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1 Introduction

A convolutional neural network is a class of deep, feed-forward that is mostly
applied to analyze visual imagery. They use a variation of multilayer perceptron
that is designed to minimize preprocessing, since they have a shared-weight ar-
chitecture which is inspired by the biological vision system that uses the same
knowledge on all locations in the image.
They have achieved remarkable progress on numerous practical vision tasks.
The stacking of convolutional filters and non-linearity units in combination with
other techniques such as max-pooling imply a difficulty of understanding the
internal organization of neural networks. Thereby current neural networks are
widely regarded as ”black box”.
The human vision system shows a much higher interpretability during the recog-
nition since humans can describe how a system is designed of many parts and
how they unite to a whole and thereby describe the part-whole relationship as
well as name cues such as the shape, color and texture for their final decision.
The capsule network is inspired by the way a rendering system works which
describes a specific entity with a pose. For a 3 dimensional space 4 dimensional
matrices are used in a rendering system and from this pose matrix it is possible
to get the positional arrangement or pose matrix of all smaller parts it consists
of by a simple matrix multiplication with a transformation matrix which de-
scribes the viewpoint invariant part-whole relationship as can be seen in figure
1.

Figure 1: Pose matrices representing the hierarchical relationship.
P : pose matrix of the person.
M : spatial relationship between face and person
N : represents the relationship between mouth and face.
M ′ and N ′: pose matrices for the face and the mouth

A capsule uses grouped scalars as pose to represent the instantiation param-
eters (or properties) of the entity or part the capsule is describing. Based on
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this pose of the capsule it gives a vote for the capsules in the higher layer which
is computed by matrix multiplication of the pose with a learned transformation
matrix. When viewpoint or the position of the object changes the pose matrices
of the parts and wholes will change in a coordinated way and the agreement
between the votes of the parts for wholes will persist.
The network then uses high dimensional coincidence filtering to find tight clus-
ters of votes from the parts ( lower level capsules) for the wholes (higher level
capsules) thereby comes the name of this algorithm: ”routing by agreement”.
This procedure is using weights or probabilities which describes which part is
assigned to which whole based on the similarity of the votes from other parts
assigned to the same whole. If there is a substantial amount of votes that have
a high agreement for a certain capsule this capsule will be activated.
This activation of a capsule thereby is very similar to a measurement of agree-
ment of the votes, thereby capsules with low agreement have a low activation
and will be neglected in the routing procedure for the next level of capsules.
Thereby the routing procedure filters out irrelevant information while it keeps
the spatial relation of the parts.
Thereby the capsule network structure works analogously to the already under-
stood rendering algorithm which makes it more interpretable than a standard
neural network. Also the structure of the activations is very similar to a parse
tree where each activation corresponds to a a node of a parse tree. By using
the dynamic routing algorithm each active capsule will choose a capsule in the
higher layer to be its parent in the tree. This way the dynamic routing proce-
dure solves the problem of assigning parts to wholes.
This leads to an important difference of capsules and standard neural networks
which is that the activation of a capsule is based on comparing multiple in-
coming pose predictions in difference to the standard neural network where the
activation is based on a comparision between a single incoming activity vector
and a learned weight vector.
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2 Theory of capsules

The routing procedure of the capsules is the replacement of a simple non-
linearity such as ReLU that standard neural networks apply to the activation.
The routing procedure computes the activation and pose of the capsules in the
next layer based on the activations and poses of the lower layer which makes it
much more complicated.
Each capsule consists out of an activation probability denoted as a and a 4× 4
pose matrix M . The activations of the capsules are very similar to the ac-
tivations in a standard neural net with the exception that they belong to a
capsule which has also the pose to describe the entity which means that a cap-
sule describes much more than the simple occurance of a certain muster in the
activations of the lower layer. The capsule network is build with several layers
of capsules and all capsules in layer L are denoted as ΩL. Between to adja-
cent layers of capsules L and L + 1 there is a learned transformation matrix
Wij ∈ R4×4 for every pair of capsules i ∈ ΩL and i ∈ ΩL+1. The vote from
capsule i to capsule j is computed with a simple matrix multiplication of pose
and transformation matrix:

Vij = MiWij (1)

The activations ai and votes Vij for all capsules i ∈ ΩL and j ∈ ΩL+1 are then
used in the routing algorithm to compute the activations aj and poses Mj in
ΩL+1. So the routing algorithm decides where the output of the capsule goes
which is in standard neural networks learned with weights.
The dynamic routing by agreement algorithm uses a routing coefficient that
is dependent on the input and gets computed dynamically. Thereby capsule i
gets assigned to a capsule j that has the best fitting cluster of votes for its pose.
An example of this can be seen in Figure 2.

Figure 2: Example of the dynamic routing procedure with a simple boat. With
the different parts of the boat it is possible to arrange both a house and the
boat. Based on the different predictions from the parts the wholes look very
different and the parts get assigned to the boat with the routing coefficient
since the votes for its pose have the highest agreement

The routing algorithm that gets proposed in the paper [HSF18] is based on
the Expectation-Maximization procedure. It computes means, variances and
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activation of the capsules in Layer L probabilities iteratively as well as the rout-
ing coefficients between all capsules i ∈ ΩL and j ∈ ΩL+1.

3 Routing by agreement based on EM

When given the activations and poses of all capsules in ΩL the routing algorithm
decides which capsules to activate in ΩL+1 and how to assign every capsule in
ΩL to one capsule in ΩL+1. This is what leads to the parsing tree like structure
of the network since to activate capsule j in ΩL+1 many capsules in ΩL have
to be assigned to capsule j and thereby leads to a compression of information
which is still well described due to the fact that capsule j describes an entity
which consists out of the parts of the capsules that get assigned to it.

For the EM-Algorithm each capsule in ΩL+1 corresponds to a Gaussian where
the pose of each active capsule corresponds to a data-point. The choice of acti-
vating capsule j is made differentiable by introducing a cost of explaining data
point i by using capsule j where h is the hth dimension of the vectorized vote
Vij :

costj|i = −
∑
h

ln(Ph
i|j)

Ph
i|j =

1√
2π(σh

j )2
· exp(−

(V h
ij − µj)

2

2(σh
j )2

)
(2)

V h
ij : hth dimension of the vectorized vote Vij

µj : mean of the fitted gaussian

σj : variance of the fitted gaussian under the assumption of an axis aligned
covariance matrix

How µj and σj are computed is shown in figure 3 alongside the routing algo-
rithm. The routing coefficient rij has the following property which makes it a
possible way to view how information flows through the network:

ai =
∑
j

rij (3)

This is the reason why the cost is weighted with the routing coefficient since a
capsule with a low activation has no big impact on the routing procedure. The
activation of the higher level capsule then is computed with the logistic function
of the cost:

aj = logistic(λ(βa − βu
∑
i

rij − costj))

costj =
∑
i

rijcostj|i =
∑
h

(ln(σh
j ) +

1 + ln(2π)

2
)
∑
i

rij

(4)

βa : trained parameter for all capsules
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βu : trained parameter for one capsule∑
i rij : amount of data assigned to capsule j

Capsule j thereby only is activated when σj is small enough and
∑

i rij is big
enough this corresponds to a tight cluster of votes with sufficient capsules from
ΩL inside the cluster with very importantly relatively high activations.
The final pose and activation for all capsules in ΩL+1 are computed by running
the EM algorithm for a set amount of iterations with set poses and activations
in ΩL. So it takes not only the likelihood but also the pose/spatial arrangement
of the parts into the decision and by this the weighted mean µj which is the
pose of MJ after the final iteration has a very small deviation from the votes
that have a high routing coefficient. The algorithm is a form of cluster finding
which is very similar to the traditional EM algorithm.

Figure 3: EM-Routing

4 Capsule Architecture

When using a capsule network one of the most important tasks is it to have
good low level features in the low capsule layers and how to get those low
level capsule features. This is why the first few layers of a capsule network are
composed of convolutional layers which extract the low level features. Behind
the convolutional layers the primary capsules are used to turn the channel-wise
output of the convolutional layers into capsules. The method used is a simple
convolutional layer with a 1 × 1 kernel supposed it receives A input channels
from the previous layer and should create B different capsule types it will have
B · (4 · 4 + 1) output channels. The b · 1 additional channels are used to describe
the activation of the different capsules after applying the logistic function on
them.
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So to sum this up a primary capsule that receives an input with A channels
and size 15× 15 creates with a linear transformation B different capsule types
every one of them consisting of 4 · 4 + 1 channels and every capsule type exists
15×15 times which preserves the spatial arrangement. Important to note here is
that all capsules that belong to the same capsule type detect what the network
learned to be the same entity. Every single capsule thereby has a receptive field
on which its activation and pose is based.
This fact gets used by the next type of capsule the convolutional capsules which
utilize a kernel with size K just like a normal convolutional layer, but they work
just as described in 2 but as votes every capsule just gets the input from K×K
spatial arranged capsules per capsule type in the lower layer. Convolutional
capsules allow the model to create more complex features for the capsule types
very similar how a normal convolutional layer does it which allows the model
to make predictions based on better features. The last layer is the class capsule
layer where the are only D different capsules for D different classes. Every
capsule in this layer receives input from all capsules in the layer below. To
lower the amount of parameters every capsule type in the lower layer has the
same weights to one capsule in the class capsule layer. By adding the scaled
coordinate to the vote of every capsule according to its receptive field that the
model is able to distinguish between the same entity with the same pose but
in different places, this technique is called Coordinate Addition. The model
with some parameters can be seen in figure 4.

Figure 4: Capsule network architecture with the amount of parameters noted
between capsule layers.

4.1 Spread Loss

When training a wide network like the capsule network it can occur that only
a part of the width of the network actually is used, this would show itself in
this case when the network only uses a s very small amount of capsules. To
counteract this building of dead capsules in lower layers and make the training
less sensitive to initialization the the ”spread loss” is introduced to maximize
the gap between the activation of the target class at and the activation of the
other classes. It uses a margin m where if the distance squared distance between
them is smaller than m the loss of this pair is set to 0:

Li = (max(0,m− (at − ai)2)

L =
∑
i6=t

Li
(5)

This margin gets linearly increased from 0.2 to 0.9 during the training.
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5 Results

Since the capsule network is designed to be good at using the simple linear pose
changes for different viewing angles it is tested mostly on shape detection tasks
to showcase its advantages over traditional convolutional neural networks.

5.1 Results on smallNORB

The smallNORB dataset has 5 different classes of toy models: airplanes, trucks,
cars, humans and animals. Every class has 5 different toys photographed in
different positions and lightings as test and training data. The dataset consists
of 24,300 images with a resolution of 96 × 96 for the network those images get
downsampled to 48 × 48 and normalized. For the training they additionally
randomly crop 32× 32 patches with random added brightness and contrast the
test images are a 32×32 crop from the center. A for this task optimized tradition
CNN is trained in exactly the same fashion, it is referred to as Baseline CNN.
The results can be seen in figure 5

Figure 5: Results on the smallNORB dataset with varying amount of iterations
and comparision of the best models.

Based on these results it is safe to assume that the capsule network is a
superior method for pure shape recognition tasks compared to a traditional
CNN with a much lower amount of parameters. This capsule network also beats
the capsule network proposed in the paper [SFE17] which achieved a test error
rate of 2.7%. Also it shows that too many iterations of the routing algorithm
hurt the systems performance.

5.2 Generalization to novel viewpoints on smallNORB

To better test the generalization capacity of the capsule network it is only
trained on a small subset of different azimuths and elevations of the training
data and then tested on the unfamiliar viewpoints. The baseline CNN again
is trained in exactly the same way. Since the capsule network surpassed the
best accuracy on familiar viewpoints by a big margin which would make a
comparision very hard the capsule net is only trained to match the accuracy of
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the baseline CNN. The results can be seen in figure 6. This should show how
good the model learns the internal structure of the objects it should detect very
similar to how a human can generalize from a picture seen to many different
objects of the same class in different viewing positions which shows that he
understands the arrangement of the parts it consists of and has a model of the
object in his head.

Figure 6: Results of the generalization to novel viewpoints test on the small-
NORB dataset.

Since the gap in performance from familiar to novel viewpoints is much
lower for the capsule network it is safe to assume that it learns more about the
internal structure of the object and is able to generalize better which is also
supported by the fact that when fully trained on the smaller dataset surpasses
the performance of the CNN by a significant margin.

5.3 Results on other datasets

The very familiar NORB dataset which has relatively natural backgrounds but
still are grey images the capsule net achieves a 2.6% test error rate which also
beats the current state of the art with 2.7% by a very small margin. When ap-
plied to MNIST it has a 0.44% teat error rate which is worse than the capsule
net proposed by Sabour et al.1 which has 0.25% but it was not trained regular-
ized with a reconstruction loss which means the accuracy could get improved
with this technique. On the dataset Cifar10 the capsule network achieved a
test error rate of 11.9% which is relatively close to the test error rates of the
first CNN which where applied to this dataset but nonetheless it is clearly not
competitive with modern CNNs performance (with roughly 3− 4%. This leads
to one of the current drawbacks of the capsule network since it apparently does
not handle background and too much information which has to be filtered out
in an effective manner.

1SFE17.
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6 Capacity of the architecture

The capsule architecture right now has a few problems which keep it from
widespread application. The biggest disadvantage is the computational very
expensive routing algorithm between the capsules which makes training these
models very slow on the current generation of computational systems. Also the
method on how to compute the primary capsules is very important since it is
mandatory that they learn a good representation for the entity the represent so
they need to be computed with good features that maybe even filter out back-
ground to a certain degree to make up for the problem current capsule networks
have with it. Also they cannot detect two objects of the same class very near
to each other. Also they are difficult to scale to datasets with more classes and
higher dimensions due to the fact that capsules represent entities and therefore
for very different classes the model has to be potentially the be very wide with
a lot of different capsule types to construct very different classes out of these
entities.
Nonetheless the first results on this structure are very promising and it has
many advantages over a traditional CNN. Firstly it is for a human easier to
understand how the model makes the prediction since its activations are very
similar to a parse tree which is interpretable for a human and they can even be
interpreted as saliency for a specific region since the capsules have a receptive
field. Also the output of the pose for a capsule with a high activation is similar
to the feature space of an autoencoder as shown in the paper [SFE17]. The
training of a capsule network requires less training data since it learns internal
structures faster and thereby can better generalize to unseen data which is also
supported by the fact of a smaller amount of parameters which lowers the risk
of over fitting.
In recent papers there was made a great progress to make capsule networks more
efficient of effective for different tasks. For example was in the paper [Sai18]
instead of standard convolutional layers before the capsules a dense layer net
architecture implemented which boosted the performance of the system signifi-
cantly on CIFAR10. They also added a skip connection like structure by having
many layers of primary capsules. Thereby the feature learned in the primary
capsules were more complex than from a standard convolutional layer.
Another interesting paper [Bah18] did use SVD instead of an iterative routing
procedure which made the model less sensitive to initialization and hyperpa-
rameters as well as speeding up the convergence of the model.
In the paper [Ayu18] they achieved good results with a GAN that has a capsule
network discriminator that only differentiates between synthesized and real im-
ages on MNIST with promising results.
And lastly a U-Net like structure for object segmentation was created based on
capsule where they introduced deconvolutional capsules in the paper [Rod18].
They achieved state of the art results on the LUNA16 subset of the LIDC-IDRI
database which consists of medical image data with a 512 × 512 input which
means that their model is a first step towards capsule networks working with
larger inputs.
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7 Sources
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