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1 Introduction

Being able to capture what a model does not know, has become increasingly im-
portant for many applications of machine learning. Knowing if your model is
under- or overconfident can help reasoning about it and the dataset.

Deep learning algorithms are now able to learn powerful representations, mapping
complex data structures to an array of outputs. Making sure that these mappings
are however correct and will not falsely be assumed to be, is very important. Since
todays deep learning algorithms are usually unable to quantify their uncertainty,
fatal predictions can be made. A striking case in which this lead to disastrous
consequences occurred in May 2016, where the first fatality from an assisted driv-
ing system was caused. A white trailer was confused with the bright sky in the
background, resulting in the system not engaging in emergency braking. In this
case, being able to asses uncertainty to the observation could have lead to a better
and safer decision by the model. In order to achieve state-of-the-art performance,
often deep learning is used, which usually cannot represent or learn uncertainty.
For both regression and classification settings, which roughly cover most vision
applications, uncertainty can be captured with Bayesian deep learning.

2 About Bayesian Neural Networks

In Bayesian statistics, evidence about the true state of the world is conveyed in
degrees of belief. Combining Bayesian statistics and deep learning handily comes
with a measure of uncertainty for the networks predictions. Bayesian deep learn-
ing replaces the deterministic weights of a model with distributions, while keeping
the bias parameter, that normal neural networks have. Instead of optimizing the
model weights directly, one has to average over all possible weights (referred to
as marginalization).

So far Bayesian deep learning models were not popular because of the much
greater amount of parameters to optimize. However, with increasing interest in
being able to comprehend complex models and computing an uncertainty measure
alongside the model’s predictions, it has become more popular and new techniques
are being developed. Some of the challenges will become apparent in chapter 3.2,
when epistemic uncertainty is discussed, which in the paper requires expensive
Monte Carlo sampling to obtain.



3 Types of Uncertainties

Uncertainty refers to having limited knowledge in a situation where it is not pos-
sible to precisely grasp an existing state, more than one possible outcome or a
prediction about a future state. Furthermore, uncertainty also includes ambigu-
ity, uncertainty related to human concepts and definitions which are not objective
facts.

There are two main types of uncertainty and it is important to understand which
type is required in which situation, as well as understanding why both types are
necessary to comprehensively predict uncertainty. These two types of uncertain-
ties are called aleatoric and epistemic uncertainty. First, they are grasped as dif-
ferent concepts based on related work to this paper and later are included into one
model.

3.1 Aleatoric Uncertainty

Aleatoric uncertainty captures uncertainty which cannot be explained with the
data. For example, aleatoric uncertainty refers to occlusions, lack of visual fea-
tures or over-exposure (see Figure 1). Only in theory it can be explained away
if all necessary explanatory variables are known with indefinite precision. This
makes it very important for real-time applications like the earlier mentioned as-
sisted driving system. In general, it is most impactful in large data situations,
where epistemic uncertainty usually plays a minor role.
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Figure 1: Examples for aleatoric uncertainty in imagery: A white wall lacking vi-
sual features; A scene at sunset with over- & underexposure; A car being partially
covered (occlusion).

Aleatoric uncertainty can further be divided into homoscedastic and heteroscedas-
tic uncertainty. As the name implies, homoscedastic uncertainty describes uncer-
tainty which is not dependent on the input data, it is a quantity which stays con-
sistent for all data points. Heteroscedastic uncertainty on the other hand depends



on the input data and can be predicted as a model output.

In the case of most computer vision settings, heteroscedastic uncertainty is more
important, therefore it will be in the focus of this report.

For non Bayesian networks, the inherent noise parameter is often included in the

model’s weight decay, but it can be learned if made data dependent:
N
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In this case, o captures heteroscedastic uncertainty for each pixel, segment or im-
age, depending on the task. Also weight decay parameterized by A may be added
to this loss function.

3.1.1 Aleatoric Uncertainty as Learned Loss Attenuation

Having the network predict uncertainty also comes with another effect. It is able
to temper with the loss by the means of o, which is dependent on the data. In
consequence, the network will learn to adapt to noisy data, inputs for which the
network predicts high uncertainty will be attenuated in the loss function. There-
fore, erroneous labels will also have a smaller effect on the loss. This process acts
in the same way as a intelligent robust regression function would.

The variance o appears twice in the loss function in order to achieve a certain
balance. The log o? term prevents the model from assigning high uncertainty to
all points, effectively ignoring the data. The o~2 term on the other hand causes a
high loss for a small 0. The model may ignore data, but in turn is penalized for
that.

The paper points out that this is in fact a consequence of the probabilistic inter-
pretation of the model and not an ad-hoc construction.

3.2 Epistemic Uncertainty

Epistemic uncertainty is also commonly refered to as model uncertainty. It mea-
sures what the model does not know due to a lack of training. It can mostly be
explained away given enough training data and is, in practice, for large data set-
tings second to aleatoric uncertainty. Epistemic uncertainty is therefore especially
important for situations with little training data and safety-critical applications,
since it is necessary to understand and acknowledge samples different from the
training data.

In order to capture epistemic uncertainty we use a Bayesian neural network with
a prior distribution put over its weights (e.g. a Gaussian prior) W ~ A/(0, I).
Now that the network’s weight parameters are distributions, instead of optimizing
the network weights directly we average over all possible weights (marginaliza-
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Not hotdog! Not hotdog! Hetclos)!

[kg

Figure 2: An interesting example for epistemic uncertainty is an app called Not
Hotdog. 1t is simply supposed to tell if an image contains a hotdog or not. The
model itself performs decently, however when presented with objects being cov-
ered by ketchup it gets fooled quickly. This is most likely due to the fact that
it was never trained on “not-hotdog” images. A Bayesian deep learning model
would have predicted a high epistemic uncertainty for the leg with ketchup.

tion).

The output of the BNN is defined as W (x), the model likelihood as p(y|fW (x)).
Bayesian inference, a method of statistical interference, is used to compute the
new posterior p(W|X,Y') based on more evidence (data points), which captures
plausible model parameters given a dataset X = {xy,....,xny}, Y = {y1,..., Y~ }-
However the marginal probability p(Y|X), required to calculate the posterior
p(W|X,Y) = p(Y|X, W)p(W)/p(Y|X), cannot be evaluated analytically.
The solution given in the paper is fitting the posterior p(W|X,Y') with a simple
distribution ¢j;(W) (parameterized by ). Therefore it is no longer necessary to
average over all weights in the BNN, but instead perform an optimization task
where we seek to optimize the parameters of this simple distribution.

In practice, often dropout variational interference is performed to approximate in-
terference in complex models. The model is trained with dropout before every
layer and at the time of testing also utilizing dropout to sample from the approxi-
mate posterior. This dropout can be interpreted as a variational Bayesian approx-
imation. Formally, this is equivalent to finding a simple distribution g; (W) with
approximate variational interference, which minimizes the Kullback-Leiber diver-
gence to the true posterior p(W|X,Y).



The minimization objective is given by ([1]):

N
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(with N: data points; p: dropout probability; AWi ~ q;(W): samples; 0: parame-
ters of the simple distribution to be optimized)

For dropout, 6 refers to the weight matrices.
Regarding the tasks of regression and classification, this loss can be simplified and
the corresponding predictive variance can easily be calculated.

3.2.1 Classification Setting

For classification, the model output is squashed through a softmax function
p(y|fW(x)) = Softmax(fW(x)). Afterwards the resulting probability vector is
sampled. Therefore the likelihood in the loss function can then be approximated
with Monte Carlo integration:

T
1 —
ply=cx,XY)~ 7 ; Softmax (fW*(x)) 3)
(with T: number of sampled masked model weights; W, ~ q; (W), with the
dropout distribution gy(W))

The uncertainty can then be obtained by calculating the entropy of the probability
vector:

C
H(p)=—)_peclogpe 4)
c=1

3.2.2 Regression Setting

For a regression setting the likelihood is often modeled as a Gaussian with its
mean as the model output and a scalar observation noise o, which captures the
noise in the output: p(y|fW(x)) = N(fW(x), 0?). The log likelihood in the loss
function for a Gaussian likelihood can then be approximated as:
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The uncertainty in this case can be captured with the predictive variance:
Var(y Z £V () TV (x,) — E(y)" E(y) (©6)

(with E(y) ~ t £ Wt( ) being an approximation of the predicitve mean)

T

The predictive variance measures the models uncertainty about its own predici-

tons. In theory it will go to Var(y) ~ 0 when all draws W, take a constant value,
this would mean there is zero parameter uncertainty.

4 Combining Aleatoric and Epistemic Uncertainty in One Model

Now the previously explained types of uncertainties will be combined into a sin-
gle model. Not only is this the main objective of the paper, but also, as mentioned
before, it is crucial to be able to analyze them separately. The approach of the
authors makes it possible to study the effects of aleatoric uncertainty alone, epis-
temic uncertainty alone, or modeling both uncertainties together.

For this we again make use of a Bayesian neural network (prior distribution over
the weights).

The posterior is approximated with dropout sampling and model weights are
drawn from the approximate posterior W ~ q(W). This allows to obtain a model
output, but now consisting of a predictive mean and variance:

[y, 6% = £V (x) )
is a Bayesian convolutional neural network with model weights W. With its
head split (input x is transformed in two ways), a single network can be used to
obtain both y as well as 52.

The minimization objective is induced by fixing a Gaussian likelihood to model
aleatoric uncertainty:

1 1. . 1 .
Lpnn(8) = D Z 5% QHYi - YiH2 + §log Uiz (8)

D is the number of output pixels y; corresponding to input image x. [) might for
example be set to 1 for regression tasks, or equal to the number of pixels for dense
prediction tasks, where a unary for each input pixel is predicted. 67 is the pre-
dicted variance for pixel ¢ by the BNN. Furthermore weight decay can be added
to the loss function, which was also done during evaluation in the paper.
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On a sidenote, in practice the network predicts the log variance, s; := log 62. This
is simply more numerically stable and avoids possible division by zero.

The loss combines the two approaches from aleatoric and epistemic uncertainty
modeling. Evaluating the epistemic uncertainty over the parameters with a stochas-
tic sample through the model and aleatoric uncertainty as the sigma regulariza-
tion. The second regularization term strikes the balance mentioned earlier, pre-
venting the model from predicting infinite uncertainty for the whole dataset. It is
important to realize that no lables are needed to learn uncertainty, the variance o>
is implicitly learned, while the distributions over the parameters are a consequence
of the statistical approach (BNN).

In conclusion, the predictive uncertainty in this combined model with outputs
Vi, 02 = fWt(x) for randomly masked weights W, ~ q(W), can be approxi-
mated using:

I, (1. \ 1<,
Var(y) & 7 > ¥ — (729 ) + 5D 60 )
t=1 t t=1

(with {y, 52}I_, aset of T samples)

=1



S Experiments

The authors evaluated their methods with semantic segmentation and pixel-wise
depth regression tasks. They used the (popular) datasets CamVid, Make3D and
NYUv2 Depth. CamVid is a road scene segmentation dataset with 600 images
in day and dusk settings and 10 classes. NYUv2 is a indoor segmentation dataset
consisting of 40 different classes and about 1500 images. Make3D and NYUv2
Depth on the other hand are depth regression datasets. Make3D consists of 550
images of various scenery images, NYUv2 Depth is the same dataset as for the
segmentation task, so indoor images with depth labels for each pixel.

Figure 3: NYUv2 40-Class segmentation results. From left to right: input image,
ground truth, segmentation, aleatoric and epistemic uncertainty.

Figure 4: NYUv2 Depth regression results. From left to right: input image,
ground truth, depth regression, aleatoric and epistemic uncertainty.

Figure 5: Make3D depth regression results. From left to right: input image,
ground truth, depth prediction, aleatoric an epistemic uncertainty.

For the evaluation the authors used their own implementation of DenseNet, train-
ing with RMS-Prop, a constant learning rate of 0.001 and a weight decay of 10~%.
Epistemic uncertainty is modeled utilizing Monte Carlo dropout with p = 0.2 af-
ter each convolutional layer. Also, instead of using a Gaussian prior, a Laplacian
prior used, since according to the authors L1 regularization outperforms L2 in re-
gression tasks. These however are just minor adjustments to get improved results,
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the unmodified approach should have worked in the same way.

5.1 Model Performance
For the segmentation tasks, Intersection over Union (IoU) was used as a measure-
ment of accuracy.

CamVid | ToU
SeaNet 264 NYUv2 40-class | ToU
FCN-8 57.0 SegNet 23.6
DeepLab-LFOV 61.6 FCN-8 31.6
Bayesian SegNet 63.1 :
Dilation8 65.3 g?ye“;npsegNet gi'?
Dilation8 + FSO 66.1 1gen ¢ rergus :
DenseNet 66.9 This work:

This work: DeepLabLargeFOV 36.5
DenseNet (Our Implementation) | 67.1 + Aleatoric Uncertainty | 37.1
+ Aleatoric Uncertainty 674 + Epistemic Uncertainty | 36.7
+ Epistemic Uncertainty 672 + Aleatoric & Epistemic | 37.3
+ Aleatoric & Epistemic 67.5

(a) CamVid dataset (road scenes). (b) NYUV2 40-class dataset (indoor scenes).

Table 1: Semantic segmentation performance. Comparison to previous ap-
proaches on segmentation for the datasets.

NYU v2 Depth ‘ rel ‘ rms ‘ logio

Karsch et al. 0.374 | 1.12 | 0.134
Make3D | rel [rms | logio  pgyerar 0.335 | 1.06 | 0.127
Karsch et al. 0.355 | 9.20 | 0.127 Lietal. 0.232 | 0.821 | 0.094
Liu et al. 0.335 1 9.49 | 0.137 Eigen et al. 0.215 | 0.907 -
Lietal. 0.278 | 7.19 | 0.092 Eigen and Fergus 0.158 | 0.641 -
Laina et al. 0.176 | 4.46 | 0.072 Laina et al. 0.127 | 0.573 | 0.055

This work: This work:

DenseNet Baseline 0.167 | 3.92 | 0.064 DenseNet Baseline 0.117 | 0.517 | 0.051
+ Aleatoric Uncertainty | 0.149 | 3.93 | 0.061 + Aleatoric Uncertainty | 0.112 | 0.508 | 0.046
+ Epistemic Uncertainty | 0.162 | 3.87 | 0.064 + Epistemic Uncertainty | 0.114 | 0.512 | 0.049
+ Aleatoric & Epistemic | 0.149 | 4.08 | 0.063 + Aleatoric & Epistemic | 0.110 | 0.506 | 0.045

(a) Make3D depth dataset (b) NYUv2 depth dataset

Table 2: Monocular depth regression performance. Comparison to previous
approaches on depth regression for the datasets.

Table 1 shows, that modeling aleatoric and epistemic uncertainty improves over
the baseline result. Also, aleatoric uncertainty provides a larger improvement
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over the baseline than epistemic uncertainty, nevertheless modeling both at the
same time increases the accuracy even further. For the NYUv2 dataset the IoU is
a lot smaller, mainly because the indoor setting is challenging and the amount of
classes is much greater than for CamVid. Table 2 also depicts that modeling uncer-
tainties for regression tasks increases accuracy, however for the Make3D dataset,
modeling both at the same time did not produce the best results. The authors did
not comment on that, however it might be a consequence of the dataset not having
labels for depths greater than 70m and in turn the learned loss attenuation might
affect results more. Still, in theory, the combination of both should result in the
best model.

As expected, aleatoric uncertainty is dominant for large depths, occlusion bound-
aries and boundaries in general, as well as reflective or badly lit surfaces. This can
be seen in figures 3, 4 & 5. The qualitative results also demonstrate that epistemic
uncertainty captures difficulties as a consequence of too little data. Objects which
occur less frequent have higher epistemic uncertainty, for example the person in
figure 4.

5.2 Further Experiments
Aside from the performance for classification and regression tasks, more interest-
ing experiments were shown in the paper.

-

Precision
~

w

Precision (RMS Error)

IS

| === Aleatoric Uncertainty | = Aleatoric Uncertainty

0ss{ === Epistemic Uncertainty === Epistemic Uncertainty
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
(a) Classification (CamVid) (b) Regression (Make3D)

Figure 6: Precision-recall plots displaying the ability of both uncertainties to ac-
count for each other in absence. Moreover they are able to capture accuracy, as
with increasing uncertainty precision decreases.

One of those was removing pixels above a certain threshold for either aleatoric
or epistemic uncertainty. Figure 6 displays the respective precision-recall curves
for both classification and regression. The correlation between accuracy and un-
certainty measurements is clear, since all of the curves are strictly decreasing.
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Furthermore, the curves for aleatoric and epistemic uncertainty are similar. This
can be attributed to the fact that if only one type of uncertainty is modeled, it com-
pensates for the other type, which again underlines the importance of modeling
both together. However it also shows that they are both able to capture similar
uncertainty quantities in the absence of each other.

Train Test Aleatoric | Epistemic Train Test Aleatoric | Epistemic logit
dataset dataset RMS | variance | variance dataset dataset | IoU | entropy | variance (x107%)
Make3D /4 | Make3D | 5.76 0.506 7.73 CamVid/4 | CamVid | 57.2 | 0.106 1.96
Make3D /2 | Make3D | 4.62 0.521 438 CamVid /2 | CamVid | 62.9 | 0.156 1.66
Make3D Make3D | 3.87 0.485 2.78 CamVid CamVid | 67.5 | 0.111 1.36
Make3D /4 | NYUv2 - 0.388 15.0 CamVid /4 | NYUv2 - 0.247 109
Make3D NYUv2 0.461 4.87 CamVid NYUv2 0.264 11.8
(a) Regression (b) Classification

Table 3: Accuracy and epistemic & aleatoric uncertainties for differently sized
training sets as well as distinct test sets. Epistemic and aleatoric uncertainty mea-
sures are the mean value of all pixels. It shows that aleatoric uncertainty stays
roughly constant while epistemic uncertainty increases with less data and differ-
ent test sets.

Also, the authors tried using smaller sized subsets of the datasets for training, as
well as evaluating on different sets. Table 3 shows, that epistemic uncertainty
increases as the training dataset gets smaller and that is very high if evaluated on
different data. Moreover aleatoric uncertainty stays about the same for all of the
tests. Once more this underlines the difference between the two types.
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6 Conclusion

The paper introduced a Bayesian deep learning approach to model both aleatoric
and epistemic uncertainty at the same time. It showed applications for both re-
gression and classification tasks and at the time of publishing set new state of the
art performances. It further substantiated that the two types of uncertainties model
different quantities, while not being mutually exclusive. The claims that epistemic
uncertainty is less important for large data settings and that aleatoric uncertainty
measures uncertainty inherent in the input data were confirmed.

Modeling aleatoric uncertainty is important for big datasets, where epistemic un-
certainty is less critical and the same applies to epistemic uncertainty for the vice
versa scenario. From a safety-critical point of view and in reference to the as-
sisted driving accident mentioned in the introduction, epistemic uncertainty is es-
pecially important to understand examples different from the training data, and
do so in real time. Since this however requires expensive Monte Carlo sampling,
which according to the authors took about 150ms on a NVIDIA Titan X GPU for
a 640 x 480 image and is hard to parallelize, this topic of research is far from com-
plete. Being able to properly asses uncertainty is necessary for machine learning
to take over human tasks than can cause potential harm.

13



References

[1] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183-233,
1999.

[2] Alex Kendall & Yarin Gal, University of Cambridge. What Uncertainties Do We Need in
Bayesian Deep Learning for Computer Vision? Machine learning, 2017

[3] Deep Learning Is Not Good Enough, We Need Bayesian Deep Learning for Safe Al
https://alexgkendall.com/computer_vision/bayesian_deep_
learning_for_safe_ai Machine learning, 2017

[4] Building a Bayesian deep learning classifier.
https://github.com/kyle-dorman/bayesian-neural-network—-blogpost
Machine learning, 2017

[5] Bayes by Backprop from scratch (NN, classification).
https://gluon.mxnet.io/chapterl8_variational-methods—and-uncertainty/
bayes—by-backprop.html Machine learning, 2017

[6] NHTSA. PE 16-007. Technical report, U.S. Department of Transportation, National High-
way Traffic Safety Administration, Jan 2017. Tesla Crash Preliminary Evaluation Report.

14


https://alexgkendall.com/computer_vision/bayesian_deep_learning_for_safe_ai
https://alexgkendall.com/computer_vision/bayesian_deep_learning_for_safe_ai
https://github.com/kyle-dorman/bayesian-neural-network-blogpost
https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html
https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html

	1 Introduction
	2 About Bayesian Neural Networks
	3 Types of Uncertainties
	3.1 Aleatoric Uncertainty
	3.1.1 Aleatoric Uncertainty as Learned Loss Attenuation

	3.2 Epistemic Uncertainty
	3.2.1 Classification Setting
	3.2.2 Regression Setting


	4 Combining Aleatoric and Epistemic Uncertainty in One Model
	5 Experiments
	5.1 Model Performance
	5.2 Further Experiments

	6 Conclusion

