are ordered.

3.3.1 Idea
Core idea behind PVS is that is it easier to determine if a subtree will lead to a cutoff
instead of calculating its exact value and the assumption that the first examined move
is also the best. Thus, before traversing through the tree further, a null-window search
of the correspoding sub-tree is performed first. Null-window search means that the α
and β bounds are set to α = α and β = α+ 1. Even if that means that the search will
always fail, we will be able to determine if the search will cause a β cutoff or lies under α
instead. If it fails high, the sub tree does not need to be searches any further, otherwise
if the result is also about α of the node that started the null-window search, the sub-tree
will be searched again with the result of the null-window search as α and β as β bound.

9

May 2, 2019 Jessica Löhr

3.3.2 Algorithm

Algorithm 4: PVS
Input: position, α, β, depth
Output: score

1 int score, j, value;
2 postion[] posn;
3 if depth == 0 then
4 return evaluate(p) ;
5 posn = generate(p);
6 if posn.isempty() then
7 return evaluate(p);
8 score = -PVS(posn[0], −β, −α, depth-1);
9 for j = 1 to posn.size()-1 do

10 if score ≥ β then
11 break ;
12 α = max(score, α) ;
13 value = -PVS(posn[j], −α-1, −α, depth-1);
14 if value > score then
15 if (α < value) & (value < β) & (depth > 2) then
16 score = -PVS(posn[j], −β, -value, depth-1) ;
17 else
18 score = value ;

19 return score ;
Main difference to alpha-beta pruning lies in line eight and thirteen. In line eight

you can see that the first move is considered as the best and all following values will
be compared to this score, unlike in the alpha-beta algorithm where score is assigned
to −∞. In line thirteen the null-window search is performed. Only if the result of this
search is within the bounds of the parent node that started the null-window search and
still better than score, the branch is worth visiting again. This re-search is then done
with bounds that allow a successful search.

Remember that even though the code is more complex and branches might be searched
twice, the duration for the evaluation of the whole tree will greatly decrease since less
evaluation functions of the leaf nodes need to be called and that those functions are the
most expensive part of the evaluation.

3.3.3 Move Ordering
As already mentioned, PVS works best if moves are ordered and the first searched move
is also the best one. Move ordering in chess makes use of the fact, that good moves are
those that refute a line, or cause a cutoff in other words. Technically, often different

10

May 2, 2019 Jessica Löhr

types of tables are used, that somehow store how likely a move is to refute a line. As
already mentioned for quiescence search, capture moves are most likely to cause such a
refutation. The first implementation for this is the so called killer heuristic that stores
the two moves that are most likely to cause a refutation for every depth of the tree. A
method that is more common today is the so called history heuristic that keeps track
not only of the two moves that are most likely to refute a line, but of the frequency for
all legal moves to refute a line. This is implemented by a 64 x 64 table, where the first
entry stands for the source and the second one for the target position.

11

May 2, 2019 Jessica Löhr

4 Conclusion
The paper introduces several methods to enhance alpha-beta pruning. The algorithm
can be enhanced in two ways:

1. improvement so that more branches can be pruned and a saving of time is achieved

2. improvement so that the search depth is higher and possible refutations can be
uncovered timely

For the first improvement, several algorithms were introduced that changed the initial
bounds of alpha-beta pruning. While alpha-beta pruning starts with infinite bounds,
other algorithms such as PVS introduce null windows and the assumption that the first
move is the best, to achieve more β-cutoffs. For that, also different move ordering mech-
anisms were introduced. Others like aspiration search try to estimate the value of the
current position by using different heuristics that the game board offers, such as material
balance, to select suiting bounds.
To avoid playing a move, whose refutation lies beyond the search depth, a method of
iterative deepening was introduced: quiescence search. Since it is commonly used at the
leaf nodes of the line we want to play, the horizon effect that was a big deal in alpha-beta
pruning can easily be avoided.
To obatin the best result, engines use a mixture of all those methods.

All the methods that were discussed here have a big influence on game engines today.
Stockfish, the currently strongest chess engine, for example still uses a mix all methods
that were listed here [3]. Of course it also uses several more advanced methods, but the
fact that methods that were known about 40 years ago still appear in todays engine is
quite impressive.

12

May 2, 2019 Jessica Löhr

Bibliography
[1] Hamed Ahmadi. Negamax. http://www.hamedahmadi.com/gametree/.

[2] Chessprogramming.org. Quiescence search. https://www.chessprogramming.org/
Quiescence_Search".

[3] Chessprogramming.org. Stockfish. https://www.chessprogramming.org/
Stockfish.

[4] T. A. Marsland. A review of game tree pruning, 1986.

[5] Bruce Moreland. Quiescence search. http://web.archive.org/web/
20070813042640/www.seanet.com/~brucemo/topics/quiescent.htm.

[6] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach, 2016.

13

