Evolutionary algorithms for Controllers in Games

23.05.2019
AI for Games
Oliver Mautschke
Overview

• Motivation
• Introduction to Evolutionary Algorithms
• Neuroevolution
• Evolving Behavior Trees
• Super Mario
• Conclusion
Motivation

An example for an use case of evolutionary algorithms [1]
Introduction to Evolutionary Algorithms

Select Parents

Fitness

Crossover

Mutation
Introduction to Evolutionary Algorithms

• Evaluate Fitness
 • Examples: Traveled Distance, Survived Time, Highscore

• Select Parents
 • Fortune Wheel, Tournament Selection

• Recombination
 • N-Point Crossover, Unified Selection

• Mutation
 • Bit-Flipping, Adding a delta
N-Point Crossover

N-Point Crossover [2]
Neuroevolution

• Double Pole Problem was THE Benchmark for Controller Problems
• There is no loss
• Archived Time is the fitness

Double Pole Balancing Problem [3]
Neuroevolution – The Concept

• Encoding an ANN as a genome
• Applying genome to a task and measure their performance
 • The difference to "classical" optimization approaches for ANNs: Not the output loss is used, but the overall performance on a given task
• Evolving the ANNs by optimizing the weights and/or topology
• Mathematical optimization of RNNs is a hard task
• NE can be used to evolve RNNs efficiently
Neuro Evolution of Augmented Topology

- Starting from a simple ANN
- Adding new nodes/connections and change the weights
- Speciation
- Enabling & Disabling connections
- Innovation Numbers
Neuro Evolution of Augmented Topology

Concept of NEAT [4]
Behavior Trees

- Encoding behavior of a controller
- Action Nodes:
 - Leafs
 - The final decision
- Condition Nodes:
 - If-else-statement
 - Branching nodes

Behavior Tree example [5]
Evolving Behavior Trees

• BTs get encoded via a context-free grammar into an array
• The array is used as a genome
• Crossover: Swapping subtrees of parents
• Mutation: Randomly replace nodes
Super Mario
Using GAs for Super Mario - FSM

Triggers
• Seen an enemy
• Seen an obstacle
• Seen nothing
• Seen enemy & seen hole
• Seen enemy & seen obstacle
• Seen hole & seen obstacle

State Machine [6]
Using GAs for Super Mario – Learning Levels

• A genome encodes a whole level
• The genome is somehow the key for a level
• Through Evolutionary Algorithm the genome is evolved
Using GAs for Super Mario – Learning Levels

• One game lasts for 200 seconds
• Discretized in 15 ticks → 3000 actions per game
• With 22 possible actions → 22^{3000} possible combinations

• Fitness: Distance + Killed Enemies + Collected Items

• Result: 12.000 points on average, 2010 Mario AI Championship Winner had 9000 points on average
Using GAs for Super Mario – Learning Levels

Combinations of Buttons [8]
Using GAs for Super Mario – NEAT

- Using NEAT to evolve a controller
- Input: 16x13 grid of view
- Output: 6 Buttons as Bit-Vector

Controllers were able to solve a level after 35 generations

Fitness: Distance

Super Mario learned with NEAT [8]
Using GAs for Super Mario – EBT

- Using a grid around Mario
- Entry can be enemy, block or empty
- Additional information:
 - Can Mario jump?
 - Is Mario on the ground?
- In the paper, they compared it to NEAT, using the grid as input

Fitness: Distance
Resulting Behavior Tree [5]
Conclusion

• Evolutionary Algorithms and Neuroevolution are a good approach for every Task where no perfect strategy is known

• GAs and NE can be used if a solution can be encoded as genome and a the performance of a solution can be rated

• GAs can find unusual solutions and are capable to cover a wide behavior diversity

• BUT: GAs need a lot of computing power and the parameters have to be optimized by hand in order to make the algorithm reach a good solution
References

Visted: 21.05.19

[6] Infinite Mario Bross AI using Genetic Algorithm
